

MOTIVATION

Key Characteristic of Networks

Network effects captured one widely observed phenomenon of the behavior of agents in a network, especially in social network settings

Ideal Model for Implementation

The majority of the analysis is based on the generic form of the utility function: $u(s_{i,t}, x_{i,t}, S_t, S_{t-1}) = x_i[\lambda h(S_{t-1}) + (1-\lambda)h(S_t)]s_{i,t} - cs_{i,t}$ and the distribution G(x)

Intuitive Study Tool

A graphical representation of the result we got in class will be a very intuitive study tool for students to better understand the theories on network effect

Infinite Agents

Modelling a community with a large number of agents. For instance, a continuum I := [0,1] of agents

Infinite Agents

Modelling a community with a large number of agents. For instance, a continuum I = [0,1] of agents

Homogeneous Utility Function

Each agent has the utility function: $u(s_{i,t}, x_i, S_t, S_{t-1}) = [x_i[\lambda h(S_{t-1}) + (1-\lambda)h(S_t)] - c]s_{i,t}$, where $s_{i,t} \in \{0,1\}$ denotes the strategy of agent i at time t, and S_t denotes the fraction of population that choose s = 1

Infinite Agents

Modelling a community with a large number of agents. For instance, a continuum I = [0,1] of agents

Homogeneous Utility Function

Each agent has the utility function: $u(s_{i,t}, x_i, S_t, S_{t-1}) = [x_i[\lambda h(S_{t-1}) + (1-\lambda)h(S_t)] - c]s_{i,t}$, where $s_{i,t} \in \{0,1\}$ denotes the strategy of agent i at time t, and S_t denotes the fraction of population that choose s = 1

Type Distribution

Each agent has a type x_i , which describes his/her utility from taking action s = 1. x_i comes from the distribution G(x) (CDF)

Infinite Agents

Modelling a community with a large number of agents. For instance, a continuum I = [0,1] of agents

Homogeneous Utility Function

Each agent has the utility function: $u(s_{i,t}, x_i, S_t, S_{t-1}) = [x_i[\lambda h(S_{t-1}) + (1-\lambda)h(S_t)] - c]s_{i,t}$, where $s_{i,t} \in \{0,1\}$ denotes the strategy of agent i at time t, and S_t denotes the fraction of population that choose s = 1

Type Distribution

Each agent has a type x_i , which describes his/her utility from taking action s = 1. x_i comes from the distribution G(x) (CDF)

Network Effect Function

h(S) is an increasing function that captures positive network effect on agents

Infinite Agents

Modelling a community with a large number of agents. For instance, a continuum I := [0,1] of agents

Homogeneous Utility Function

Each agent has the utility function: $u(s_{i,t}, x_i, S_t, S_{t-1}) = [x_i[\lambda h(S_{t-1}) + (1-\lambda)h(S_t)] - c]s_{i,t}$, where $s_{i,t} \in \{0,1\}$ denotes the strategy of agent i at time t, and S_t denotes the fraction of population that choose s = 1

Type Distribution

Each agent has a type x_i , which describes his/her utility from taking action s = 1. x_i comes from the distribution G(x) (CDF)

Network Effect Function

h(S) is an increasing function that captures positive network effects on agents

Other Constant Parameters

c: cost of taking action s = 1

 λ : weight of the network effect from the previous period

NETWORK EFFECT RECAP – MAIN RESULT

Fixed Point Equation

Only agents that that will have positive utilities from taking action s = 1 will take this action. Recall that the utility function has the form:

$$u(s_{i,t}, x_i, S_t, S_{t-1}) = [x_i[\lambda h(S_{t-1}) + (1 - \lambda)h(S_t)] - c]s_{i,t}$$

Thus, only the agents with the following type will take action s = 1:

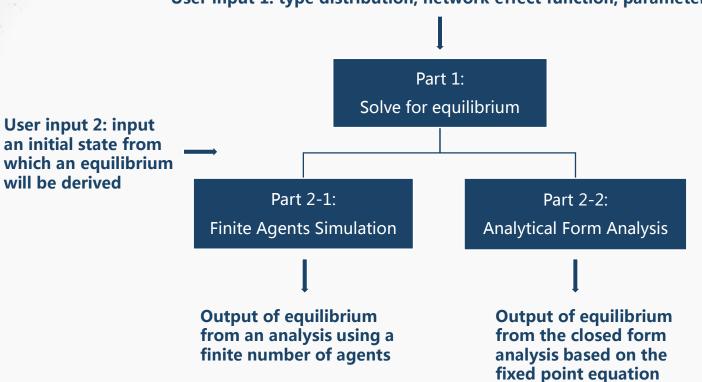
$$x_i > \frac{c}{\lambda h(S_{t-1}) + (1-\lambda)h(S_t)}$$

Thus, we have the fixed point equation for the fraction of population that take action s = 1:

$$S_t = 1 - G(\frac{c}{\lambda h(S_{t-1}) + (1 - \lambda)h(S_t)})$$

PROGRAM DEMO – STRUCTURE

User input 1: type distribution, network effect function, parameters...



PROGRAM DEMO – ASSUMPTIONS

Type Distribution

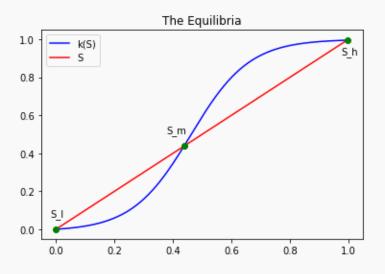
$$G(x) = \frac{\gamma + \beta}{1 + \beta} \frac{(1 + \beta)e^{-\frac{\alpha'}{x}}}{\gamma + \beta e^{-\frac{\alpha'}{x}}}$$

$$G^{-1}(U) = \frac{-\alpha'}{\log(\frac{\gamma U}{\gamma + \beta - \beta U})}$$

Network Effect Function

$$h(S) = S$$

PROGRAM DEMO – ASSUMPTIONS



Demo in Spyder

