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1 Introduction

Collateral plays a central role in sustaining risk sharing in the economy. However, as highlighted during
the financial crisis of 2008-2009, it can also amplify fundamental shocks and create self-reinforcing
death spirals that can affect the entire economy.

The role of the “collateral channel” in amplifying fundamental shocks has been studied by a vast
theoretical literature. At the core of models in this literature is the collateral rule, which determines
how margins are set and how they respond to changes in economic conditions. Different models
have employed different assumptions about the collateral rule. Some studies have specified the rule
exogenously (e.g., Brunnermeier and Pedersen (2009) assume a Value-at-Risk (VaR) criterion; Gromb
and Vayanos (2002) assume a maximum-loss constraint). Other work has proposed an endogenous
rule, and determined the collateral levels via general equilibrium models (e.g., Geanakoplos (1997)
and Fostel and Geanakoplos (2015)).

Understanding how collateral is set, and how it responds to changes in market or portfolio condi-
tions, is central for understanding the mechanisms through which shocks propagate and are amplified.
Yet, empirical evidence on the collateral rule is scarce.

In this paper, we aim to fill this gap by studying the collateral rule in depth, first empirically
and then theoretically, in a large market that was at the very center of the financial crisis: the credit
default swap (CDS) market. Using a novel dataset of positions and corresponding margins in the
cleared CDS market, we document several novel facts about the way collateral is determined, and the
way it is adjusted in response to changes in individual and macroeconomic risks. Du et al. (2020)
construct a theoretical model of the endogenous collateral rule in derivatives markets, building on the
work of Geanakoplos (1997), Fostel and Geanakoplos (2015), and Simsek (2013), that allows us to
interpret our empirical findings and connect them to the existing literature.

The CDS market is a trillion-dollar market for credit risk transfer. It experienced remarkable
growth in the years before the global financial crisis, and has been at the center of many policy
debates during the financial crisis. Over the past decade, the CDS market has transitioned towards
mandatory clearing: after two parties enter a bilateral CDS contract, all counterparty obligations
are transferred to a clearinghouse. That is, the clearinghouse becomes the counterparty to each
the original trading parties, referred to as clearing members. Operating as a central counterparty
(CCP), the clearinghouse insulates members from default risk, but requires them to post daily-settled
collateral (margin). Our dataset, collected and maintained by the U.S. Commodity Futures Trading
Commission (CFTC), is built from the universe of CDS trades cleared by Ice Clear Credit (ICC), the
largest clearinghouse for these contracts. In our data, we can observe each CDS position of every
member in this market, covering a total of more than 24,000 contracts. More importantly, we also
observe the amount of collateral posted each day by each member to the clearinghouse. Our sample
covers the period 2014-2019 at the daily frequency.

Using this data set, we document several new empirical findings on collateral setting in the cleared
CDS market. First, we show that there is a large amount of heterogeneity (both across clearing
members and over time) in the collateralization rate – the value of collateral posted as a fraction of
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the total size of the members’ portfolios. This indicates that clearing members trade portfolios with
very different risk characteristics, which command different levels of collateralization.

Next, we study what determines the amount of collateral posted by clearing members. The natural
benchmark to evaluate the level of collateralization of a portfolio is the widely-used Value-at-Risk
(VaR) rule, under which collateral levels should be set to cover a certain fraction of losses occurring
over a limited period of time. The VaR rule is especially important in this setting, not only because
it is the rule assumed by many theoretical models,1 but also because most clearinghouses (including
ICC itself) explicitly use it when they describe their collateral requirements (Ivanov and Underwood
(2011)). The benchmark rule in this context is a 5-day 99%-level VaR, according to which collateral
should be sufficient to cover 99% of the 5-day loss distribution of each member’s portfolio. The VaR
rule tries to strike a balance between the ability to recover payments in case of counterparty default
and the cost of keeping cash immobilized as collateral. Under this rule, we should therefore observe
losses from individual member portfolios that exceed the posted collateral in about 1% of all 5-day
periods.

The second finding of our empirical analysis is that, in the cleared CDS market, collateral levels
far exceed those implied by the benchmark VaR. In fact, for our entire sample period, 2014-2019,
the largest realized 5-day losses are at most only around 40% of the posted collateral: exceedance
(i.e., losses above the posted collateral) never occurred for any member in any 5-day window, despite
significant market events such as the Chinese stock market panic of early 2015, the Brexit referendum
in 2016, and the Venezuelan default in late 2017.

More strikingly, this conservativeness in collateral levels holds true even when we incorporate in our
analysis the history of CDS price movements since 2004, therefore including the large shocks occurred
to the CDS market during the financial crisis. To perform this analysis, we collect historical CDS
prices since 2004, and for each portfolio observed in our sample we build the time series of returns
that the portfolio would have realized over that much longer time period. We can therefore ask, for
each portfolio, how that portfolio would have performed on any 5-day interval since 2004, including
during the financial crisis. While in this case a small number of exceedances would have been observed,
they still represent a fraction that is two orders of magnitudes smaller than the one implied by the
standard 99% VaR. To sum up, our second finding is that collateral levels are set orders of magnitude
more conservatively than standard benchmarks imply.

Motivated by this result, and guided by the theoretical literature, we then explore in our data
what factors determine margins in our panel.2 We begin by estimating a panel model relating margins
to VaR as well as other portfolio risk measures that have been proposed in the theoretical literature:

1For example, see Figlewski (1984), Brunnermeier and Pedersen (2009), Hull (2012) and Glasserman et al. (2016).
2As we describe in greater detail in the next sections, ICC follows a complex set of procedures to determine collateral

levels that include calibration of different scenarios and simulations – together with a discretionary component – to
determine the amount of collateral each member needs to post. The goal of this paper is not to reverse-engineer this
complex procedure, but rather to identify and quantify the main economic determinants of the variation in collateral over
time and across members. We therefore study both the direct effect of variables that the clearinghouse takes explicitly
into account (like portfolio risks) as well as the effect of market variables (like aggregate volatility) that only affect
margins indirectly, for example through the choice of models or their parameters.
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expected shortfall (expected loss conditional on exceeding the VaR), maximum shortfall (maximum
potential loss obtained from historical simulations), aggregate short notional (total notional of short
positions only), and aggregate net notional (across long and short positions). We show that these
variables explain a significant portion of the panel variation with an overall R2 of 74% (and 84% if
member fixed effects are added), and they significantly improve over standard VaR, which falls short
to explain not only the average level of margins, but also the panel variation.

The two variables that stand out empirically in terms of explanatory power are the maximum
shortfall and the aggregate short notional. Interestingly, Duffie et al. (2015) assume a theoretical
collateral rule based precisely on a combination of these two variables; our empirical analysis strongly
supports that assumption. These two variables have an interesting economic interpretation: they are
much more related to extreme tail risks than VaR. In comparison, VaR focuses on less extreme losses,
and is empirically highly correlated with simple volatility (.99 correlation).

Given that the maximum shortfall of a portfolio is based on its historical performance, it captures
the experienced maximal loss in the data (which, of course, is more severe than the 99th loss quantile
used by VaR). Aggregate short notional, on the other hand, captures the fact that in the CDS market
the biggest tail losses occur on the short side: if a default occurs suddenly (“jump-to-default”) the
liability of the short side can jump to the notional value of the CDS (less the recovery). Hence, the
aggregate short notional represents the maximum potential loss of a portfolio if all short positions
default simultaneously (and the recovery rate of the underlying bond is zero). In this sense, aggre-
gate short notional captures the most extreme form of tail risk, and provides a measure that is also
less sensitive to the exact specification of the portfolio loss distribution compared to other tail risk
measures.

To sum up, the third finding of our empirical analysis is that maximal shortfall and aggregate
short notional – two extreme tail risk measures – outperform VaR in describing the collateral rule
in this market. To be clear, our results do not imply that the collateral rule covers every possible
loss in practice; they do show however that it is the very extreme tail risks that the clearinghouse is
concerned about, much farther out the tails than standard VaR (which instead is closely related to
simple volatility).

Finally, we explore how market variables enter the collateral rule: because collateral rules adapt
to market conditions, we expect collateral levels to respond to variables that capture the state of the
economy. We incorporate in our panel analysis measures of aggregate risk and risk premia, such as VIX
and the average CDS spread of all dealers, and measures of individual member funding opportunity
costs. We find that margins increase for all members when risk in the economy increases, suggesting
that the collateral rule adapts to the state of the economy.

Our empirical results have direct implications for models of financial markets and intermediation, in
which the collateral constraint plays an important role. For models in which the collateral constraint
is specified exogenously, our findings provide support for defining it as a function of extreme tail
risks, such as a maximum-loss constraint (Gromb and Vayanos (2002)), instead of a standard, less
conservative VaR (as in Brunnermeier and Pedersen (2009)). The difference is significant: empirically,

4



VaRs are very closely related to volatility, and do not fully capture the extreme tail risks; in models that
assume VaR rules, the dynamics of collateral requirements will mostly reflect movements in portfolio
volatility. Instead, as we have shown, collateral levels are driven by extreme tail events, that capture
nonlinear effects beyond volatility (for example, jumps): collateral demand may not be very sensitive
to small changes in portfolio or market risks, but may change significantly if large shocks occur.

Our results also have implications for models of the endogenous collateral rule, like Fostel and
Geanakoplos (2015). A key prediction of Fostel and Geanakoplos (2015) is that in a binomial economy
(i.e., when there are two states of nature only), any collateral equilibrium is equivalent to one in which
there is no default – that is, where collateral covers the most extreme losses. Intuitively, therefore,
our results support the key intuition of this model, which argues for very conservative collateral rules.
However, it is difficult to link tightly our empirical results on the CDS markets with this model, because
(1) the conclusions only hold if there are two states of nature, and (2) defaults on CDS obligations
do sometimes arise in practice. Most recently, Du et al. (2020) overcome these two limitations by
developing a new equilibrium model, which explains the conservativeness of collateral levels through
disagreement of market participants about the extreme states of the world, in which CDSs pay off and
counterparties default.

Our paper relates to a large theoretical literature on the relation between margin requirements
and asset prices, and the collateral equilibrium. Noticeable contributions include Brunnermeier and
Pedersen (2009), Gromb and Vayanos (2002), Coen-Pirani (2005), and Chabakauri (2013), in which the
collateral rule is exogenous; and Geanakoplos (1997), Holmström and Tirole (1997), Brunnermeier and
Sannikov (2014), and Simsek (2013) in which collateral requirements arise endogenously, and depend
both on market conditions and specific characteristics of market participants. A recent theoretical
literature has focused specifically on cleared derivative markets, like Koeppl et al. (2012) and Biais et al.
(2016). The impact of central clearing reforms on the collateral demand for derivatives transactions
is investigated in Heller and Vause (2012), Sidanius and Zikes (2012), and Loon and Zhong (2014),
assuming exogenously specified margin requirements based on VaR, expected shortfall, or a mix of the
two.3

Empirical work on the determinants of collateral is scarce, mostly for the difficulty of obtaining
data on positions and collateral.4 The papers in this area mostly focus on margining in the futures
market (Figlewski (1984), Gay et al. (1986), Fenn and Kupiec (1993), Hedegaard (2014)). Our study
of collateral in the cleared CDS space enriches the existing empirical evidence on collateral rules
along several dimensions. First, while prior studies have looked at headline margin requirements for
individual securities, their approaches are less applicable in the modern setting of portfolio margining,
where margins are set at the portfolio level rather than for individual contracts (as in the case of CDS

3Other work (Cruz Lopez et al. (2017), Menkveld (2017)) has studied the determination of collateral requirements
accounting for systemic interdependencies.

4Collateral data for non-cleared OTC markets is often scattered among a variety of participants, with no centralized
data sets available. Clearinghouse data contain proprietary information of large market participants and are often
disclosed only under strict confidentiality and anonymity arrangements. Due to such data limitations, there is little
empirical work focusing on portfolio-level margins (as opposed to individual-security collateral requirements), and on
how well conventional risk measures relate to the required collateral levels.

5



clearinghouses). Our disaggregated, granular CDS data provide a valuable source of information for
analyzing portfolio-level collateral requirements and the associated systemic risk implications. Second,
we consider a market where payoffs are highly skewed (default probabilities can jump upward suddenly,
and defaults can occur instantaneously), which implies that collateral plays a crucial role in allowing
this market to function properly. Third, while existing studies focus mostly on the cross-sectional
dimension of margins, we focus on both the cross-sectional and time-series variation. Fourth, we
consider not only portfolio-specific risk measures, but also aggregate risk and funding measures as
potential determinants of collateral – all factors that can play an important role in the amplification
of aggregate shocks via the collateral-feedback channel. Fifth, we document that margins are best
captured by using a combination of tail risk measures (maximum shortfall and short notional). As
the short notional does not depend on historical probabilities and correlations nor on the state of the
market, this shows that clearinghouses use a rule that is robust to the exact specification of the model
for tail events.

2 Institutional Details and Data

In this section, we introduce the main institutional details of our setting. We also describe our data,
and show our first finding: collateralization rates vary substantially across clearinghouse members and
over time.

2.1 Clearinghouse Margining in Practice

Clearinghouses have significant discretion over modeling assumptions and parameters used to generate
and justify margin requirements. They set them taking into account market conditions, the demand
for trading, and collateral quality. In practice, margining rules involve a wide range of scenarios and
simulations to arrive at a portfolio loss distribution, requiring the clearinghouses to make various
modeling and statistical assumptions.

Most clearinghouses, including ICC (e.g., Ivanov and Underwood (2011)), state that their margins
are broadly “set to cover five days of adverse price/credit spread movements for the portfolio positions
with a confidence level of 99%”, which we refer to as a 5-day 99% Value-at-Risk (VaR) margining
rule. However, this is only a simplified description of their actual margining rules. Scenario-specific
add-ons are often applied to produce the final margin requirement (CME Group (2010), ICE Clear
US (2015)).5 In particular, the margin requirement set by ICC is the sum of seven components. In
addition to considering (i) losses due to credit quality (changing credit spreads), the methodology
also considers losses due to (ii) changing recovery rates and (iii) interest rates. There are additional
charges capturing (iv) bid-offer spreads, (v) large, concentrated positions, (vi) basis risk arising from
different trading behavior of indices and their constituents. Finally, there is (vii) an additional jump-
to-default requirement due to the potential large payouts associated with selling credit protection on

5These rule are not described in detail in publicly available documents, but they are available to CFTC officials.
For ICC’s public disclosure, see https://www.theice.com/publicdocs/clear_credit/ICE_CDS_Margin_Calculator_
Presentation.pdf.
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single name contracts. Similar to the Basel capital requirements, the ICC margin framework follows a
bucket approach. It first calculates each of the seven components (“buckets” ), and the final collateral
requirement is simply the sum of these components. Importantly, even if clearinghouses were restricted
to using VaR based margining rules, the confidence level, margin period of risk, and the distributional
assumption of losses are inputs that give the clearinghouse significant freedom in setting the actual
margin levels.

Overall, clearinghouses employ complex rules to determine the amount of required margins. These
rules make it difficult to understand what the main economic determinants of collateral requirements
are, partly because they depend on the interactions of several variables and calibration choices, and
partly because they do not explicitly take into account variables that may still matter indirectly:
for example, aggregate volatility or default risks do not directly enter into the calculations, but may
still affect the collateral rule because they affect the scenarios used by the clearinghouse to simulate
portfolio losses, or affect the choice of discretionary parameters. The goal of this paper is not to
reverse-engineer this complicated procedure, but rather to identify and quantify the main economic
determinants of collateral both in the level and in its panel variation.

2.2 Data and Summary Statistics

In this section, we provide an overview of our data and present descriptive statistics for the key
variables. We construct a database of the entire universe of CDS positions cleared by ICE Clear
Credit (ICC), for the period between May, 1 2014 and February, 20, 2019. ICC managed a significant
fraction of the U.S. cleared CDS market, totaling 56% in 2015 and 2016, 52% in 2017, and 70% in
2018 and 2019. The absolute value of the cleared amount increased from nearly 9 billion in 2015,
2016, and 2017 to about 12 billion in 2018 and 2019.6 Hence, it has always remained the largest CDS
clearinghouse throughout our sample.

Clearinghouse collateral data: the Part 39 data set. The Dodd–Frank Wall Street Reform and
Consumer Protection Act grants the U.S. Commodity Futures Trading Commission (CFTC) authority
over Derivative Clearing Organizations (DCOs). As a result, major clearinghouses recognized as DCOs
are required to report confidential swap trade data to CFTC on a daily basis. The data are collectively
referred to as “Part 39 data,” as the relevant rules and regulations are codified in Title 17, Chapter I,
Part 39 of the Code of Federal Regulations. Part 39 data provides a complete overview of the centrally
cleared swaps in the U.S..

We obtain clearing member data from the CFTC Part 39 database. Our data set consists of
both positions data and account summary data for CDS trades cleared by ICE Clear Credit (ICC)
(combined with ICEU, the European arm of ICE’s CDS clearing, they account for over 90% of the
cleared CDS market registered in the database). Our sample period covers nearly five years, from
05/01/2014 to 02/20/2019, for a total of 1203 business days.

6These percentages are computed from the quantitative disclosure statements of the three clearinghouses in the CDS
market, i.e., ICE Europe ICC, and LCH CDSClear. These documents disclose the notional of cleared positions for the
house accounts of their members.
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CDS positions data. Credit default swaps (CDS) are credit derivatives used to trade the credit risk
of a reference entity (a bond). The protection buyer (the long side of the contract) is obligated to pay
a quarterly premium to the protection seller (the short side of the contract) up until contract maturity
or the arrival of a credit event for the reference entity, whichever occurs earlier. Upon arrival of the
credit event, the seller pays to the buyer the difference between the face value and the market value of
the reference obligation. If the reference entity is a sovereign or corporate entity, the CDS is referred to
as a single name CDS, and is uniquely identified by its coupon rate (the quarterly premium), maturity,
reference bond seniority, and doc clause (which defines what constitutes a credit event), typically rolled
out quarterly. If the reference entity is a weighted basket of bonds from various sovereign or corporate
entities, it is referred to as an index CDS, typically rolled out semiannually. When components of
the reference basket default, the protection seller pays a pro rata cash flow depending on the weights
of the components. The index contract is then reversioned (i.e., the basket is updated), and coupon
payments and the contract notional are reduced accordingly. A CDS index contract is identified by
its notional, coupon rate, maturity, reference basket, version, and doc clause. Our data set includes
both single name and index contracts.

The CDS position component of the Part 39 data set contains daily reports of each account’s end-
of-day (EOD) position in each cleared CDS contract, for each account used by a clearinghouse member
(see below). For each day/account/contract combination, we observe long/short gross notional, EOD
prices for the contract, the currency denomination and exchange rates, and the mark-to-market (MtM)
value of the position.7

In the sample period considered, the most liquid CDS index contracts were mandatorily required
to be cleared through a clearinghouse. Many other CDS contracts were cleared as well, but only
voluntarily; as a result, our data presents only a partial view of the entire CDS market (which is
inconsequential for the goals of this paper). Our data set includes CDS on 600 distinct reference
entities, 590 single names and 10 indices. A total of 24,283 distinct contracts referencing these reference
entities were cleared during our sample period (multiple CDS contracts are written on each underlying
reference entity, since CDS contracts differ by seniority, doc clause, etc., as described above).

We adjust for changes in reference entities due to spin-offs, split-offs, or combined firms from
mergers and acquisitions. After accounting for this, we are left with a total of 593 distinct reference
entities.

Account and margin data. The cleared CDS market is dominated by a handful of clearing mem-
bers who act as dealers to the outside market. Smaller clearing participants access the cleared market
by becoming customers to clearing members. Each clearing member may have several accounts with
ICC. The account is designated as a “customer account” if the account positions are taken on behalf of
a customer, and designated as a “house” account if the positions are proprietary. Customer accounts
are commingled; that is, they consist of multiple sub-accounts for many customers, and segregated
customer specific data are not reported. We observe 45 accounts in total, each identified by a distinct

7We report in Appendix A a brief overview of standardized CDS price quote conventions.
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clearing firm identification number. Of these accounts, 14 are designated as customer accounts and
31 are house accounts.

Many house accounts are set up to help with the processing of client trades, but have little open
interest, as clearing members usually use one house account to hold the majority of their proprietary
positions. We thus define a house account to be “auxiliary” if there are little to no positions associated
with them. We refer to the remaining house accounts as “active” house accounts.8

For each clearing member account, the account summary portion of the Part 39 data set contains
daily reports of EOD information. For each day/account combination, we observe the so-called initial
margin requirement, the initial margin posted, the currency denomination and exchange rates, and the
MtM value of the portfolio. The initial margin requirement is the level of collateral the clearinghouse
demands from the account holders, whereas the margin posted is the actual amount that account
holders supply; the two are almost always the same, or extremely close.9

It is important to emphasize that what is referred to as the initial margin in this market – the
collateral requirement we study in this paper – is the collateral kept by the clearinghouse with the pur-
pose of buffering against potential future losses in case clearing members default on their obligations.
Despite the name “initial” margin, this margin is not just posted at initiation of a CDS position: in-
stead, it is updated every day and it covers the entire portfolio of an account. It therefore corresponds
directly to what is typically referred to as collateral requirement in standard theoretical models. We
will use the terms initial margin, margin requirements, and collateral requirements interchangeably.10

We provide descriptive statistics for each of the three account categories (active house, customer,
and auxiliary house) in Table 1. Table 1 reports, for each account, the pooled averages of the key
variables over our sample period. Pooled averages are computed by averaging point observations within
the account categories and across the sample time period. The table shows that we identify 15 active
house accounts, which on average own more than 3,500 distinct contracts, for a total average notional
position of $120bn, and post an average amount of collateral to ICC of $622m. Auxiliary accounts
have activity levels that are one order of magnitude smaller.11 Customer accounts have similarly
small activity levels, but post higher amounts of collateral because of the lower diversification. In the
remainder of the paper, we will focus exclusively on on the active house accounts. This is because
customer accounts are commingled and margins information aggregated. Therefore, the observed
margins are not associated with a specific institution’s portfolio in our data set, so that we cannot

8To be precise, a house account is auxiliary if (i) the average gross notional is less than $15 billion USD, (ii) the
average number of distinct CDS contracts traded is less than 500, or (iii) the number of distinct CDS reference entities
traded is less than 100. Our empirical conclusions are robust to changes in these thresholds.

9Margin requirements are reported separately in USD and Euro; we combine them using the appropriate exchange
rate and express the total initial margin requirement of the entire portfolio in USD. The actual collateral posted is often
reported entirely in USD, and covers both the USD and Euro margin requirements.

10All cleared contracts are marked to market daily, so that the change in current value of the portfolio is transferred
to the clearinghouse by the next day. This transfer is referred to as variation margin, and is distinct from the initial
margin as it does not represent a stock of collateral meant to cover for future changes in the value of the portfolio, but
rather a cash flow reflecting the mark-to-market process. So the variation margin will play no role in our analysis, as it
is different from what we typically refer to as collateral.

11In fact, five auxiliary house accounts had zero margins throughout, indicating no trading activity at all. We excluded
these accounts when calculating descriptive statistics of auxiliary house accounts.
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study the relationship between collateral posted and portfolio characteristics. We also exclude auxiliary
house accounts because there are little to no positions associated with them.

To gain further insight into active house account margins, we compute the level of collateralization
for cleared portfolios. We measure this with the margin to net notional ratio, which accounts for
varying sizes of cleared portfolios; it is computed by taking the ratio of the initial margins requirement
and aggregate net notional. The results are reported as a histogram in Figure 1. The figure shows
that there is substantial heterogeneity in collateralization rate across time and accounts, from a low
close to zero to a high above 20% (the observations that cluster around 15% all belong to one specific
clearing member). In the remainder of this paper, we analyze what characteristics of the members’
portfolios drive this significant heterogeneity in collateralization rates.

Market events during our sample period. Mandatory clearing of standardized CDS contracts
was imposed only after the financial crisis. Thus, our data set does not include the years of the crisis in
which the financial system (and the CDS market) underwent significant stress, which are particularly
interesting times for understanding collateral requirements and their interaction with the broader
economy. However, several important events happened during this period, among which commodity
market events (e.g., the drop in oil prices in November 2014), currency market events (the plunge in
the Euro in 2015), political events (the Brexit referendum and Trump’s election in 2016), and credit
events (Venezuela’s default in 2017). Appendix B reviews in detail the most important events that
occurred during our sample period.

We also remark that, while we do not have positions data going back to the financial crisis, we do
observe CDS spreads going back to 2004. This allows us to do counterfactual simulations of portfolio
returns, and to assess how well current collateral buffers can absorb shocks of magnitudes as large as
those observed in 2008–2009.

3 Collateral requirements and the Value-at-Risk rule

In this section, we test whether the standard VaR margining rule is a good description of the collateral
rule in the cleared CDS market. Using two different approaches, we show that that is not the case:
actual collateral levels are orders of magnitude more conservative than predicted by the standard VaR
rule.

3.1 Notation

Consider a set of dates T := {1, . . . , T}, a set of contracts I := {1, . . . , I}, and a set of market
participants (clearing members) N := {1, . . . , N}. The portfolio held by participant n at time t is a
vector Xn

t ∈ RI , whose i-th component Xn
i,t is the portfolio’s notional position in contract i. Xn

i,t can
be positive or negative, depending on whether n has a long or a short position in the contract i.

We denote the end-of-day (EOD) quoted prices of cleared contracts at time t by Pt, whose i-th
component, Pi,t, is the EOD quoted price of contract i. As explained in detail in Appendix A, the
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market value of a position with one dollar notional and quoted price Pi,t is simply (1−Pi,t); we follow
this conventional notation here, and express all quantities in terms of quoted prices Pi,t.

The mark-to-market value of the portfolio Xn
t held by market participant n at time t, denoted by

MtMt(Xn
t ), can be computed as12

MtMt(Xn
t ) =

∑
i

Xn
i,t (1− Pi,t) (1)

The profit and loss (P&L) between times t and t+M (for a given time-t portfolio Xn
t ) is given by

ΨM,t(Xn
t ) := MtMt+M (Xn

t )−MtMt(Xn
t )

= Xn
t · (Pt −Pt+M ) .

We use V aRM,α
t (·) to denote the α−th quantile of the profit-and-loss (P&L) distribution of the

portfolio Xn
t held by market participant n at time t over an M−day period starting at t.13 Hence,

Value-at-Risk (V aR) is defined by

P(ΨM,t(Xn
t ) < −V aRM,α

t (Xn
t )|Ft) = α,

where Ft represents the information set available at time t. M is commonly referred to as the margin
period of risk (or liquidation period), and 1− α is the confidence level.

3.2 Testing the Value-at-Risk rule

The standard VaR collateral rule assumed in the literature stipulates that collateral requirements
(initial margins) at time t are set equal to V aRM,α

t (·), for a certain confidence level α and margin
period of risk M . That is, under the VaR rule, initial margins are set as

H0 : IMt(Xn
t ) = V aRM,α

t (Xn
t ),

where IMt(Xn
t ) is the margin required by the clearinghouse at time t for holding portfolio Xn

t .
We test the VaR hypothesis H0 using two different approaches. The first approach can be applied

if α and M are known. For instance, CDS clearinghouses typically claim that initial margins are set
to cover 5-day losses with 99% confidence (Ivanov and Underwood (2011)), so α = 1% and M = 5.
If initial margins are set to be a certain conditional quantile of the returns distribution (say the 1%
quantile), the fraction of times the portfolio loss exceeds the posted collateral is expected to be on
average equal to that quantile (1% of the time). We refer to this approach as the time-series test of
the VaR hypothesis; this is in fact equivalent to the “backtesting” procedure advocated by the Basel
Accords (Hull (2012)).

12There is an additional adjustment factor for CDS indices that have been reversioned after the default of a component,
which we omit here for ease of exposition but account for in our empirical analysis. The adjustment factor is smaller
than one and accounts for a proportional decrease in effective notional due to the contract payout.

13By definition, this assumes that margins cannot be increased during the M days between t and t+M .
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A second approach can be considered in the cases that α and M are unknown. Rather than testing
the rule jointly across all counterparties, this test looks at whether the same VaR rule is applied to all
counterparties, similar to the approach implemented by Gay et al. (1986). That is, no matter what
α and M are, under VaR margining we would expect the same margining rule to be applied to all
counterparties. This test reveals whether the proposed rule (V aR) is able to capture all portfolio- and
counterparty-specific factors that are relevant for determining margin requirements. We refer to this
as the cross-sectional test of the VaR hypothesis.

3.3 Time-series test of the VaR hypothesis

We start with the time-series test of the V aR hypothesis, using the null H0 described by the clearing-
house: M = 5 days and α = 1%. Since IMt(Xn

t ) is observable in our data set, the main step of our
analysis is to estimate the empirical distribution of the P&L of the portfolio over M days (ΨM,t) . We
consider two different approaches, one using the realized P&Ls during our sample period, 2014-2019;
the other using simulated P&Ls for the period 2004-2019.

Using realized returns. The first tests asks the question: how often do we see a 5-day portfolio
P&L Ψ5,t(Xn

t ) negative enough to exceed the collateral that had been posted against it (we refer to
this as an exceedance)? If we define the return on margin as the ratio of the realized 5-day P&L to the
initial margin, we can restate the question as: how often do we see a 5-day return on margin below
-100%? Under the null of a VaR rule, we should see these exceedances approximately 1% of the time;
we can the simply test the null by looking at the empirical proportion of exceedances in our data.
Note that this test does not require us to observe or specify the information set Ft – since under the
null, the initial margin fully takes it into account.

Figure 2 reports the empirical distribution of realized 5-day-ahead returns on margins. We com-
pute returns on margins for each account/day in our sample and obtain 18, 606 observations. A few
interesting patterns emerge from the figure. First, the dispersion of returns in our sample period is
quite small relative to the amount of collateral posted. Second, the distribution of returns on margins
does not exhibit distinctly heavy tails, despite the fact that several important events occurred during
our sample period (see Appendix B). Third, and most relevant for the analysis of margining and losses,
even the most negative return observed during our sample period is only around 40% of the collateral
posted. That is, while under a 5-day 99% VaR rule we would expect to see exceedances in 1% of
our sample (or about 66 account/days), no exceedances were actually observed. On average, posted
margins were about 8 times larger than the 99th percentile of losses experienced in this sample.

In order to formally test the hypothesis H0, we perform a statistical test comparing the observed
empirical frequency (0) to the one predicted by the model (α). The distribution of the test statistic
(the difference between the empirical frequency and α) is derived in Appendix C. Not surprisingly, our
statistical test strongly rejects the VaR null (p-value<0.001). Overall, this first test provides a strong
indication that margins are set more conservatively than the standard VaR rule.
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Counterfactual return estimates (historical simulation). Next, we use historical simulation
methods to estimate the distribution of returns on margins over a longer time period. Such a time
period covers the financial crisis, the most significant period of market distress since the Great Depres-
sion. More specifically, the idea of our counterfactual simulation is as follows. First, we collect CDS
price data on all the CDS in our Part 39 sample, going back to 2004, from Markit and Bloomberg.
For each day in our sample period (2014-2019), we observe the portfolio held by each member, Xn

t .
By looking at the history of (joint) price movements for all the constituents of those portfolios, we
can then ask what the historical distribution of returns of that specific portfolio would have been,
starting from 2004 and up until t+ 5, that is, including the realized 5-day return that begins on date
t. The resulting distribution of P&L therefore includes the large price changes that occurred during
the financial crisis, and incorporates the dramatic increase in correlations observed in those years. In
other words, we backtest the ability of current (2014-2019) initial margins to prevent exceedances due
to CDS price movements similar to those observed since 2004.

Implementing this test involves a few additional steps. Since there are new contracts issued and
old contracts expiring every quarter, historical prices for a currently traded contract are not always
available. To deal with this practical obstacle, we follow exactly the methodology of Duffie et al.
(2015), designed specifically for this purpose. We first aggregate net exposures by name (reference
entity), and then use the historical 5-year CDS spread on those names (for which we have accurate
spreads data) to compute counterfactual returns for all days for which CDS spreads are available,
starting from 2004/01/01. We review the details of the methodology in Appendix D.14

Using this approach, for each observed portfolio held by account n on each day t, we compute all
returns on margins that could have occurred to that portfolio in each 5-day window since 2004 and
up to t+ 5. This procedure yields a total of 61, 532, 415 simulated 5-day returns on margins.

We report the distribution of counterfactual returns on margins in Figure 3. Due to the large num-
ber of observations clustering around zero, we only display the histogram in the range [−50%,+50%]
in Figure 3a, and zoom in on the left tail of the histogram in Figure 3b. We see that the distribution
is sharply peaked, and that most returns on margins lie between ±20%. The frequency of returns
decreases rapidly as we move away from the mean.

When we consider counterfactual returns, we observe a very small number of margin exceedances:
the portfolios held during 2014-2019 would have sometimes experienced losses larger than the posted
collateral if prices moved as they did during the financial crisis, but only in 0.004% of all 5-day
periods. This fraction is two orders of magnitude smaller than the 1% predicted by the standard VaR.
On average, posted margins were 7 times higher than the empirical 99th percentile of 5-day simulated
losses starting in 2004.

We also extend the formal statistical test of the previous section to include all the historical
counterfactual returns for each portfolio held in each day by each account. As before, the test compares
the empirical frequency of margin exceedances (0.004%) with that predicted by the VaR rule (1%). To

14A day is included in our data analysis only if prices are observed for at least 250 out of the 593 reference entities; this
filter excludes few days in the early part of the sample for which price information was not uniformly available across
contracts.
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fully account for potential time-series and cross-sectional correlation of the errors, we double-cluster
the standard errors of the test statistic at both the day and the account levels (as described in Petersen
(2009)). Appendix E reports the details of the test statistic and its distribution. Not surprisingly, the
test again strongly rejects the null of VaR (p-value<0.001).

To sum up, both versions of the time-series test strongly reject the null that collateral is set by a
5-day, 99% VaR rule. We observe no exceedances in the period 2014-2019, and historical simulations
that include the financial crisis imply exceedances only in 0.004% of cases. Instead, we find that posted
collateral levels are one order of magnitude (700%-800%) higher than the 99% percentile of realized
and simulated losses. The collateral rule in this market appears very conservative.

3.4 Cross-sectional test of the VaR hypothesis

We conclude by performing the cross-sectional test of the VaR hypothesis, that requires no assumptions
about the confidence level (α).15 Recall that the margining rule requires that

P(ΨM,t(Xn
t ) < −IMt(Xn

t )) = α for alln,

that is, the exceedance ratios should be the same across clearing members. We analyze the validity of
this rule by testing that the empirical frequencies of exceedances across accounts are the same, using
a G-test described in Appendix F.

The test strongly rejects the null (p-value <0.001) that exceedance ratios are the same across
clearing members. There is therefore direct evidence against equality of exceedance probabilities, and
thus against the null hypothesis that there exists a VaR rule which can explain observed initial margins
for all counterparties.

4 The Determinants of the Collateral Rule: Portfolio Risk and Mar-
ket Risk

The previous section has shown that a simple VaR rule fails to capture observed margins along different
dimensions. This suggests that other variables (both at the level of the individual member’s portfolio
and marketwide) might enter the collateral rule.

In this section, we consider two groups of potential explanatory variables. Portfolio variables
are those that are specific to the portfolio that an account holds with the clearinghouse, and are
conventionally used to measure the risk of positions. These include, in addition to VaR, expected
shortfall (ES), maximum shortfall (MS), aggregate net notional (AN), aggregate short notional (AS),
and the volatility of the portfolio (SD). We describe these in detail below. Market variables are those
that are determined by market forces, and include the clearing members’ CDS spreads, the LIBOR-

15We perform the test using the counterfactual returns over the period 2004-2019. The results obtained using only the
period 2014-2019 are trivial: there were no exceedances for any account, so a VaR with 100% confidence level fits the
cross-section perfectly.
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OIS spread, the average clearing member CDS spread, and aggregate volatility as measured by VIX.
Table 2 summarizes the full list of variables for convenience.

4.1 Description of portfolio and market variables

Portfolio variables. Let Ωk denote the set of CDS contracts with reference entity k (that differ by
maturity, doc clauses, etc...). For each reference entity k, net notionals are defined by

Y n
k,t :=

∑
i∈Ωk

Xn
t,i.

The aggregate net notional ANn
t is then defined as

ANn
t :=

∑
k∈K
|Y n
k,t|,

i.e., as the sum of absolute net notional values across reference entities. The aggregate short notional,
ASnt , is instead defined as

ASnt :=
∑
Y n

k,t
<0
|Y n
k,t|.

The aggregate short notional plays an important role because of the highly asymmetric nature of
CDS payoffs. While the premium leg makes fixed payments, the protection leg (i.e. the short side of
the CDS position) is exposed to jump-to-default risk. Such an asymmetry induces strong left skewness
in the payoff function of a short position, which is why it is typically the seller of protection that posts
the most collateral.

Duffie et al. (2015) propose an initial margin model alternative to VaR that focuses on extreme
tail risks, by combining different portfolio variables:

DSV n
t = MS5(Xn

t ) + 0.02×AS(Xn
t ), (2)

where MSM (·) represents the maximum shortfall of the portfolio for a M−day margin period of risk,
computed using historical simulations. We refer to this as the DSV model.16 This margin model
incorporates both the maximum historical loss, and a 2% “short charge”. We evaluate here the DSV
model (which was not estimated, but assumed exogenously) together with the other variables.

Finally, we also consider a modified version of the DSV model, MDSV:

MDSV n
t = w1 ×MS5(Xn

t ) + w2 ×AS(Xn
t ), (3)

16While Duffie et al. (2015) compute maximum shortfall for a fixed look-back period of 1000 days, we use a longer
price series starting from the year 2004. As both ours and their time series data cover the years of the crisis, when the
largest losses occurred, the difference between the initial margins computed by the two approaches is negligible. We also
explore robustness with respect to this choice in Section 4.4.
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that estimates the weights w1 and w2 from the data instead of using the ones calibrated by Duffie
et al. (2015). The corresponding estimates are reported in Table 4, and given by w1 = 1.121 and
w2 = 0.025.

We estimate the empirical distribution of the simulated series ψ :=
{

Ψ̂5,t(Xn
t )
}T
t=1

of 5-day ahead
P&L via the historical simulation approach discussed in Section 3.3. Using the empirical distribution,
we form estimates of volatility (SD, standard deviation), 99% Value-at-Risk (VaR), expected shortfall
(ES, the expected loss conditional on exceeding the VaR), and maximum shortfall of the portfolio
(MS, the maximum loss experienced in simulations). All portfolio variables are in millions of USD to
conform with the level of initial margins.

Market variables. We collect from Bloomberg time series data of the 3-month Overnight Index
Swap (OIS) spread, the 3-month USD LIBOR rates, clearing member 5-year CDS spreads, and ag-
gregate volatility as measured by VIX. CDS spreads on the members themselves can be interpreted
as a measure of individual member counterparty risk, or potentially as a measure of funding cost for
a clearing member, because higher spreads make it more costly for a member to borrow funds. We
include in our analysis both individual CDS spreads and average CDS spreads of the members. As an
alternative to the average credit spread ACDSt, we also consider the LIBOR-OIS spread to control
for market distress. The LIBOR-OIS spread

LOISt := LIBORt −OISt.

is typically viewed as a measure of financial sector stress, capturing mainly the interest rate differential
between uncollateralized and collateralized loans. All market variables are recorded in basis points
(bps) to conform with market convention.

Summary statistics. Table 3 displays summary statistics of our key portfolio variables and initial
margins, in millions of USD. Note that each portfolio variable (like SD, VaR, etc) is computed sepa-
rately for each time t and each member n; in the table, in addition to the pooled mean and standard
deviations (which we also refer to as dispersions) across all n and t, we also describe other measures
of portfolio dispersion in the time series and in the cross-section.

We observe that all measures of dispersion increase in the order of extreme tail risk captured. That
is, as more weight is put into the tail of the distribution, there is more variability in the computed
measures both across time and across accounts. The measure with the smallest value is the standard
deviation (SD), followed in order by Value-at-Risk (V aR), expected shortfall (ES), and maximum
shortfall (MS).

Consistent with the results of the previous section, Table 3 shows that V aR is about one order of
magnitude smaller than initial margins on average. Interestingly, even ES and MS, that do capture
more extreme tails, are much smaller than the posted margins – suggesting that these variables alone
should not be able to explain the observed level of margins either. On the other hand, the table also
shows that the DSV model matches well not only the level of margins, but also all the dispersion
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measures; the modified DSV model does even better.
Table A.1 in the Appendix reports summary statistics of our key market variables and initial

margins, in basis points and millions of USD.

4.2 Margins and Portfolio-specific Risks

In this section we perform a panel analysis relating observed margins to portfolio variables. In partic-
ular, we estimate the following panel regression model with time and account fixed effects:

IMn
t = αn + ηt +

∑
v∈PV

βvv
n
t + unt , (4)

where PV is the set of portfolio variables included in the panel regression. Note that in the model
specification of Eq. (4), the regression coefficients do not depend on the specific clearing member n,
a necessary condition if margining rules are implemented uniformly across accounts.

We start by examining the set of portfolio variables to include in the regression. First, we note
that aggregate net notional (AN) serves primarily as a measure of portfolio size. As portfolio size is
already accounted for by risk measures such as V aR, MS and AS, all expressed in dollar units, we
drop this variable from our regression.17 Second, we perform a check for multicollinearity, reported
in Appendix Table A.2. The table shows that V aR explains more than 96% of the variation of both
expected shortfall and standard deviation. This strongly points to multicollinearity issues, and thus
we leave out standard deviation and expected shortfall in our panel model specification.

Our final set of portfolio variables includes Value-at-Risk, maximum shortfall, aggregate short
notional, and the DSV model given in Eq. (2); we also construct the MDSV variable by adjusting the
DSV weights (0.5 on MS, 0.02 on AS) to maximize the in-sample fit (see (3)). We report all the results
in Table 4. We use double-clustered standard errors (by time and account) as in Petersen (2009), thus
accounting for potential correlation in the errors, both within each account over time, and across
accounts within each day. The signs of all the coefficients are in line with intuition: because larger
values for each of the explanatory variables point to a riskier portfolio, all coefficients are expected to
be positive.

Columns (1) and (2) of Table 4 show that Value-at-Risk alone can explain 58% of the variation in
initial margins, and 79% of the variation if fixed effects are added to the regression. The estimated
slope coefficient, however, is much higher than unity in either case. In particular, a multiplier of at
least 400% is needed for the regression fit, again showing that collateral requirements are set much
more conservatively than what would be implied by the conventional 5-day 99% VaR rule. Columns
(3) and (4) introduce maximum shortfall (MS) and aggregate short notional (AS) as explanatory
variables in conjunction with Value-at-Risk. The addition of these variables brings the R2 to 74%,
even without fixed effects. Moreover, the magnitude of the VaR slope coefficients are much closer to
unity once these variables are included. Our results therefore show that initial margins depend on risk

17We have conducted a regression analysis including AN as an explanatory variable, and found that, qualitatively, our
results are largely unaffected.
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characteristics which cannot be captured only by VaR, and in particular more extreme tail risks.
It is worth remarking that while both MS and AS relate to the extreme tails of the distribution,

they differ significantly in their nature. MS represents the maximum experienced loss in historical
simulations. As such, it depends on the experienced realization of shocks and historical correlations
across portfolio components. AS, instead, captures the maximal potential loss if all short CDS positions
jump to default simultaneously, and recovery rates are zero; in this sense, it represents a theoretical
worst-case scenario for the potential loss, and represents a measure of tail risk that is less sensitive to
the specification of the loss distribution (as well as of the correlations between portfolio components).

Motivated by the DSV model that only features MS and AS, we drop Value-at-Risk as an explana-
tory variable in columns (5) and (6), and find that there is little loss in explanatory power compared
to columns (3) and (4). Maximum shortfall is positively correlated with Value-at-Risk, and dropping
Value-at-Risk increases the statistical significance of the maximum shortfall loading.18 Interestingly,
the aggregate short notional coefficient estimate remains very stable (in the 1.5–2.5% range) and highly
significant for all the estimated models.

Columns (7)–(12) investigate the usefulness of the DSV initial margin model in explaining empiri-
cally observed margins. Columns (7) and (8) show that the DSV model captures a significant portion
of the variation in initial margins; it strongly outperforms Value-at-Risk in terms of explanatory power
(columns (1) and (2)). The significance of the DSV slope coefficient persists when we introduce Value-
at-Risk, and the explanatory power remains roughly the same, showing again that Value-at-Risk has
little explanatory power beyond that already captured by DSV. The overall explanatory power im-
proves marginally when we consider MDSV (columns (11) and (12)), whose coefficients are based on
the estimates reported in columns (5) and (6) (so we should expect a similar explanatory power).
Again, Value-at-Risk still has little explanatory power beyond that already captured by our modified
DSV model.

To sum up, our empirical results provide strong support for the DSV model (in which the parame-
ters were calibrated, not estimated), against alternatives such as VaR. More generally, the results show
that tail risk variables like maximum shortfall and aggregate net notional work significantly better
than VaR in explaining the observed collateral rule.

While our proposed measures capture significant variation in initial margins, the explanatory
power is obviously not 100%. On the one hand, that’s to be expected, since we are estimating a simple
approximation of the true collateral rule, which is far more complex. On the other hand, it leaves
open the possibility that other factors might help explain the margin setting, which are not captured
by standard portfolio risk measures.

4.3 Funding Cost, Collateral Rates and other Market Variables

In this section we incorporate market variables into our panel analysis and assess their ability to explain
margin requirements. The included market variables are chosen to capture variation in margins that

18Given that maximum shortfall corresponds to the realized maximal loss, it is not surprising that its estimate can be
noisy, which can sometimes affect its statistical significance.
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is due to changes in default risk and funding costs. We consider the following panel regression model:

IMn
t = αn + ηt

∑
v∈PV

βvv
n
t +

∑
v∈MV

βvv
n
t + unt , (5)

where PV = {V aR,MS,AS,DSV,MDSV } and MV = {LOIS,CDS,ACDS, V IX} are, respec-
tively, the portfolio and market variables included in the panel regression. Because market variables
are often not account-specific (e.g. the LIBOR-OIS spread), time fixed effects cannot be included in
the regression. Thus, in this section we only consider time fixed effects when non-account-specific
variables are excluded.

We estimate the model in Eq. (5) using least squares regressions, choosing initial margins as the
dependent variable and portfolio and market variables as explanatory variables. The results with
double-clustered (by account and time) standard errors are reported in Table 5.

Columns (1) and (2) report the results when member CDS spreads, average CDS spreads, and the
VIX are included, and the portfolio variables VaR and MDSV are controlled for. There is a small
but significant increase in explanatory power compared to models that include only portfolio variables
(Table 4). The VIX appears to have a strong effect on margins, whereas average CDS spreads appear
not significant. There is weak evidence that funding costs, proxied by the individual members’ CDS
spread, matter. Overall, while market variables do seem to influence margin levels, their effects seem
to be much smaller than that of portfolio variables.

Columns (3) and (4) report our results when we replace the average CDS spread with the LIBOR-
OIS spread. There is almost no change in explanatory power and the loadings on the portfolio variables
remains very similar; the LIBOR-OIS spread appears insignificant. Columns (5) and (6) report the
results when maximum shortfall and aggregate short notional are used together instead of MDSV.
The increase in explanatory power is small when compared to the results in columns (1) and (2).
Interestingly, the estimated coefficient for aggregate short notional is significant and in the range of
1-2%, again showing the robustness of our previous results in Table 4 (MS is borderline insignificant,
with a p-value of 0.106 and a magnitude comparable with that of the previous table).

Across columns, we find that among all market measures, the VIX is the only one that robustly
seems to affect the collateral rule. The magnitude of the VIX’s effect, however, is substantial. In
our estimates, a one-point increase in the VIX increases required margins by $6.2 million. During
crisis episodes movements of the VIX of even 50 points are possible, these estimates imply large
potential effects on prices and systemic stability through the collateral channel, consistent the model
of Brunnermeier and Pedersen (2009).19

4.4 Robustness

Two of the portfolio variables (Value-at-Risk and maximum shortfall) used in our analysis were based
on P&L generated from our entire sample of credit spreads. Because our data set covered the financial

19Of course, these estimates are obtained in a relatively calm period, so it is hard to extrapolate the estimates to times
of crisis; however, they give a sense of the magnitude of these effects.

19



crisis, the risk measures captured extreme movements and may thus be viewed as overly conservative for
estimating portfolio losses. In Appendix G, we consider using only the last 1000 days (approximately
4 years) of credit spreads data to generate P&L, as in Duffie et al. (2015). The results of our analysis
presented in the appendix show that the results remain qualitatively similar to those reported in Tables
4 and 5.

5 Conclusions

We study the empirical determinants of collateral requirements in a large market in which counterparty
risk plays an important role – the cleared CDS market. Our analysis exploits the availability of a
unique data set on clearing members’ portfolio exposures and associated margin levels. Margins in
this market are set at the portfolio level rather than at the individual security level; this allows us to
study how risk measures like VaR and other portfolio characteristics affect margins. We also study
how market variables – in addition to portfolio variables – affect collateral requirements, highlighting
the implications of our findings for models of the collateral feedback channel.

We document four novel empirical results on the collateral rule in this market. First, we show
that there is large variability in the collateralization rate across accounts and over time, suggesting
corresponding variability in the risk characteristics of the clearinghouse members’ portfolios.

Second, we show that collateral in this market is set much more conservatively than what would be
implied by a standard VaR rule – a rule that is at the core of many theoretical models with collateral
constraints and that clearinghouses themselves state they use. In fact, the amount of collateral appears
about 7-8 times larger than what would be needed to cover 99% of 5-day losses (which is the standard
for VaR in this context).

Third, we find that other portfolio variables dominate VaR in explaining the time-series and cross-
sectional variation in margins. In particular, two measures of extreme tail risk suggested by Duffie
et al. (2015), maximum shortfall (the largest experienced portfolio loss) and aggregate short notional
(the notional amount held by a member in short CDS positions, representing the theoretical maximal
loss on all CDS positions simultaneously) dominate VaR in explaining the panel variation of required
collateral. These two variables alone account for almost 75% of the entire variation in margins in
our panel. Whereas empirically VaR is strongly related to simple portfolio volatility, these measures
capture much more extreme tail risks, that are more strongly related to jump-to-default risk and less
related to volatility. These measures are conceptually (and empirically) quite different from VaR.

Finally, we find that shocks to some market variables (particularly the VIX) increase the total
amount of required collateral, even after controlling for portfolio-level risks, suggesting that aver-
age margin levels vary with aggregate market conditions beyond what individual portfolio measures
capture.

Our findings have several implications for theoretical models of the collateral feedback channel.
First, the fact that extreme tail risk measures explain margins better than VaR indicates that the
clearinghouse is worried about more extreme losses than what the standard VaR captures. Given
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that standard VaR is highly correlated with volatility, it suggests that the margin spiral mechanisms
examined in many theoretical models (in which the collateral rule is exogenously specified) could
operate through the direct effects of shocks on the extreme tail of the distribution, rather than through
changes in volatility. In other words, our results suggest that collateral levels may respond little to
small changes in risks (like an increase in the variance of the portfolio), but may spike if the probability
of an extreme event increases or the worst-case-scenario worsens. This nonlinearity can potentially
play an important role in general equilibrium models, amplifying the largest shocks but dampening
moderate-sized shocks.

Second, our empirical results are consistent with some of the key results of the theoretical literature
on endogenous collateral, like Geanakoplos (1997) and Fostel and Geanakoplos (2015). These models
cannot directly be mapped to our data (because they counterfactually assume a binomial world and
feature no default in equilibrium); nevertheless Du et al. (2020) have recently developed a new model of
the endogenous collateral equilibrium, based on Simsek (2013), that is specifically tailored to the CDS
market. In this model, trade is motivated by difference in beliefs, that also determine the equilibrium
collateralization rate. The model can rationalize the observed empirical patterns of extremely high
collateralization rates with disagreement about the extreme events in which members would default
on their obligations to the clearinghouse.

Finally, collateral requirements are directly affected by market conditions: increases in aggregate
risks directly induce an increase in collateral requirements, holding the portfolios fixed. Our empirical
analysis therefore documents the existence of two channels for the amplification of fundamental shocks
(studied, for example, in Brunnermeier and Pedersen (2009)): at the portfolio level, where an increase
in perceived tail risk following a shock may affect the member’s margin requirement; and at the macro
level, where an increase in aggregate risk can increase the collateral requirements of all members.

Taken together, our empirical findings and theoretical results can provide guidance for building
empirically grounded models of the collateral feedback channel.
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Figure 1: Histogram of margin/notional ratio observations.
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Note: For each active house account/day combination, we compute the margin to notional ratio by dividing initial
margins with aggregate net notional. We obtain the aggregate net notional by computing the net notional for each
reference name and then summing the absolute net notional values across names. The figure reports the histogram of
margin/notional ratio across all 18,615 account/day observations.
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Figure 2: Histogram of realized return on margins for cleared portfolios.
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Note: We compute the realized 5-day ahead returns on margins as the 5-day ahead P&L divided by posted margins.
We compute this for each account/day and obtain 18,540 observations. The figure plots the histogram of the return
on margins.
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Figure 3: Histogram for historically simulated return on margins (left), with zoom on left tail (right)
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Note: The figure shows the histogram of simulated returns on margins. Due to the large number of observations
clustering around zero, we only display observations between ±50% in Figure 3a, and report the left tail of the
histogram in Figure 3b. We use the DV01 formula to approximate the 5-day ahead P&L with the product of net
exposures to a reference name and the change in 5-year credit spreads for rolling 5-day windows from 2004/01/01 up to
each position date t + 5 days (for all business days from 2014/05/01 to 2019/02/20), adjusted for an average duration
of d = 3. We compute this for each account/day/historical 5-day window and obtain 61,532,415 observations.
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Table 1: Descriptive statistics for different account categories.

Active House Customer Auxiliary House

Number of accounts 15 14 11(16)†
Number of contracts 3587.3 287.8 165.4
Number of names 238.8 86 57.8
Gross notional (billions $) 119 26.4 8.9
Initial margins (millions $) 622.2 865.7 54.5

Note: The table reports the pooled averages of key variables within our data set depending on account type over
our sample period. The number of contracts/names for each account counts those contracts/names for which the
account has a non-zero position. Gross notional is computed by summing the absolute notional exposure for all
contracts in the account. Margins are computed by summing the USD margin requirement and the Euro margin
requirement, after adjusting for the historical exchange rates.

†Five auxiliary house had zero margins throughout, indicating no trading activity at all. We excluded these accounts
when calculating auxiliary house account descriptive statistics.

27



Table 2: Portfolio and market variables.

Notation Units Definition

ψ millions $ Empirical 5-day distribution of profit and losses for a portfolio
IM millions $ Observed initial margins posted for a portfolio
Y millions $ Net notional aggregated over reference names for a portfolio

Portfolio Variables

V aR millions $ 1 percent quantile of ψ
ES millions $ Average of profit and losses less than equal to V aR
MS millions $ Minimum of ψ
SD millions $ Sample standard deviation of ψ
AN millions $ Aggregate net notional (by reference entity) of portfolio
AS millions $ Aggregate short notional (by reference entity) of portfolio
DSV millions $ Initial margin estimate used by Duffie et al. (2015), equal to MS + 0.02×AS
MDSV millions $ Adjusted initial margin from DSV , with estimated weights

Market Variables

OIS bps End of day 3-month Overnight Index Swap spreads
LOIS bps End of day 3 month USD LIBOR-OIS spreads
CDS bps End of day market quote for clearing member specific 5-year CDS spread
ACDS bps Average end of day clearing member 5-year CDS spread
DCDS bps Deviation of end of day 5-year CDS spreads from the average, equal to CDS −ACDS
V IX bps End of day CBOE Volatility Index

Note: This table displays the key variables and notation we use in our regression analyses. Portfolio variables are those
that are specific to the portfolio that an account holds with the clearinghouse, and are conventionally used to measure
the risk of positions. Market variables are those that are determined by market forces. Portfolio variables estimated
from the empirical distribution via the historical simulation method outlined in Section 3.3 include Value-at-Risk,
expected shortfall, maximum shortfall, and standard deviation. Portfolio variables estimated directly from positions
include aggregate net notional and aggregate short notional. We record portfolio variables in millions USD. Market
variables include the Overnight Index Swap (OIS) spread, the LIBOR-OIS spread, clearing member CDS spreads, the
average clearing member CDS spread, and the aggregate volatility as measured by VIX. We record market variables
in basis points.
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Table 3: Initial margins and portfolio variables summary statistics

Portfolio variables, in millions $
Summary Statistic In. Margins (IMn,t) Portfolio SD (SDn,t) VaR (V aRn,t) Exp. Shortfall (ESn,t) Max Shortfall (MSn,t)
Pooled mean (over all n and t): µ (xn,t) 622.2 23.0 71.1 103.4 198.9
Std. deviation (over all n and t): σ (xn,t) 408.2 15.7 49.8 70.1 142.8
Time-series variation of cross-sectional averages: σ (x̄t) 83.5 2.1 5.9 10.4 38.6
Mean cross-sectional dispersion: µ (σt (xn,t)) 407.0 16.0 50.9 71.1 137.7
Cross-sectional dispersion of time-series averages: σ (x̄n) 346.3 13.0 40.9 57.2 109.9
Mean time-series dispersion: µ (σn (xn,t)) 208.4 8.2 26.2 37.6 84.6

Portfolio variables, in millions $
Summary Statistic Aggr. Notional (ANn,t) Aggr. Short Notional (ASn,t) Duffie et al. (DSVn,t) Modified DSV (MDSVn,t)
Pooled mean (over all n and t): µ (xn,t) 24,070.1 11,663.6 432.2 514.5
Std. deviation (over all n and t): σ (xn,t) 15,223.1 8,864.4 292.4 349.2
Time-series variation of cross-sectional averages: σ (x̄t) 1,991.8 1,786.6 66.4 78.6
Mean cross-sectional dispersion: µ (σt (xn,t)) 15,588.3 8,774.5 290.6 347.2
Cross-sectional dispersion of time-series averages: σ (x̄n) 14,529.3 6,653.8 235.9 281.2
Mean time-series dispersion: µ (σn (xn,t)) 5,335.7 4,977.6 157.8 188.2

Note: Table 3 displays summary statistics of our key portfolio variables and initial margins, in millions of USD.
Definitions of portfolio variables are reported in Table 2. In addition to the pooled mean and standard deviations
(dispersions), we report panel statistics that describe properties of panel variables both across accounts and time. In
particular, for panel data xn,t, we define

x̄t := 1
N

N∑
n=1

xn,t, x̄n := 1
T

T∑
t=1

xn,t, σ2
t (x) := 1

N − 1

N∑
n=1

(xn,t − x̄t)2, σ2
n(x) := 1

T − 1

T∑
t=1

(xn,t − x̄n)2.

Above, we refer to σ(x̄t) as the time-series variation of cross-sectional averages, σ̄t(xn,t) as the mean cross-sectional
dispersion, σ(x̄n) as the cross-sectional dispersion of time-series averages, and σ̄n(xn,t) as the mean time-series dis-
persion.
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Table 4: Regression results for explaining initial margins with portfolio variables

Dependent variable:
Initial margins (IM) - Daily Frequency

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Value-at-Risk (VaR) 6.237∗∗∗ 4.115∗∗∗ 1.530∗ 1.654∗∗ 1.129 1.109∗ 1.218∗ 1.189∗∗

(1.065) (1.081) (0.899) (0.689) (0.733) (0.589) (0.732) (0.553)

Maximum shortfall (MS) 0.751∗ 0.431 1.121∗∗∗ 0.824∗∗∗
(0.430) (0.322) (0.369) (0.274)

Aggregate short notional (AS) 0.023∗∗∗ 0.017∗∗∗ 0.025∗∗∗ 0.019∗∗∗
(0.003) (0.003) (0.004) (0.004)

Duffie et al. model (DSV) 1.198∗∗∗ 0.892∗∗∗ 1.036∗∗∗ 0.758∗∗∗
(0.095) (0.084) (0.078) (0.124)

Modified DSV model (MDSV) 0.858∗∗∗ 0.627∗∗∗
(0.060) (0.099)

Number of Observations 18615 18615 18615 18615 18615 18615 18615 18615 18615 18615 18615 18615
Adjusted R2 0.580 0.790 0.745 0.849 0.737 0.843 0.736 0.842 0.742 0.846 0.744 0.847
Account Fixed Effect N Y N Y N Y N Y N Y N Y
Time Fixed Effect N Y N Y N Y N Y N Y N Y

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Two-Way Clustered Standard Errors (by Time and Account)

Note: We perform least squares regressions using initial margins as the dependent variable and portfolio variables as
explanatory variables. Two-way clustered (by time and account) standard errors are reported in parentheses and used
for the significance tests. We consider both the case with and without (time and account) fixed effects.
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Table 5: Regression results for explaining initial margins with portfolio and market variables

Dependent variable:
Initial margins (IM) - Daily Frequency

(1) (2) (3) (4) (5) (6)

Value-at-Risk (VaR) 1% 1.507∗∗ 1.059∗ 1.544∗∗ 1.024∗∗ 1.939∗∗∗ 1.487∗∗
(0.637) (0.577) (0.625) (0.497) (0.750) (0.624)

Modified DSV Model (MDSV) 0.825∗∗∗ 0.658∗∗∗ 0.818∗∗∗ 0.661∗∗∗
(0.047) (0.086) (0.039) (0.067)

Maximum Shortfall (MS) 0.651 0.486
(0.403) (0.341)

Aggregate Short Notional (AS) 0.023∗∗∗ 0.018∗∗∗
(0.003) (0.003)

CBOE Volatility Index (VIX) 0.062∗∗∗ 0.068∗∗∗ 0.062∗∗∗ 0.062∗∗∗ 0.060∗∗∗ 0.067∗∗∗
(0.017) (0.016) (0.017) (0.015) (0.017) (0.016)

Member CDS Spread (DCDS) 1.880∗ 0.290 1.888∗ 0.286 2.002∗∗ 0.321
(1.053) (0.855) (1.030) (0.881) (0.962) (0.767)

Average CDS Spread (ACDS) 0.186 −0.204 0.093 −0.291
(1.035) (0.976) (1.103) (0.981)

LIBOR-OIS Spread (LOIS) 0.458 0.785
(1.184) (1.435)

Number of Observations 18615 18615 18615 18615 18615 18615
Adjusted R2 0.761 0.844 0.761 0.844 0.764 0.846
Account Fixed Effect N Y N Y N Y
Time Fixed Effect N N N N N N

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Two-Way Clustered Standard Errors (by Time and Account)

Note: We perform least squares regressions using initial margins as the dependent variable and portfolio and market
variables as explanatory variables. Two-way clustered (by time and account) standard errors in parentheses are
reported and used for the significance tests. We consider both the case of with and without fixed effects. Because
market variables are often dependent only on time, we consider only account fixed effects when such variables are
introduced.
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Appendices

A Part 39 CDS prices

End-of-day (EOD) prices within the Part 39 data set are provided by ICC in terms of points upfront.
CDS prices historically have been quoted in terms of conventional or “break-even” spreads, defined
as the annualized quarterly spread payment per unit of purchased protection that makes the market
value of the position zero at initiation. Contracts thus were negotiated bilaterally over the counter
and, depending on when they were traded, carried different spreads. The push for standardized CDS
contracts, however, has drastically changed the landscape of CDS price quotes and traded contracts.
In particular, the 2011 “CDS Big Bang” resulted in standardized CDSs having fixed coupons (usually
100 or 500 basis points). Thus, contract market values are often non-zero at outset. When trading
standardized CDSs, the protection buyer makes an upfront payment to the protection seller at initi-
ation (or vice versa). Price quotes are then in “points upfront” instead of break-even spreads. For
instance, if a CDS contract were quoted at 0.97, the protection buyer would pay 1− 0.97 = 3% of the
notional to the seller at contract initiation. Notice that this quote convention is analogous to bond
quotes, where a higher price quote represents a lower payment for the buyer. Some data providers,
such as Bloomberg, convert the quoted prices using a standardized model provided by the International
Swaps and Derivatives Association (ISDA) and, by convention, record break-even spreads.

We note that quoted prices are model prices. Since CDSs trade relatively thinly, EOD transaction
prices are not always available. ICC and Markit have a specific price discovery process tailored to the
CDS market. Participants submit price quotes at the end of every business day and the clearinghouse
creates periodic trade executions among participants via an auction process. The resulting prices are
used for daily mark-to-market purposes.

B Market events during our sample period

In this section, we briefly review the main world events that affected, directly or indirectly, CDS
markets during our sample period May 2014-February 2019. In particular, during this period we find:
(i) the plummet of oil prices in November 2014, when Saudi Arabia blocked OPEC from cutting oil
production; (ii) the plunge in the Euro when the ECB chief Mario Draghi expressed unexpectedly
dovish outlooks on monetary policy in January 2015; (iii) the 2015–2016 stock market sell-off, starting
with the Chinese stock market burst (“Black Monday” ), and followed by an unexpected devaluation in
the Renminbi, which was further fueled by Greek Debt default; (iv) the unexpected negative interest
rate policy announced by the Bank of Japan in January 2016; (v) the volatility spike when the Brexit
referendum was announced in February 2016; (vi) Donald Trump’s election in November 2016 which,
immediately following the announcement, created extreme volatility spikes in global markets and led
the total trading volumes in CDS markets to double on the election night; (vii) OPEC’s decision
to cut oil production, followed by non-OPEC countries, led to hikes in oil prices in November 2016,
especially because this was the first time after financial crisis; (viii) the Venezuela’s delayed payments
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on its sovereign debt and bonds issued by state oil giant Petroleos de Venezuela in November 2017
constituted a failure to pay “credit event”, and led to extreme volatility in CDS prices which sky-
rocketed in a period of 6-7 days. Our sample period also covers the (widely expected) interest rate
hike by the Federal Reserve in December 2015, the first increase in nearly a decade, the Bitcoin’s
record price surge in the year 2017, and the (expected) Bank of England’s decisions to raise interest
in November 2017 and August 2018, respectively first and second time after the global crisis, despite
the ongoing uncertainty over the future of the UK economy.

C Time-series test of the V aR rule using realized returns

We consider the Z statistic:

Z := 1
NT

T∑
t=1

N∑
n=1

I{ΨM,t(Xn
t ) < −IMt(Xn

t )},

where I{·} is the indicator function. The indicator takes value 1 when realized M−day losses exceed
the initial margin requirement; this is typically referred to as an exceedance. The statistic Z is the
empirical frequency at which exceedances occur, averaged over time and across market participants.
We have, for quite general correlation structures:

Z
P−→ α,

by the law of large numbers. For M and α specified in the null hypothesis, we can test H0 using Z as
the test statistic.

We compute standard errors for the test using binomial probabilities. While we would ideally
compute cluster-robust standard errors for our test, having observed no exceedances means residuals
are all zero. To proceed, we assume that exceedances are perfectly correlated when underlying losses
overlap (for robustness against autocorrelation), and also assume that exceedances are uncorrelated
across accounts. In particular, standard errors are computed as

S.E. =

√
α(1− α)ζM

NT
.

In the above equation, the term ζM := 2M − 1 adjusts for our assumption that exceedances are
perfectly correlated when underlying losses overlap. For α = 1%, NT = 18, 615 and M = 5, we obtain
a standard error of 0.22%.

We remark that our standard errors are likely to be overly conservative. As a robustness check, we
also compute one-day returns and autocorrelation estimates. For each account, we find autocorrelation
estimates on the orders of 10−4 for the first five lags. Thus, autocorrelation would likely have a smaller
impact on actual standard errors compared to our assumption of perfect correlation.

Finally, to explicitly account for potential cross-sectional correlation in the returns on margins, we
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perform the test separately account by account, finding that the null hypothesis is rejected in every
case.

D Procedure to compute counterfactual Returns

Following Duffie et al. (2015), we group together all I contracts written on the K underlying reference
entities, and denote the net position in that reference entity by Yk. Precisely, let Ωk denote the
collection of contracts referencing name k, then

Y n
t,k :=

∑
i∈Ωk

Xn
t,i.

For each reference entity, therefore, Yk indicates the net exposure to reference entity k, aggregating
together the CDS contracts on that reference entity across maturities, seniority level, and doc clause.
We then collect historical on-the-run 5-year credit spread series for each reference entity, St ∈ RK ,
where the spread is the coupon payment that equates the value of premium and protection leg. Under
standard assumptions on the loss rate, St can be converted to Pt. We do not report the exact
conversion formula here, but observe that, given that the market value of a CDS position at t is the
notional of the position multiplied by (1 − Pt) (see also (1)), then St is increasing in 1 − Pt. Unlike
Pt, i.e., the quoting price following the Big Bang convention according to which the buyer makes an
upfront payment of 1−Pt and then pays a running fixed spread premium throughout the life of the
contract, St is not a price. Hence, P&L can only be approximated via the DV01 formula, given by

Ψ5,u(Xn
t ) ≈ d×Yn

t · (Su+5 − Su),

where d is the effective duration of the position. We use d = 3 as in Duffie et al. (2015), meaning that
the average duration of CDS positions is 3 years (corresponding to the median maturity of the CDS
market).

E Time-series test of the V aR rule using counterfactual returns

We compute our test statistic using an extended version of Eq. (C):

Z ′ = 1
NTU

T∑
t=1

U∑
u=1

N∑
n=1

I{Ψ5,uMtM(Xn
t ) < −IMt(Xn

t )},

where Ψ5,uMtM(Xn
t ) is constructed as in Duffie et al. (2015) (see Appendix D for additional details),

and U is the number of evaluation dates, that is, dates for which we observe the portfolio. For each
portfolio Xn

t , we estimate the frequency at which losses exceed portfolio margins. Under the null
hypothesis of a 5-day 99% VaR margining rule, Z ′ should converge to 1% in probability.

The test can be simply implemented as a regression of observed exceedances onto a constant, with
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double-clustering as in Petersen (2009) by time and by account (there is no need to use the binomial
model as exceedances are observed in the data, so the variance of the residuals is nonzero).

F Cross-sectional test of the V aR rule

The margining rule H0 implies P(ΨM,t(Xn
t ) < −IMt(Xn

t )) = α for all n, which further implies

H ′0 : P(ΨM,t(Xn
t ) < −IMt(Xn

t )) = P(ΨM,t(Xn′
t ) < −IMt(Xn′

t )),

for all n 6= n′. The statistics to consider are then

Zn := 1
T

T∑
t=1

I{ΨM,t(Xn
t ) + IMt(Xn

t ) < 0} P−→ α.

We describe here how to implement a test for equality (H ′0). The most straightforward test for equality
of the frequencies of exceedances across accounts is the G−test (i.e. the two-way likelihood ratio test).
Because the confidence level is expected to be large (the expected frequency of exceedances is low),
the typical χ2−test for homogeneity is not appropriate (Hoey (2012)). As exceedances are expected
to occur with low probability, we instead use the G−test to test the null hypothesis.

The test statistic is computed as:

G := 2
N∑
n=1

On log On
En

,

where On is the observed number of exceedances for clearing member n, and En is the expected number
of exceedances for account n. The probability of observing an exceedance, needed for calculating En,
is estimated by pooling observations across accounts. In particular,

En := TU × Z = 1
N

T∑
t=1

U∑
u=1

N∑
n′=1

I{Ψ5,uMtM(Xn′
t ) < −IMt(Xn′

t )},

and

On :=
T∑
t=1

U∑
u=1

I{Ψ5,uMtM(Xn
t ) < −IMt(Xn

t )}.

Under the null that frequencies are the same for each account, G d→ χ2
N−1.

We also derive an extension of this test that explicitly accounts for potential autocorrelation of the
exceedances. For a fixed portfolio, we first count the number of exceedances, and then divide it by
the number of evaluation dates. This gives an estimate for the probability of an exceedance occurring
for that portfolio. We then sum the exceedance probabilities for portfolios associated with each fixed
account, and use the rounded up integer as the estimate of observed exceedances for that account.
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We enter this estimate into the contingency table used for the G−test. Formally, we estimate the
probability of an exceedance for an account/day combination (n, t) as

p̂n,t = 1
T

T∑
u=1

I{Ψ5,uMtM(Xn
t ) < −IMt(Xn

t )}.

The number of (estimated) observed exceedances is then

Ôn :=
⌈
T∑
t=1

p̂n,t

⌉
.

The estimate Ôn replaces On in our computation of the G statistic (Eq. (F)).20 The estimated observa-
tions are thus more robust to autocorrelation compared to treating each observation as an individual
count, which may inflate the sample size.

G Robustness: Details

In this section, we provide more details about the robustness tests of Section 4.4.
Value-at-Risk and maximum shortfall used in the panel analyses (Tables 4 and 5) were based on

P&L generated from our entire sample of credit spreads (that is, on the entire historical distribution
of returns for each portfolio held at time t by member n). Because our data set covered the financial
crisis, the risk measures captured extreme movements and may thus be viewed as overly conservative
for estimating portfolio losses. In this section we consider using only the last 1000 days (approxi-
mately 4 years) of credit spreads data to generate P&L, as in Duffie et al. (2015). Using these newly
estimated counterfactual P&L, we compute Value-at-Risk and maximum shortfall. We replicate our
panel analyses and report the results in Tables A.3 and A.4.

Comparing Table A.3 to Table 4, we see there is a decrease in explanatory power of Value-at-Risk
(V aR) (column (1)). This is likely due the exclusion of the financial crisis period in our simulation,
resulting in both lower level and variability of Value-at-Risk. Aggregate short notional (AS) still
retains its strong explanatory power (columns (3) and (4)), and columns (7) and (8) show that the
DSV model still captures a significant portion of variation in initial margins, and outperforms Value-
at-Risk in terms of explanatory power (columns (1) and (2)). Our conclusions remain consistent with
our previous results.

Comparing Table A.4 to Table A.3, we observe again that there is a non-negligible increase in
explanatory power compared to models that include only portfolio variables (Table A.3). This confirms
that market variables can capture a dimension of initial margins not explained by portfolio variables,
especially for the VIX.

20The ceiling operation is performed to ensure that the contingency table only contains integer entries. We also
performed the test with unrounded data, yielding similar, if not stronger, results.
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Table A.1: Initial margins and market variables summary statistics

Market variables, in basis points (bps)
Summary Statistic In. Margins (IMn,t) Overnight Index Swap Spread (OISt) LIBOR-OIS spread (LOISt) CBOE VIX (V IXt)
Pooled mean (over all n and t): µ (xn,t) 622.2 84.4 23.1 1,498.8
Std. deviation (over all n and t): σ (xn,t) 408.2 75.7 11.5 437.9

Market variables, in basis points (bps)
Summary Statistic In. Margins (IMn,t) CDS spread (CDSn,t) Avg. CDS spread (ACDSt)
Pooled mean (over all n and t): µ (xn,t) 622.2 78.3 78.3
Std. deviation (over all n and t): σ (xn,t) 408.2 30.9 18.7
Time-series variation of cross-sectional averages: σ (x̄t) 83.5 18.8
Mean cross-sectional dispersion: µ (σt (xn,t)) 407.0 23.9
Cross-sectional dispersion of time-series averages: σ (x̄n) 346.3 18.1
Mean time-series dispersion: µ (σn (xn,t)) 208.4 23.0

Note: The table displays summary statistics of our key market variables and initial margins, in basis points and
millions of USD, respectively. Definitions of market variables are reported in Table 2. In addition to the overall
mean and standard deviations (dispersions), we report panel statistics that describe properties of variables both across
accounts and time, the calculations of which are reviewed in Table 3. Panel summaries are not reported for market
variables that do not vary across accounts.
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Table A.2: Check for multicollinearity

Estimates Dependent variable:(
R2)

SD ES

V aR 0.313∗∗∗ 1.379∗∗∗
(OLS) (98.0%) (96.3%)

V aR 0.306∗∗∗ 1.358∗∗∗
(with FE) (98.5%) (97.7%)

Observations 18,615 18,615

Note: We regress both expected shortfall and standard deviation on Value-at-Risk, and report the results. The
first row corresponds to estimates from (pooled) OLS regression, and the second row corresponds to estimates after
accounting for time and account fixed effects. Coefficient estimates are all significant at the 1% level. R2s are in
parentheses.

38



Table A.3: Regression results for explaining initial margins with portfolio variables

Dependent variable:
Initial margins (IM) - Daily Frequency

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Value-at-Risk (VaR) 5.113∗∗∗ 2.994∗∗∗ 2.140∗ 1.554∗∗ −0.298 0.258 0.825 0.944∗
(1.007) (0.600) (1.177) (0.677) (1.078) (0.638) (0.999) (0.557)

Maximum shortfall (MS) −0.189 −0.003 0.617∗ 0.544∗∗
(0.242) (0.219) (0.372) (0.238)

Aggregate short notional (AS) 0.031∗∗∗ 0.020∗∗∗ 0.033∗∗∗ 0.021∗∗∗
(0.004) (0.004) (0.004) (0.004)

Duffie et al. model (DSV) 1.307∗∗∗ 0.872∗∗∗ 1.356∗∗∗ 0.833∗∗∗
(0.151) (0.090) (0.185) (0.153)

Modified DSV model (MDSV) 0.913∗∗∗ 0.577∗∗∗
(0.123) (0.116)

Number of Observations 18615 18615 18615 18615 18615 18615 18615 18615 18615 18615 18615 18615
Adjusted R2 0.410 0.762 0.683 0.829 0.669 0.824 0.644 0.820 0.644 0.820 0.674 0.828
Account Fixed Effect N Y N Y N Y N Y N Y N Y
Time Fixed Effect N Y N Y N Y N Y N Y N Y

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Two-Way Clustered Standard Errors (by Time and Account)

Note: Same as Table 4, but computing risk measures only using last 1000 days of simulated return on margins
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Table A.4: Regression results for initial margins using portfolio and market variables with last 1000
days of P&L

Dependent variable:
Initial margins (IM) - Daily Frequency

(1) (2) (3) (4) (5) (6)

Value-at-Risk (VaR) 1% 1.220 0.609 1.052 0.398 2.587∗∗ 1.230∗
(0.942) (0.624) (0.985) (0.598) (1.069) (0.645)

Modified DSV Model (MDSV) 0.867∗∗∗ 0.628∗∗∗ 0.889∗∗∗ 0.654∗∗∗
(0.115) (0.109) (0.120) (0.105)

Maximum Shortfall (MS) −0.245 0.038
(0.225) (0.181)

Aggregate Short Notional (AS) 0.029∗∗∗ 0.021∗∗∗
(0.004) (0.004)

CBOE Volatility Index (VIX) 0.081∗∗∗ 0.081∗∗∗ 0.063∗∗∗ 0.059∗∗∗ 0.080∗∗∗ 0.080∗∗∗
(0.016) (0.019) (0.017) (0.016) (0.016) (0.019)

Member CDS Spread (DCDS) 2.038∗ −0.136 2.013∗ −0.148 2.092∗ −0.039
(1.160) (0.784) (1.125) (0.824) (1.093) (0.750)

Average CDS Spread (ACDS) −0.892 −0.996 −0.909 −0.987
(1.089) (1.076) (1.162) (1.098)

LIBOR-OIS Spread (LOIS) 1.171 1.421
(1.416) (1.626)

Number of Observations 18615 18615 18615 18615 18615 18615
Adjusted R2 0.695 0.821 0.695 0.821 0.704 0.823
Account Fixed Effect N Y N Y N Y
Time Fixed Effect N N N N N N

∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Two-Way Clustered Standard Errors (by Time and Account)

Note: Same as Table 5, but computing risk measures only using last 1000 days of simulated return on margins
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