
Intersection on a Nonsingular Variety

Adam B Block

These notes are for a talk given for the Reading Seminar on Intersection Theory for graduate students
at Columbia in the Fall 2018 semester. These notes are entirely based on [Ful98, Chapter 8] and the reader
is referred there for a clearer and more eloquent exposition.

1 A Brief Review

Recall our general setup. Let i : X → Y be a regular imbedding of codimension d and let f : V → Y a
morphism such that V is a purely k dimensional scheme. This gives the fibre square

W V

X Y

j

g f

i

Denote NXY be the normal bundle of X in Y and let N = g∗NXY be the pull back to W . Then N is a
rank d bundle on W with projection π : N →W . Let C = CWV be the normal cone of W in V . Recall that
we have

C N

W

π

with C purely k-dimensional. Thus [C] ∈ AkN . Let s : W → N denote the zero section. Then we may
define X · V = s∗[C] ∈ Ak−dW . This gives the intersection product.

We also have a refined version of the above construction. Similarly, we have i : X → Y be a regular
imbedding of codimension d and let f : Y ′ → Y be a morphism. This gives the following fiber square

X ′ Y ′

X Y

j

g f

i

We define

i! : ZkY
′ → Zk−dX

′ [V ] 7→ X · V

with linear extension. This passes to the Chow groups and we have a refined intersection product

i! : AkY
′ → Ak−dX

′

Now, let k a field. We say that Y/k is non singular if it smooth over k.
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Proposition 1. If f : X → Y is a smooth morphism of relative dimension n and γ : X → X × Y is the
graph morphism, then γ is a regular imbedding of codimension n with normal bndle f∗TY . In particular, if
X/k is smooth, then the diagonal δ : X → X ×X is a regular imbedding of codimension equal to dimX

Proof. See [Ful98, Appendix B.7.3]. �

We are now ready to move on to the main body of the talk.

2 Intersections on Smooth Varieties

We begin with a definition.

Definition 2. Let X be a smooth variety with diagonal δ : X → X×X. We define the intersection product
as the following composition:

AkX ⊗A`X
×−→ Ak+`X ×X

δ∗−→ Ak+`−nX

More generally, let X be as above and let Y be any scheme with morphism f : X → Y and graph γf . If
dimX = n then we define the cap product

f∗ _: AiX ⊗AjY → Ai+j−nY f∗(x) _ y = γ∗f (x× y)

Note that Proposition 1 allows us to use these Gysin pullbacks both in the case of the diagonal and in
the case of the graph morphism. As we did above, we may define refined intersection products by using the
refined maps instead. In this framework, let x, y be cycles on Y with supports |x|, |y|. We then have the
following fibre square

|x| ∩ |y| |x| × |y|

Y Y × Y

Then with our refined notions from above, we have δ!(x× y) ∈ A∗(|x| ∩ |y|) which then maps into the global
chow group A∗Y . This leads to the following definition:

Definition 3. Let f : X → Y a morphism of schemes with Y a nonsingular dimension n variety. Let
pX : X ′ → X and pY : Y ′ → Y be morphisms with x ∈ AkX ′ and y ∈ A`Y ′ and let γf denote the graph of
f . Then we have the following square

X ′ ×Y Y ′ X ′ × Y ′

X X × Y

pX×pY
γf

and we may define
x ·f y = γ!

f (x× y) ∈ Ak+`−n(X ′ ×Y Y ′)

Note that if X ′ = X and Y ′ = Y then this is just what we had before because pX , pY become the
identities on X,Y respectively. The behavior of these definitions is exactly as expected, summed up in the
proposition below:

Proposition 4. Let X,Y, Yi, Z be varieties, pX : X ′ → X, pY : Y ′ → Y , pYi
: Y ′i → Yi, pZ : Z ′ → Z,

x ∈ A∗X, y ∈ A∗Y , z ∈ A∗Z, and yi ∈ A∗Yi. Then
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1. (Associativity) If f : X → Y and g : Y → Z are morphisms with Y,Z nonsinigular, then

x ·f (y ·g z) = (x ·f y) ·f gfz ∈ A∗(X ′ ×Y Y ′ ×Z Z ′)

2. (Commutativity) If fi : X → Yi with Yi nonsingular then

(x ·f f1y1) ·f2 y2 = (x ·f f2y2) ·f1 y1 ∈ A∗Y ′1 ×Y Y1X
′ ×Y2

Y ′2

3. (Projection Formula) Let f : X → Y , g : Y → Z with Z nonsingular. Suppose f ′ : X ′ → Y ′ is proper
and pY f

′ = fpX . Let f ′′ = f ′ ×Z idZ : X ′ × Z → Y ′ × Z. Then

f ′′∗ (x ·gf z) = f ′∗(x) ·g z ∈ A∗(Y ′ ×Z Z ′)

4. (Compatibility) Let f : X → Y with Y nonsingular and let g : V ′ → Y ′ be a regular imbedding. Then
we have

g!(x ·f y) = x ·f g!y ∈ A∗(X ′ ×Y V ′)

Proof. For (1), consider

X X × Z

X × Y X × Y × Z

γgf

γf γf×idZ

idX×γg

We have a map X ′ × Y ′ ×Z ′ → X × Y ×Z which induces another fiber square over this one. Then we have

x ·f (y ·g z) = γ!
f (x× γ!

g(y × z)) = γ!
f (idX × γg)!(x× y × z) = (γf × idZ)!(idX × γg)!(x× y × z)

by our commutativity theorem from [Ful98, §6]. Now we may just apply the definitions to get

(γf × idZ)!(idX × γg)!(x× y × z) = γ!
gf ((x ·f y)× z) = (x ·f y) ·gf z

as desired.
For (2) we do the same thing with the fiber square

X X × Y2

Y1 ×X Y1 ×X × Y2

γf2

γf1 γf1×id

id×γf2

We note that (3) and (4) are proved similarly, with increasingly complicated diagrams. Details can be found
in [Ful98, §8] �

We have the following useful corollaries.

Corollary 5. Let f : X → Y with Y nonsingular. Let x be a cycle on X. Then x ·f [Y ] = x.

Proof. By (c) in Proposition 4, we may assume that x = [X] by considering inclusion of our cycle into X
and applying the projection formula. Then we have by definition

x ·f [Y ] = γ∗f [X × Y ] = [γ−1
f (X × Y )] = [X]

as desired. �

Note that Corollary 5 will show that the intersection ring has the expected identity in that obviously if
you intersect with a containing space, the intersection class should not change.
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Corollary 6. Suppose Y is nonsingular and let j : V → Y be a regular imbedding. Let x be a cycle on Y .
Then

x · [V ] = j!(x) ∈ A∗(|x| ∩ V )

Proof. By Corollary 5 and Proposition 4, we have the following chain of equalities:

j!(x) = j!(x ·f [Y ]) = x ·f j![Y ] = x ·f [V ]

from the definition of j! : A∗Y → A∗V . �

Our last corollary justifies our notion of intersection product.

Corollary 7. If f : X → Y is a morphism of nonsingular varieties and Γ ⊂ X × Y is the graph, then for
all cycles x ∈ A∗X and y ∈ A∗Y we have

x ·f y = [X × Y ][Γ]

Proof. Let γ : Γ→ X × Y denote the inclusion. Then by Corollary 5, we have

(x× y) · [Γ] = γ!(x× y) = x ·f y

by definition. �

Note that in the special case of f : X → X being the identity, this shows that

x · y = [x× y] · [∆]

where ∆ is the diagonal. This is, of course, exactly as expected.
Note that Corollary 6 shows that the classic fact of the Euler characteristic being given by the self

intersection of the diagonal holds in algebraic geometry even though we do not have a tubular neighborhood
theorem. To see this, we first recall

Proposition 8. Given a fiber diagram

X ′′ Y ′′

X ′ Y ′

X Y

q p

i′

g f

i

with i a regular imbedding and

1. (Excess Intersection) with i′ regular imbeddings of codimensions d and d′ and normal bundles N and
N ′, and E = g∗N/N ′, then i! = cd−d′(q

∗E) ∩ i′! as morphisms A∗Y
′′ → A∗−dX

′′.

2. (Push-forward) with p proper i!p∗ = q∗i
!

3. (Pull-back) with p flat, i!p∗ = q∗i!.

Proof. See [Ful98, §§6.2-3] �

If X is nonsingular and ∆ ⊂ X×X is the diagonal, then we have [∆] · [∆] = δ!(∆). We note Proposition 8
contains the special case of q and p and i′ isomorphisms, which then works out to i! = cd(g

∗N)∩ : A∗Y
′ →

A∗−dX
′. Going back to our example, we have
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∆ ∆

X X ×X

g i

δ

and δ!(∆) = cn(g∗N∆X ×X) ∩ [∆]. But we have already seen that this is given by cn(TX) ∩ [X].
With our work with refined intersections above, we may define a refined Gysin map as follows.

Definition 9. Let f : X → Y be a morphism from a purely m-dimensional scheme X to a nonsingular
n-dimensional variety Y . Let g : Y ′ → Y be a morphism and define X ′ = X ×Y Y ′. Then we have the
refined Gysin map

f ! : AkY
′ → Ak+m−nX

′ y 7→ [X] ·f y

The key result regarding this refined Gysin map is that it does not really give us anything new, as
encapsulated in the following proposition.

Proposition 10. Let f : X → Y a morphism with X,Y as in the definition above. Then, if f is flat and
f ′ : X ′ → Y ′ is the induced morphism, then f ! = f ′∗.

Proof. This is immediate from the following compatibility result found in [Ful98, §6.5]. Given the commuting
diagram

X ′ Y ′ Z ′

X Y Z

i′

h g

p′

ϕ

i p

where i is a regular imbedding of codimension d and p is flat of relative dimension n, and p◦i is flat of relative
dimension n−d, then i′ is a regular imbedding of codimension d, p′ is flat as well and (p′i′)∗ = i′∗p′∗ = i!p′∗.
Let Z = Y and let p = id and i = f . Then we have

X ′ Y ′ Y ′

X Y Y

f ′

h g

id

ϕ

f id

and we have

f ! = f !id∗ = (id ◦ f ′)∗ = f ′∗

as desired. �

This compatibility result is useful in that it gives us the classic projection. Let i : V → Y be a regular
imbedding into a nonsingular variety. Then for all y ∈ A∗Y , we have [V ] · y = i∗i

∗(y). This follows because
i∗(y) = i!(y) = [V ]·y ∈ A∗(V ∩|y|) by Proposition 10 and Corollary 6. Pushing forward yields the projection.

3 The Intersection Ring and Examples

With the above setup, and guided by intuition from the case of real manifolds and Poincaré duality, we give
the Chow groups a natural ring structure for nonsingular varieties.
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Definition 11. Let Y be an n-dimensional nonsingular variety. We define ApY := An−pY . The intersection
product gives maps

ApY ⊗AqY → An−p+n−q−nY = An−p−qY = Ap+qY

and similarly if f : X → Y is a morphism then the cap product gives

ApY ⊗AqX
_−→ Aq−pX

Note that if X is m dimensional nonsingular and f is flat then

f∗ : ApY = An−pY → An−p+m−nX = ApX

and so f∗ preserves degrees. We have the following proposition.

Proposition 12. Let Y be a nonsingular n-dimensional variety. Then

1. As defined above A∗Y is an associative, commutative ring with unit given by [Y ]. Moreover, this
assignment is functorial from nonsingular varieties to rings with flat morphisms f being sent to their
pullbacks f∗.

2. If f : X → Y is a morphism from some shceme X then the cap product turns A∗X into an A∗Y -module.

3. If f : X → Y is proper and X is a nonsingular variety, then for all x ∈ A∗X and y ∈ A∗Y , we have

f∗(f
∗y · x) = y · f∗(x)

Proof. We have that associativity and commutativity follow from (1) and (2) in Proposition 4 and unit
follows from Corollary 5. Functoriality follows as well from (1) in Proposition 4 and (3) above follows from
(3) in Proposition 4. The fact that A∗X is an A∗Y -module similarly follows immediately from Proposition 4
and the definition of cap product. �

Example 13. A natural question is how might we define such a ring in the more general case where we
may drop nonsingularity or irreducibility. Thus we may define for some quasi-projective X,

A∗X = lim
−→

A∗Y

where the colimit is over all pairs (Y, f) such that f : X → Y is a morphism and Y is a nonsingular quasi-
projective variety. Note that this is clearly contravariant as a functor, and our notions of cap products, the
projection formula, and chern classes all hold. This notion also reduces to our above notion in the case of
X nonsingular because it is clear that if X is nonsingular, then X is inital in the category of nonsingular
varieties with morphisms from X. Unfortunately, in most cases it is very difficult to understand this ring
explicitly; thus the notion of bivariant intersection theory and operational chow groups is introduced in
[Ful98, §17].

We now move on to consider intersections in projective space. We recall from the first lecture that, using
affine stratifications, we have

AkPn =

{
Z 0 ≤ k ≤ n
0 otherwise

with AkPn being generated by the class of a k-plane, [Lk]. From the fact that if V,W are transverse then
[V ] · [W ] = [V ∩W ], we see immediately that if Hi is a codimension i plane then [Hi][Hj ] = [Hi+j ] with
[Hi+j ] = 0 if i+ j > n. This is summed up in the following result:

Proposition 14. If Pn is projective space then A∗Pn = Z[ζ]/(ζn+1).

We have the following examples.
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Example 15. Let X = P1 × P1. and let i : X → P3 be the Segre imbedding, i((x0 : x1), (y0 : y1)) =
(x0y0 : x0y1 : x1y0 : x1y1). We know A∗X = Z[x1, x2]/(x2

1, x
2
2). What is i∗ : A1P3 → A1X? We know that

A1P3 = Z · [H] where H is a hyperplane. Let H : x3 = 0. Then we have

i∗[H] = [i−1(H)] = [(1 : 0)× (y0 : y1) ∪ (x0 : x1)× (1 : 0)] = [{pt} × P1] + [P1 × {pt}] = x1 + x2

Thus, if we let the bidgree of α = ax1 + bx2 ∈ A1X be (a, b), then Im i∗ is the set of elements of bidegree
(a, a). If Y ⊂ P3 is a degree d surface, then i∗[Y ] = (d, d). Thus if we have C an irreducible closed curve on
X of bidegree (a, b) with a 6= b, then we cannot realize C as an intersection of X with any surface in P3.

Example 16. We have seen that if X = Pm × Pn and s, t represent the classes of hyperplanes in ppm, Pn
respectively, we have A∗X = Z[s, t]/(sm+1, tn+1). Thus if V ⊂ X is a subvariety of dimension k then we
have

[V ] =
∑
i+j=k

aijs
m−itn−j

with the aij called the bidegrees of V . We wish to turn these bidegrees into a degree. We may do this by
the following process. Consider the ideal p ⊂ K[X0, . . . Xm, Y0, . . . Yn] that is homogeneous in X and in Y
defining V . Let p′ ⊂ p be the subset of those elements that are homogeneous in all of the variables and is
not just bihomogeneous. Then let V ′ be the variety corresponding to p′. This can be realized geometrically
set theoretically as

V ′ = {(λx0 : λx1 : . . . λxm : µy0 : · · · : µyn) ∈ Pm+n+1|(x, y) ∈ V, (λ : µ) ∈ P1}

Then it is a classical result that the degree of V ′ is the sum of the bidegrees of V .

We now focus entirely on intersections in projective space. Because of Proposition 14, we know that the
intersection ring is particularly well-behaved, and thus we can see explicit and concrete results relatively
easily. For α ∈ AkPn we define degα =

∫
Pn c1(O(1))k ∩ α, constructed such that α = deg(α) · ζn−k where ζ

is the class of a hyperplane. From Proposition 14 above, we immediately get

Proposition 17 (Bézout). Let αi ∈ AαiPn. If
∑
αi ≤ n then deg(α1 . . . αr) = degα1 degα2 . . . degαr.

Example 18. A natural question to ask is if we can apply this degree in the Bezout sense to the irreducible
components of an intersection in a way such that the sum of these numbers give the degree of the intersection.
The answer to this question is no if we want these numbers to be preserved by automorphisms of Pn as we
see in the following example. Let n = 4 and consider

V = V (x3
3 − x1x2(x2 − 2x1), x3)

W = V (x3
4 − x2x1(x1 − 2x2), x4)

Then deg V = degW = 3 so deg V ∩W = 9. Note that V ∩W is given by x3 = x4 = 0 and at least one of
x1, x2 also zero. Thus V ∩W is the union of lines L1, L2 where

L1 : x1 = x3 = x4 = 0

L2 : x2 = x3 = x4 = 0

Let σ ∈ S4 such that σ = (1 2)(3 4). Then σ acting on indices is an automorphism of P4 and σ · V = W ,
σ ·W = V , σ ·L1 = L2 and σ ·L2 = L1. Thus suppose we assing numbers n1, n2 to L1, L2. If this assignment
of numbers is invariant under AutP4 then it is invariant under σ and so n1 = n2. But we then have 9 = 2n1

and so n1 6∈ Z.

As an example application, we will use the developed theory to prove the following claim

Claim 19. Let X ⊂ Pn be an irreducible subvariety of degree d and suppose that X is not contained in any
hyperplane of Pn. Then

dimX + d ≥ n+ 1

Before we do this, we make the following claim:
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Claim 20. All intersection products in Pn can be realized as a subvariety intersecting a linear subspace in
some PN .

To prove Claim 20, we introduce the notion of a ruled join. Let V,W ⊂ Pn be varieties of dimensions
k, ` respectively. We define J = J(V,W ) ⊂ P2n+1 as follows. Let Pn1 ,Pn2 ⊂ P2n+1 be given by xn+1 = · · · =
x2n = 0 and x0 = x1 = · · · = xn = 0 respectively. Consider V ⊂ Pn1 and W ⊂ Pn2 and define J as the union
of lines in P2n+1 joining a point in V and a point in W . If p, q are the ideals defining V,W respectivley, then
the ideal of J is given by (p, q) = a ⊂ k[x0, . . . , xn, y0, . . . , yn]. Let L ⊂ P2n+1 be given by all points (x : y)
such that x = y and note that i : Pn → P2n+1 given by x 7→ (x : x) induces an isomorphism i : Pn ∼−→ L.
Thus we have

i : V ∩W ∼−→ L ∩ J

because clearly if u = (x : y) ∈ L ∩ J then x ∈ V , y ∈ W and x = y. Define P2n+1
◦ = P2n+1 \ (Pn1 ∪ Pn2 ) and

let π : P2n+1
◦ → Pn × Pn be given by (x : y) 7→ x× y. Note that this is well defined because we do not have

either x = 0 or y = 0 in P2n+1
◦ . Note that π : L ∼−→ ∆ ⊂ Pn × Pn and π : L ∩ J ∼−→ ∆ ∩ (V ×W ). We

know that π is smooth. We claim that V ·W = L · J ∈ Ak+`−n(V ∩W ). To see this, let J◦ = P2n+1
◦ ∩ J and

consider

Pn P2n+1
◦ J◦

Pn Pn × Pn V ×W

i◦

id π π′

δ

where i◦ : Pn → P2n+1
◦ is just i : Pn → L ⊂ P2n+1

◦ . Then we have

V ·W = δ![V ×W ] = i!◦π
′∗[V ×W ] = i!◦[π

′−1(V ×W )] = i!◦[J◦]

Then considering Proposition 8, we have

Pn P2n+1
◦

Pn P2n+1

i◦

id

i

We know that [J◦] ∈ A∗P2n+1
◦ and so i!◦[J◦] = i![J ]. We may then apply Corollary 6 to have i![J ] = L · J .

Thus we have V ·W = L · J(V,W ). We see that L is a linear subspace so Claim 20 holds. We remark that
taking degrees and recalling that linear spaces have degree one, we have that deg J(V,W ) = deg V degW .
We might adapt this argument to consider r intersections in projective space, which would yield the ruled
join in Pr(n+1)−1. Thus, any intersection that occurs in projective space may be realized as the intersection
of a variety and some linear subspace.

The preceding discussion allows us to make the following claim, a common corollary of Bezout’s theorem.

Claim 21. If V1, . . . Vr ⊂ Pn and Z1, . . . Zs are the irreducible components of
⋂
i Vi, then∑

deg(Zi) ≤
∏

deg(Vi)

By induction, we may take r = 2 and by Claim 20, we may assume that V2 is linear. Thus we are
considering V ∩ L. But L is the intersection of hyperplanes, so again by induction we may consider V ∩H
where H is a hyperplane. If V ⊂ H then V ∩ H = V and Z = V a single irreducible component; then
equality holds. If V 6⊂ H then V ·H =

∑
ai[Zi] with each ai ≥ 1. Thus

deg V degH = deg(
∑

ai[Zi]) =
∑

ai degZi ≥
∑

degZi

An easy application of this is
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Example 22. If X is projective and V1, . . . , Vr ⊂ X are subvarieties of degrees d1, . . . dr with respect to a
given imbedding of the subvarieties, then if

⋂
Vi is finite then∣∣∣⋂Vi

∣∣∣ ≤ d1 · · · dr

Now we are finally prepared to prove Claim 19. Indeed, Let X ⊂ Pn be a subvariety of degree d not
contained in any hyperplane. Taking a generic hyperplane H ∼= Pn−1 we may consider X ∩ H ⊂ Pn−1. If
H is general, then by a variant of Bertini’s theorem, we may take X ′ = X ∩H is a dimX − 1 irreducible
subvariety not contained in any hyperplane in Pn−1. Inducting, it suffices to consider the case X a curve of
degree d imbedded in Pn not contained in any hyperplane. We need to show that d ≥ n. Choose n points
on X. Then there is a hyperplane H through those n points and so d = degX degH ≥

∑
degZi ≥ n. Thus

Claim 19 is established.
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