Large Orders in Small Markets: On Optimal Execution with Endogenous Liquidity Supply
Online Appendix

Agostino Capponi Albert J. Menkveld Hongzhong Zhang

March 11, 2019

1Agostino Capponi, Columbia University, New York, ac3827@columbia.edu. Albert J. Menkveld, Vrije Universiteit Amsterdam, SBE, De Boelelaan 1105, 1081 HV, Amsterdam, Netherlands, albertj-menkveld@gmail.com, and Tinbergen Institute. Hongzhong Zhang, Columbia University, New York, hz2244@columbia.edu. We thank Humoud Alsabah, Thierry Foucault, Duane Seppi, Burton Hollifield, Jonathan Brogaard, Terrence Hendershott, Matthew Pritsker, Ekaterina Serikova, as well as seminar/conference participants at Carnegie Mellon, Cass Business School, Humboldt University, NYU Shanghai, SUFE Shanghai, Sydney University, UC Berkeley, and the Market Microstructure Confronting Many Viewpoints Conference for helpful comments. Menkveld gratefully acknowledges Netherlands Organisation for Scientific Research (NWO) for a Vici grant. The research of Capponi and Zhang was supported by a grant from the US National Science Foundation (DMS-1716145).
Large Orders in Small Markets: On Optimal Execution with Endogenous Liquidity Supply

Online Appendix

Abstract

We solve a Stackelberg game where a large uninformed seller executes optimally, fully cognizant of the response of Cournot-competitive market makers. The game therefore endogenizes both demand and supply of liquidity. The closed-form solution yields several insights. First, stealth trading is both privately and socially costly because market makers incur additional cost not knowing when execution ends. Second, the presence of a large seller does not unambiguously benefit other participants. Market makers benefit only if there is enough risk-absorption capacity or if the execution period is short. Other investors benefit only when the seller sells at high enough intensity.
Proof of claims in Table 1. Recall that A^* is the unique positive solution to

$$\eta - \beta A = \frac{8\delta \lambda A^2(1 + \delta A)}{(N + 1 + 2\delta A)^2}. \quad (1)$$

The left hand side of (1) is strictly decreasing in A, whereas the right hand side of (1) is strictly increasing in A. Notice that (A, θ) satisfies the equation

$$H(A, \theta) = 0, \text{ where } H(A, \theta) = \frac{8\delta \lambda A^2(1 + \delta A)}{(N + 1 + 2\delta A)^2} + \beta A - \eta. \quad (2)$$

- Dependence on η: Taking partial derivatives in (2) yields

$$\frac{\partial H}{\partial A} = \frac{8\delta \lambda(N + 1 + 2N\delta A)}{(N + 1 + 2\delta A)^3} + \beta > 0, \quad \frac{\partial H}{\partial \eta} = -1 < 0.$$

Hence, we have $\frac{\partial A^*}{\partial \eta} = -\frac{\partial H}{\partial \eta} |_{A=A^*} > 0$. Moreover, the bid-ask spread $2A_{\theta} = \frac{2(1+2\delta A^*)}{N+1+2\delta A^*} \omega = 2\omega - \frac{2N}{N+1+2\delta A^*} \omega$, and the conditional price pressure $B_{\theta} = \frac{2A^*}{N+1+2\delta A^*} = \frac{2}{N+1+2\delta}$ are strictly increasing in A^*, so they are also increasing in η.

- Dependence on λ: Taking partial derivatives in (2) yields

$$\frac{\partial H}{\partial A} = \frac{8\delta \lambda(N + 1 + 2N\delta A)}{(N + 1 + 2\delta A)^3} + \beta > 0, \quad \frac{\partial H}{\partial \lambda} = \frac{8\delta A^2(1 + \delta A)}{(N + 1 + 2\delta A)^2} > 0.$$

Hence, we have $\frac{\partial A^*}{\partial \lambda} = -\frac{\partial H}{\partial \lambda} |_{A=A^*} < 0$. Recall that we have already shown that the bid-ask spread $2A_{\theta} = \frac{2(1+2\delta A^*)}{N+1+2\delta A^*} \omega = 2\omega - \frac{2N}{N+1+2\delta A^*} \omega$ and the conditional price pressure $B_{\theta} = \frac{2A^*}{N+1+2\delta A^*} = \frac{2}{N+1+2\delta}$ are strictly increasing in A^*, so they are decreasing in λ.

- Dependence on N: first of all, let us treat N as a continuous variable taking values in the space of positive real numbers. Taking partial derivatives in (2) yields

$$\frac{\partial H}{\partial A} = \frac{8\delta \lambda(N + 1 + 2N\delta A)}{(N + 1 + 2\delta A)^3} + \beta > 0, \quad \frac{\partial H}{\partial N} = -\frac{16A^2(1 + \delta A)}{(N + 1 + 2\delta A)^3} < 0.$$

So $\frac{\partial A^*}{\partial N} = -\frac{\partial H}{\partial N} |_{A=A^*} |_{(N)} > 0$, i.e., A^* is strictly increasing with N. We cannot yet make conclusions about sensitivities of the bid-ask spread and conditional price pressure to N, because they both depend on N and A^*. To proceed, we consider a change of variables that

1This is because its derivative with respect to A is $\frac{8\delta \lambda(N+1+2N\delta A)}{(N+1+2\delta A)^3} > 0$.
expresses N in terms of A^*:

$$N \equiv N(A^*) = A^* \sqrt{\frac{8\delta \lambda (1 + \delta A^*)}{\eta - \beta A^*}} - 1 - 2\delta A^*. \tag{3}$$

The above expression is obtained from (1) by “solving” for N. Since A^* is strictly increasing in N, we know that, as A^* increases from $A^*(N = 1)$ to $A^*(N = \infty) = \frac{\eta}{\beta}$, N will increase from 1 to ∞. Now, we can express the bid-ask spread as a function of A only:

$$2A_\theta = \frac{2(1 + 2\delta A^*)}{N + 1 + 2\delta A^*} \omega = 2\omega - \frac{2N}{N + 1 + 2\delta A^*} \omega = \omega \sqrt{\frac{(\eta - \beta A^*)(\frac{1}{A^*} + 2\delta)^2}{2\delta \lambda (1 + \delta A^*)}}.$$

Notice that the final expression has a numerator that decreases with δ and a denominator that increases with A when $A^* < \frac{\eta}{\beta}$. Hence, we may conclude that the bid-ask spread is strictly decreasing in A^*. Because A^* increases with N, we conclude that the bid-ask spread is strictly decreasing in N.

As for the conditional price pressure, we obtain by a similar argument that

$$B_\theta = \frac{2A^*}{N + 1 + 2\delta A^*} \sqrt{\frac{(\eta - \beta A^*)}{2\delta \lambda (1 + \delta A^*)}}.$$

It is clear that the above expression is decreasing in A^* for all $A^* \in (0, \frac{\eta}{\beta})$. Hence, the conditional price pressure is strictly decreasing in N.

- Dependence on β: Taking partial derivatives in (2) yields

$$\frac{\partial H}{\partial A} = \frac{8\delta \lambda (N + 1 + 2N \delta A)}{(N + 1 + 2\delta A)^3} + \beta > 0, \quad \frac{\partial H}{\partial \beta} = A > 0.$$

Hence, we have $\frac{\partial A^*}{\partial \beta} = -\frac{\partial H}{\partial \beta} \big|_{A=A^*} < 0$. Recall that we have already shown that the bid-ask spread $2A_\theta = \frac{2(1 + 2\delta A^*)}{N + 1 + 2\delta A^*} \omega = \omega - \frac{2N}{N + 1 + 2\delta A^*} \omega$ and the conditional price pressure $B_\theta = \frac{2A^*}{N + 1 + 2\delta A^*} = \frac{2}{\frac{N+1}{N+1+2\delta}}$ are strictly increasing in A^*, so they are decreasing in β.

- Dependence on δ: Taking partial derivatives in (2) yields

$$\frac{\partial H}{\partial A} = \frac{8\delta \lambda (N + 1 + 2N \delta A)}{(N + 1 + 2\delta A)^3} + \beta > 0, \quad \frac{\partial H}{\partial \delta} = \frac{8\lambda A^2 (1 + \delta A)}{(N + 1 + 2\delta A)^2} > 0.$$

Hence, we have $\frac{\partial A^*}{\partial \delta} = -\frac{\partial H}{\partial \delta} \big|_{A=A^*} < 0$, i.e., A^* is strictly decreasing in δ. On the other hand, $\alpha = \delta A^*$ and δ solves a slightly different equation $K(\alpha, \delta) = \frac{8k\alpha^2(1+\alpha)}{(N+1+2\alpha)^2} + \beta \alpha - \delta \eta$. It is
straightforward to verify that $\frac{\partial K}{\partial \alpha} > 0$ and $\frac{\partial K}{\partial \delta} < 0$, so using the same argument as above, we know that the product δA^\ast is strictly increasing in δ. Recall that we have already shown that the bid-ask spread $2A_\theta = \frac{2(1+2\delta A^\ast)}{N+1+2\delta A^\ast} \omega = 2\omega - \frac{2N}{N+1+2\delta A^\ast} \omega$ is strictly increasing in δA^\ast, so we can conclude that the bid-ask spread is strictly increasing in δ. As for the conditional price pressure $B_\theta = \frac{2A^\ast}{N+1+2\delta A^\ast}$, we notice that its numerator is strictly decreasing in δ (because A^\ast is), and its denominator is strictly increasing in δ (because δA^\ast is). Hence, we can conclude that the conditional price pressure is decreasing in δ.

- Dependence on ω: the results are obvious.

This completes the proof. □