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1 Introduction

The empirical study of Capponi et al. (2020) shows that collateral requirements in the cleared CDS
market are set much more conservatively than the levels implied by standard Value-at-Risk (VaR) rules
in over-the-counter (OTC) markets. Standard VaR rules (for example, those used by regulators and
OTC market participants, and requiring collateral to cover 99% of 5-day losses) focus on moderate
tail risk and are closely related to volatility. Empirically, they do not explain well the collateral levels
or the time variation of collateralization rates in the CDS market. Instead, Capponi et al. (2020)
show that extreme tail risk measures, such as maximum shortfall and aggregate short CDS notional,
have substantially higher power in explaining observed collateral requirements. While in practice
collateralization cannot fully eliminate all possible counterparty losses, collateral levels are set in the
cleared CDS market to cover losses about 8 times larger than those experienced at the 99th percentile;
and the variation of collateralization rates over time and in the cross-section is mostly driven by
variation in the probability of extreme losses, much larger than the 99th percentile.

These findings broadly lend support to models where the collateral rule is determined endogenously,
like in Fostel and Geanakoplos (2015): a key prediction of Fostel and Geanakoplos (2015) is that in
a binomial economy (i.e., when there are two states of nature only), any collateral equilibrium is
equivalent to one in which there is no default - that is, where collateral covers the most extreme losses.
While these theories capture the general result that collateral is set based on extreme tail risks, linking
the empirical results described above to their theoretical model is not straightforward for two main
reasons: (1) the conclusions in Fostel and Geanakoplos (2015) only hold if there are two states of
nature; and (2) counterparty defaults, and losses beyond the posted collateral, although rare, do arise
in practice.

In this paper, we develop a new model of endogenous collateral that is specifically suited for the CDS
market: it features a continuum of states (as opposed to just two), and non-zero default probability in
equilibrium. This model can speak directly to the results of Capponi et al. (2020). Trade in this model
occurs because of differences in beliefs. Our model builds on Simsek (2013), where belief disagreements
are central to asset prices and endogenous margin requirements. Unlike Simsek (2013), who considers
standard debt contracts and short selling, our model is specialized to an economy where the only
contracts available for trading are state contingent promises (CDSs) backed by risk-free collateral
(cash). As a result, the model presented here extends the framework of Simsek (2013) to the CDS
market.

In our model, optimists naturally sell insurance (CDS protection) to pessimists, and pessimists re-
quire that the sellers post collateral in the form of cash.1 The amount of cash required to collateralize
the CDS contract arises endogenously in the model. We show that the main driver of the collater-
alization level is not the extent of disagreement between market participants per se, but rather the
nature of their disagreement. In particular, when the optimists becomes more optimistic, the level of
collateralization falls; but when the pessimists attach a larger weight to the negative tail events, the

1Given that CDS contracts have highly asymmetric payoffs, there is little need for collateral from a protection buyer
– both in the theory developed here and in the data analysis of Capponi et al. (2020).
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level of collateralization rises. In both cases, the level of disagreement between participants widens,
but the change in the collateral requirement goes in opposite directions.

Our model is able to generate the high collateral requirements and low default probabilities observed
in the data, when the clearinghouse, i.e., the pessimist in our model, places a large weight on extreme
tail risks. Moreover, whilst the collateral requirements that arise in such an equilibrium may be viewed
as onerous by the clearing members, the optimist in our model, they may nevertheless be insufficient
to fully prevent defaults when viewed from the clearinghouse’s perspective.2

2 A Review of the Empirical Findings of Capponi et al. (2020)

Capponi et al. (2020) provide an empirical analysis of collateral requirements in the cleared CDS
market. Their analysis leverages a panel data set that contains, for each financial intermediary acting
as a clearing member of the largest CDS clearinghouse, the daily time series of its portfolio positions
and corresponding initial margin collateral posted.

The main finding of their analysis is that collateral is set much more conservatively, and, more im-
portantly, in a qualitatively different way, than prescribed by standard Value-at-Risk rules. Specifically,
they provide direct evidence that members’ collateral exceeds by a large amount the levels implied by a
99% VaR rule with a 5-day margin period, the standard benchmark in OTC markets. In addition, even
stricter VaR rules (that is, VaRs based on higher quantile levels) are also rejected by the cross-sectional
evidence, because they fail to explain the different collateralization rates observed across participants.

Instead, Capponi et al. (2020) show that, in this market, collateral rules are set based on very
extreme tail risks (like maximum shortfall and aggregate short notional) that determine the high level
of collateral required, and drive its variation over time.

Their findings suggest that the mechanics of transmission of shocks through collateral may operate
in a way that is qualitatively different from those implied by standard VaR. Specifically, they suggest
that a special role is played by tail risks and worst-case events, and by participants’ beliefs about them.
By providing a lens through which to interpret the empirical patterns discussed above, the theoretical
model in this paper provides guidance for designing models of the collateral feedback channel in over-
the-counter markets with highly skewed payoffs, such as the CDS market.

3 Model Setup

Consider an economy with two periods t = {0, 1} and two risk-neutral agents: one optimist and one
pessimist. All agents trade in period t = 0 and consume in period t = 1. Uncertainty is captured by
a continuum of states s ∈ S =

[
smin, smax

]
realized in period t = 1, with smin normalized to zero for

simplicity. The pessimist, denoted by i = 0, holds prior beliefs over S given by the distribution F0

2Of course, there exist differences between the theoretical model of collateral presented here and the empirical setting
in Capponi et al. (2020). Among them, it is worth noting that they analyze empirically a clearinghouse that determines
collateral rules in an oligopolistic setting (given that ICC is the largest clearinghouse with a certain degree of market
power), whereas the theoretical models of endogenous collateral assume a competitive market. That said, this theoretical
model still provides important insights on the determinants of collateral.
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with corresponding density f0. The optimist, denoted by i = 1, has prior beliefs characterized by the
distribution F1 with density f1. The optimist has a higher expectation than the pessimist on the state
in period 1, i.e., E1 [s] > E0 [s]. These prior beliefs are common knowledge for all agents.

At the start of period t = 0, each agent i = {0, 1} is endowed with ni units of the numeraire
consumption good which can be safely stored without depreciation for consumption at period t = 1.
We assume that the only other asset available is cash, which also yields one unit of the consumption
good in period t = 1, but - unlike the consumption good - cash can be used as collateral in CDS
contracts. At t = 0, the entire endowment of cash (normalized to 1) is held by an un-modeled third
party, who can sell cash in exchange for the numeraire consumption good at the equilibrium price p.
The price of the consumption good is normalized to 1.

The optimist and pessimist have identical (linear) preferences over the consumption good, so trading
between the two is driven purely by differences in beliefs. We assume that the only class of financial
contracts available for trading is that of simple CDS contracts. Recall that the payoff of a CDS contract
is zero if there is no default of the underlying (in our model, when s high), and 1 − R in the case of
default, where R is the state-contingent recovery rate of the underlying bond. Since the recovery R
worsens as the fundamentals of the underlying deteriorate, the payoff of the CDS becomes larger as
the state s becomes worse. We assume that the promised payoff of a CDS is smax− s. We can think of
the case s = smax as the event in which the underlying bond does not default, so that the CDS does
not pay anything; 0 < s < smax as the intermediate case in which the underlying bond defaults, but
there is positive recovery, so that the CDS pays off some amount; and s = 0 as the extreme case of
zero recovery, where the payoff of the CDS is maximal (and equal to smax).

To enforce payment of the promise, the CDS seller needs to post some amount of collateral. Follow-
ing the endogenous collateral literature, consider the family of CDS contracts BCDS =

{
[smax − s]s∈S , γ

}
,

each composed of a promise of (smax − s) units of the consumption good in state s at t = 1, backed
by γ units of cash as collateral. Denote by q (γ) the t = 0 price of such a CDS contract with collateral
level γ. In general, multiple CDS contracts may coexist in equilibrium: they have the same promised
payment (smax − s), but different amounts of collateral posted γ, and – as a consequence – trade for
different prices q(γ). Thus we can index the different CDS contracts in BCDS by γ.

Since the promised payment on a CDS contract is enforceable only through the potential of seizing
the collateral, the actual delivery on each contract in state s is given by the minimum of the promised
payment and the value of the collateral in that state: δ (s, γ) := min {smax − s, γ}. In other words, in
any state s̃ such that smax − s̃ > γ, the seller of the CDS contract would default on her promise, and
the buyer would only receive the value of the collateral γ.

Denote by µ+
i , µ

−
i , respectively, agent i’s long and short positions on CDS contracts (where a long

position means that the agent has purchased the corresponding CDS contract). Let ai ∈ R+ denote
agent i’s holding of the numeraire consumption good; and ci ∈ R+ be her cash holdings. Then agent
i’s budget constraint can be written as:

ai + pci +

∫
γ∈BCDS

q (γ) dµ+
i ≤ ni +

∫
γ∈BCDS

q (γ) dµ−i , (1)
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where the left hand side represents the total value of the agent’s portfolio, comprised of her holding
of the numeraire good ai, the value of her cash holding pci, and her long-position in CDS contracts∫
γ∈BCDS q (γ) dµ+

i . The right hand side represents the total value of the funding available to the agent,
comprising of her endowment of the consumption good ni and the amount she can raise by shorting
CDS contracts,

∫
γ∈BCDS q (γ) dµ−i . If an agent i has a short position on the CDS contracts, then she

is also subject to the collateral constraint:∫
γ∈BCDS

γdµ−i ≤ ci, (2)

which means that agent i must have sufficient cash holdings to satisfy the collateral requirements for
the CDS contracts sold. In contrast, the purchaser of the CDS contracts (the party who is long) is not
subject to any collateral requirements.

The optimization problem for each agent i is given by:

max
(ai,ci,µ+

i ,µ
−
i )∈R4

+

ai + ci + Ei

[∫
γ

min {smax − s, γ} dµ+
i

]
− Ei

[∫
γ

min {smax − s, γ} dµ−i

]
(3)

subject to the budget constraint (1) and the collateral constraint (2).

Definition 1. A collateral equilibrium is a set of portfolio choices
(
âi, ĉi, µ̂

+
i , µ̂

−
i

)
i∈{0,1} and a set of

prices (p ∈ R+, q : γ → R+) such that the portfolio choices solve the optimization problem (3) of each
agent i ∈ {0, 1}; and the prices are such that the market for cash clears, i.e.,

∑
i∈{0,1} ĉi = 1, and the

CDS markets clear, i.e.,
∑

i∈{0,1} µ
+
i =

∑
i∈{0,1} µ

−
i .

We show that although the entire family of CDS contracts is priced, it is only one contract that
is traded in equilibrium. This result is line with the literature on collateral equilibrium (Fostel and
Geanakoplos (2015); Simsek (2013)). Furthermore, the collateral level γ of the actively traded CDS
contract, and the price of cash p, will be determined endogenously. The equilibrium level of collateral
requirement γ will depend on the nature of belief differences between the optimist and the pessimist.

4 Existence and Uniqueness of the Collateral Equilibrium

Following the approach in Simsek (2013), it is possible to show that (under suitable assumptions
over initial endowments and beliefs) the collateral equilibrium exists, is unique, and is equivalent
to a principal-agent equilibrium where the optimist chooses her cash holdings and the optimal CDS
contract to sell, subject to the pessimist’s participation constraint. To this end, we impose the following
assumptions on initial endowments and prior beliefs, that parallel similar assumptions in Simsek (2013):
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Assumption A1: [Restriction on Initial Endowments]

n1 <
E1 [s]

smax
(4)

and n0 >
E0 [smax − s]
E1 [smax − s]

− n1 (5)

The first inequality ensures that the optimist’s initial endowment is not large enough to purchase
the entire supply of cash in the economy with her own resources alone (that is, she will need
to raise some more of the numeraire consumption good by selling CDS contracts).3 The second
inequality ensures that the initial endowment of the pessimist (n0) is large enough that the
pessimist will always have some residual consumption after paying for the CDS.4

Since the pessimist is risk neutral, this implies that her expected return on any CDS contract purchased
must also be equal to 1 in equilibrium. Thus the equilibrium price of a CDS contract with collateral
γ must be given by:

q (γ) = E0 [min (smax − s, γ)] . (6)

This pricing equation serves as a convenient characterization of the pessimist’s participation constraint.
We can now formulate the optimist’s problem as choosing the level of cash holdings c1, and the

CDS contract γ to sell, so as to maximize the expected payoffs, subject to the pessimist’s participation
constraint of achieving an expected return of one unit on the CDS contract sold:

max
(c1,γ)∈R2

+

c1 −
c1

γ
E1 [min {smax − s, γ}] (7)

s.t. pc1 = n1 +
c1

γ
E0 [min {smax − s, γ}]

This leads us to define the principal-agent equilibrium as follows:

Definition 2. A principal-agent equilibrium is a pair of optimist’s portfolio choices (c∗1, γ
∗) and price

for cash (p∗) such that the optimist’s portfolio solves her optimization problem (7), and the market for
cash clears: c∗1 = 1.

In order to show equivalence between the principal-agent equilibrium outlined here and the collateral
equilibrium defined previously, further restrictions on the nature of belief differences are required:

Assumption A2: [Restrictions on Prior Beliefs] The probability densities of the optimist’s and
the pessimist’s beliefs satisfy the monotone likelihood ratio property:

f1 (s1)

f0 (s1)
>
f1 (s0)

f0 (s0)
for every s1 > s0 (8)

3For a more detailed discussion of this assumption, see Appendix A.
4More specifically, this inequality implies that the sum of the endowments needs to be greater than the maximum

price cash can take in equilibrium (which we will show is bounded from above by
(
E0[smax−s]
E1[smax−s]

)
).
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Note that this assumption implies: (1) first-order stochastic dominance: F1 (s) < F0 (s),∀s ∈(
smin, smax

)
; (2) monotone hazard rate: f1(s)

1−F1(s) <
f0

1−F1(s) ,∀s ∈
(
smin, smax

)
; and (3) f0(s)

F0(s) <
f1(s)
F1(s) ∀s ∈

(
smin, smax

)
(which in turn implies d

ds
F0(s)
F1(s) < 0).

We can then prove the following Proposition:

Proposition 1. [Existence, Uniqueness, and Equivalence of Equilibria] Under Assumptions
A1 and A2:

1. There exists a unique principal-agent equilibrium (p∗, (c∗1, γ
∗)) s.t. p∗ > 1.

2. There exists a collateral general equilibrium,
(
âi, ĉi, µ̂

+
i , µ̂

−
i

)
i∈{0,1}, whereby the optimist sells

CDS to the pessimist (i.e. µ̂+
1 = µ̂−0 = 0), and only a single CDS contract is actively traded (i.e.

µ̂+
0 is a measure that puts weight only at one contract γ̂ ∈ BCDS). This collateral equilibrium is

unique in the sense that the price of cash p̂ and the price of the traded CDS contract q (γ̂) are
uniquely determined.

3. The collateral equilibrium and the principal-agent equilibrium are equivalent:

p̂ = p∗, ĉ1 = c∗1, γ̂ = γ∗

and q (γ̂) = E0 [min (smax − s, γ∗)]

The detailed proof is reported in the Appendix. Intuitively, because under Assumption A1 the pessimist
will hold a surplus of the consumption good in equilibrium (he has a larger endowment than what the
optimist would want to borrow), he must be indifferent between holding the consumption good (with
a sure return of 1) and holding the CDS sold by the optimist. Hence, the optimist effectively holds all
the bargaining power when deciding which CDS they should trade, and will only trade in the contract
that maximizes the optimist’s expected return. Assumption A2 provides the sufficient conditions for
there to exist a unique contract γ∗ that solves the optimist’s principal agent problem.

5 Characterizing the equilibrium

In this section, we show that in equilibrium the optimist will wish to sell CDS contracts to the pessimist
(so as to bet on the events she thinks are more likely). But, to do so, the optimist must first obtain
more units of the numeraire good from the pessimist by selling CDS contracts, in order to purchase
the cash required to collateralize the CDS contracts.5 Because cash is the only asset that can be used
as collateral, its equilibrium price will exceed its fundamental value (p > 1), so cash is held exclusively
by the optimist in equilibrium.

To formally characterize the equilibrium, first substitute c1 = n1(
p− 1

γ
E0[min{smax−s,γ}]

) from the

optimist’s constraint into his objective function. This reduces the dimension of the problem by one,
5This mechanism is analogous to a mortgage contract, where the borrower is raising funds from the lender in order

to purchase the collateral (i.e. the house) required to back the mortgage.
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and allows us to restrict attention to choosing only the optimal contract γ. The resulting first order
condition characterizes the optimal contract choice for a given p:

Proposition 2. Under assumptions A1 and A2, and fixing a price for cash p, the optimal CDS contract,
s̄, with respect to the optimist’s problem (7) is given by the unique solution to:

p = F0 (smax − s̄) + (1− F0 (smax − s̄)) E0 [smax − s|s ≥ smax − s̄]
E1 [smax − s|s ≥ smax − s̄]

=: popt (s̄) (9)

Inverting popt (s̄) gives the optimal CDS contract s̄ for the optimist, for given price of cash p. This
first order condition effectively determines how much collateralization the optimist (seller) chooses for
the CDS contract, since the states s ≤ smax − s̄ are the ones where the optimist is defaulting on the
promise of delivering the CDS payment and is instead relinquishing the collateral. Once the equilibrium
price of cash p∗ is known (see Eq. (11) below), we can use Eq. (9) to derive the equilibrium level of
collateral γ∗ by setting p∗ = popt (γ∗).

Equation (9) also implies that the price of cash is composed of two parts: (a) the pessimist’s
assessment of the probability of default on the CDS: (F0 (smax − s̄)), multiplied by the pessimist’s
valuation of cash in the default state (1); plus (b) the pessimist’s assessment of the probability of
the no-default state, multiplied by the value of cash to the optimist in the non-default state (each
unit of cash allowed the optimist to borrow 1

s̄E0 [smax − s|s ≥ smax − s̄] from the pessimist, with an
expected actual delivery of 1

s̄E1 [smax − s|s ≥ smax − s̄]). Given the differences in beliefs, the optimist
expects to deliver less than what the pessimist envisages on the CDS contract: E0[smax−s|s≥smax−s̄]

E1[smax−s|s≥smax−s̄] ≥ 1.
Hence, p ≥ 1, i.e., cash generates collateral value. Consistent with the “Asymmetric Disciplining of
Optimism” result in Simsek (2013), the pessimist’s beliefs are used in assigning weights to the default
and non-default states. The belief of the optimist enters only in determining the value of collateral in
the non-default state.

Further, we show in the proof of Proposition 2 that popt (s̄) is an increasing function of s̄. To see
this intuitively, denote the optimist’s perceived interest rate on (borrowing through selling) the CDS
contract as

1 + rper1 (s̄) :=
E1 [min {smax − s, s̄}]
E0 [min {smax − s, s̄}]

(10)

Under assumption A2, it can be shown that the perceived interest is decreasing in s̄, i.e., d(1+rper1 (s̄))
ds̄ <

0. In other words, given the nature of belief differences, offering a CDS contract with higher margin
requirements is more attractive for the optimist. Thus the higher the margins s̄ posted, the greater
the discrepancy between expected deliveries becomes, and the more attractive selling the CDS is to
the optimist. Thus, increasing s̄ increases the collateral value of cash.

To close the model, we impose the market clearing condition for cash. The budget constraint in
equation (7) implies that the optimist’s demand for cash is given by:

c1 =
n1

p− 1
s̄E0 [min {smax − s, s̄}]
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Since the supply of cash is normalized to 1, we have:

p = n1 +
1

s̄
E0 [min {smax − s, s̄}] =: pmc (s̄) (11)

We show that pmc (s̄) is a decreasing function of s̄,6 with boundary conditions pmc
(
smin

)
>

popt
(
smin

)
and pmc (smax) < popt (smax). Hence, the unique intersection between popt (s̄) and pmc (s̄)

pins down the equilibrium price for cash p∗ and margin requirement γ∗.

Proposition 3. Under assumptions A1 and A2, there is a unique principal-agent equilibrium (c∗1, γ
∗, p∗)

characterized by:

c∗1 = 1

p∗ = pmc (γ∗) = popt (γ∗)

where popt (·) and pmc (·) are respectively defined in equations (9) and (11).

6 Comparative statics and illustrative example

We present a simple numerical example to illustrate the collateral equilibrium and perform comparative
statics, before presenting the more general results as propositions.

Suppose that the starting endowments of the numeraire consumption good are n0 = 3 and n1 = 0.5

for the pessimist and the optimist respectively. Let the set of states and the prior beliefs be given by:
S = [0, 1] and

F0 (s) = s
1
2 ∀s ∈ S (12)

F1 (s) = s3 ∀s ∈ S (13)

Panel A of Figure 1 plots the upward sloping cash price schedule
{
popt (s̄)

}
s̄∈[0,smax]

(equation (9)), and
the downward sloping cash price schedule {pmc (s̄)}s̄∈[0,smax] schedule (equation (11)), the intersection
of which characterizes the equilibrium price of cash p∗ and the equilibrium margin requirement γ∗.

Suppose instead that the optimist becomes less optimistic, such that:

F̃1 (s) = s
3
2 ∀s ∈ S

Then, we can see from equation (9) that the decreased optimism of the optimist shifts the popt (s̄)

schedule downwards and leaves the pmc (s̄) schedule untouched. The resulting equilibrium, as illustrated
6pmc (s̄) is downward sloping because 1

s̄
E0 [min {smax − s, s̄}] is decreasing in s̄. Intuitively, even though a CDS

contract with higher margin requirements demands a higher price (i.e. E0 [min {smax − s, s̄}] is increasing in s̄), the
need to post more margins reduces the number of such contracts the optimist can sell with a single unit of cash as
collateral. The overall effect is that posting more margins reduces the total amount that the optimist can borrow,
1
s̄
E0 [min {smax − s, s̄}], and this reduction in the purchasing power of optimists reduces the market clearing price of

cash.
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in panel B of Figure 1, is comprised of a lower price for cash p̃∗ and higher margin requirements γ̃∗.
We generalize this intuition in the following general proposition:

Proposition 4. [Change in optimist’s beliefs] Suppose that the optimist becomes “less optimistic”
in the sense that her beliefs change from F1 to F̃1, s.t. the monotone likelihood ratio condition is
satisfied: f1(s1)

f̃1(s1)
> f1(s0)

f̃1(s0)
for every s0, s1 ∈

[
smin, smax

]
and s1 > s0 . Then the equilibrium level of

collateral (γ∗) increases, and the equilibrium collateral value (p∗) falls. Conversely, when the optimist
becomes “more optimistic”, i.e., f1(s1)

f̃1(s1)
< f1(s0)

f̃1(s0)
for every s0, s1 ∈

[
smin, smax

]
and s1 > s0, then the

equilibrium level of collateral falls and the equilibrium collateral value rises.

While the changes in the optimist’s beliefs lead to unambiguous changes in the equilibrium, the
same is not true for the pessimist’s beliefs. Since the pessimist’s beliefs feature in the cash price
schedule of both the optimist (i.e, popt) and the pessimist (i.e., pmc), a given change in the pessimist’s
beliefs can either increase or decrease equilibrium collateral levels depending on the initial equilibrium.
Intuitively, when the pessimist becomes more pessimistic, she is willing to pay more for any given CDS
contracts (i.e., E0 [min {smax − s, s̄}] increases). This means that the optimist is now both: a) able to
raise more funding from selling CDS contracts; and b) willing to pay more for each unit of collateral.
The former effect shifts up the market clearing schedule pmc, and the latter effect can push up the
popt schedule. Therefore, whether the equilibrium collateral level increases depends on the interaction
of these two effects. Moreover, since the popt schedule also depends on the pessimist’s evaluation of
the default probability (i.e., F0 (smax − s̄))7, the effect of increased pessimism is not always monotone
along S = [0, 1]. For low levels of collateral s̄, the protection offered may be deemed insufficient, so
the new popt schedule may be lower than before; but for high levels of collateral, the new popt schedule
might be higher. In short, the popt schedule may pivot as well as shift in response to a change in
pessimist’s beliefs, creating further ambiguity in the direction of the equilibrium collateral level γ∗.

Instead, we show that a sufficient (but not necessary) condition for the equilibrium collateral level to
increase is for the pessimist to become more concerned about the tail risks (i.e., to place a larger weight
on the default states {s ∈ S : γ < smax − s} ) such that the probability density she attaches to all
the non-default states are consistently lower than before, i.e., f̃0 (s) < f0 (s) ∀s ∈ [smax − γ∗, smax].

For illustration purposes, consider a change in pessimist’s beliefs from F0 (eqn. 12) to F̃0:

F̃0 (s) = s
1
4 ∀s ∈ S

Then the equilibrium collateral level and collateral value both increase (Panel C of Figure 1). Note
that under the specific beliefs outlined here, the equilibrium level of collateral in Panel C is 0.8251, and
the optimist believes default will occur with probability 0.0053. This is consistent with the empirical
findings of Capponi et al. (2020) that extreme tail risk measures are important in explaining the high
collateral levels and low default rates observed in cleared CDS markets. We state this result more
formally in the following proposition.

7Recall from equation (9) the popt is the weighted average of 1 and E0[smax−s|s≥smax−s̄]
E1[smax−s|s≥smax−s̄]>1, with weights F0 (smax − s̄)

and (1− F0 (smax − s̄)) respectively.
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Proposition 5. [Pessimist’s concern for tail events]: For any given initial equilibrium (γ∗, p∗),
if the pessimist becomes “more concerned about tail events” in the sense that her beliefs changes from
F0 to F̃0, such that: f̃0 (s) < f0 (s) ∀s ∈ [smax − γ∗, smax], then the equilibrium collateral level (γ∗)

increases.

Finally, note that the key to high collateral requirements in the model is the nature – rather than the
degree – of the belief difference between the two agents. The equilibrium level of collateral increases
both when the optimist becomes more pessimistic (which reduces the extent of the disagreement),
and when the pessimist becomes more concerned about the tail events (which increases the extent of
the disagreement). What the market participants disagree about matters more than how much they
disagree per se.

7 Conclusions

We have developed a general equilibrium model of collateralized trading in the CDS market, and shown
that under suitable assumptions, a unique collateral equilibrium exists for trading of contracts between
optimists and pessimists. In this equilibrium, the pessimist buys CDS contracts from the optimist.
Since the seller of a CDS contract is required to post cash as collateral, the optimist buys cash in
the market. In equilibrium, the price of cash will be higher than the non-collateralizable value of the
numeraire consumption good, reflecting its value as collateral.

Our theoretical analysis shows that, in equilibrium, only one CDS contract with a particular level
of collateral γ∗ will be actively traded. Default on the CDS obligations will, in general, happen with
positive probability. The level of collateral γ∗, the price of the CDS contract q(γ∗), and the price of
cash p∗ all depend on the belief disagreement between the optimist and the pessimist. In particular,
the higher the disagreement about the probability of states in which counterparty defaults may occur
(i.e., the left tail of the distribution), the higher the margin requirements γ∗ in equilibrium, and the
higher the CDS price q (γ∗) the buyer is willing to pay.

The methodological framework presented here can thus generalize the key intuition of Fostel and
Geanakoplos (2015), which predicts that observed collateralization levels might be set extremely con-
servatively in order to cover extreme losses in tail events. But unlike Fostel and Geanakoplos (2015),
which restricts attention to economies with two states and the collateral equilibrium without default,
the model in this paper allows for a continuum of states, and a low but strictly positive probability of
default. Furthermore, we show that as the optimist’s beliefs become “less optimistic”, or when the pes-
simist becomes even more concerned about tail events, the equilibrium level of collateralization rises,
such that from the perspective of the market participants the probability of default on CDS contracts
tend to zero.

The model can therefore explain the particularly high collateral levels observed in the data. Viewed
through the lens of this endogenous collateral framework, the empirical results of Capponi et al. (2020)
point to disagreement about the states of the world in which CDS sellers default on their obligations
to the clearinghouse as the fundamental reason why collateral levels are set so high.
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Figure 1: Collateral Equilibrium and Comparative Statics

Panel A illustrates the upward-sloping popt (s̄) schedule (eqn 9, blue line) and the downward-sloping pmc (s̄) schedule
(eqn 11, red line), the intersection of which gives the collateral equilibrium (γ∗, p∗). The popt (s̄) schedule is increasing
in the level of collateralization (s̄) because the pessimist is willing to pay a higher price for a better collateralized CDS,
which in turn increases the collateral value of cash (p) for the optimist. The pmc (s̄) schedule is decreasing in the level
of collateralization (s̄) because even though each unit of a more collateralized CDS contract is worth more, the scarcity
of collateral implies that a fewer number of such contracts can be written and the total amount of funding the optimist
can raise from the pessimist is lower. Therefore, in order for the market of collateral (i.e., cash) to clear, its equilibrium
price (p) must fall as the level of collateralization increases.
Panel B illustrates the case where the optimist becomes “less optimistic”, in the sense that her beliefs changes from F1 (s)

to F̃1 (s) where f1(s1)

f̃1(s1)
> f1(s0)

f̃1(s0)
for every s0, s1 ∈

[
smin, smax

]
and s1 > s0 . When the optimist becomes more pessimistic,

the popt (s̄) schedule shifts down to p̃opt (s̄) (yellow dashed line). Intuitively, this is because trading in CDSs becomes less
attractive for both as the optimist and pessimist’s beliefs converge, thus the optimist’s demand for cash (the required
collateral) falls (weakly) for every level of collateralization. The resulting equilibrium is one where the price of cash (its
collateral value) is lower and the level of collateralization is higher.
Panel C illustrates the case where the pessimist becomes more concerned about the tail risks associated with the
default states {s ∈ S : s < smax − γ∗}. Specifically, the pessimist’s beliefs changes from F0 (s) to F̃0 (s), where
f0 (s) > f̃0 (s) ∀s ∈ [smax − γ∗, smax] . A greater concern for tail events increases the value of highly collateralized CDS
contracts, and decreases the value of less collateralized contracts, so the collateral value of cash for the optimist is higher
only when it is used to back highly collateralized CDS contracts (the popt schedule pivots to p̃opt, yellow upward-sloping
dashed line). The total amount of the numeraire good the optimist can raise through selling such CDS contracts also
rises, pushing up the market clearing price for cash (the pmc schedule shifts up to p̃mc, purple downward-sloping dashed
line). The resulting equilibrium is one where the equilibrium level of collateralization (γ∗) is higher (see Proposition 5).
Note that under the specific beliefs outlined in the illustrative example section of the main text, the equilibrium level of
collateral in Panel C is 0.8251, and the optimist believes default will occur with probability 0.0053.
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Appendices

A Additional discussion of the assumptions

We discuss in great detail some of the model assumptions. The inequality (4) states that the optimist’s
initial endowment is not large enough to purchase the entire supply of cash by issuing only fully
collateralized CDS contracts. To see this, note that the value of one unit of cash to the optimist when
selling contract γ is given by:

1 +
1

γ
[E0 [min {smax − s, γ}]− E1 [min {smax − s, γ}]]

The total amount of funding the optimist can raise by selling riskless CDS contracts γ = smax (the
contract with the maximum collateral) using 1 unit of collateral (i.e. cash) is:

1

smax
E0 [min {smax − s, smax}]

We assume that the optimist’s endowment is not large enough to finance the purchase of cash using
riskless CDS contracts:

n1 +
1

smax
E0 [min {smax − s, smax}] < 1 +

1

smax
[E0 [min {smax − s, smax}]− E1 [min {smax − s, smax}]]

n1 < 1− 1

smax
E1 [min {smax − s, smax}]

= 1− 1

smax
[smax − E1 [s]] =

E1 [s]

smax
.

Since n1 <
E1[s]
smax ≤ 1, this in turn ensures that the optimist cannot simply purchase the entire stock

of cash (normalized to 1) without borrowing from the pessimist.

B. Proof of Proposition 2

Returning to the optimist’s problem under the principal-agent formulation (7), we can substitute the
pessimist’s participation constraint into the objective function to reduce the dimension of the choice
variable to one:

max
γ∈R+

n1(
p− 1

γE0 [min {smax − s, γ}]
) [1− 1

γ
E1 [min {smax − s, γ}]

]
(A.1)

⇔ max
γ∈R+

n1R
CDS
1 (γ) ,
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where we define RCDS1 (γ) as the expected return to the optimist who buys one unit of cash and uses
it to back the sale of the CDS contract:

RCDS1 (γ) :=
1− 1

γE1 [min {smax − s, γ}]
p− 1

γE0 [min {smax − s, γ}]
=

γ − E1 [min {smax − s, γ}]
pγ − E0 [min {smax − s, γ}]

(A.2)

(the numerator is the expected t = 1 payoff from purchasing the cash whilst simultaneously selling the
CDS; the denominator is the down payment required to purchase the cash).

Note that since Ei [min {smax − s, γ}] ≡ γFi (smax − γ) +
∫ smax
smax−γ (smax − s) dFi (s), we have

dEi [min {smax − s, γ}]
dγ

= Fi (smax − γ)− γfi (smax − γ)− (−1) (smax − (smax − γ)) fi (smax − γ)

= Fi (smax − γ) .

Therefore, the derivative of RCDS1 (γ) with respect to λ can be expressed as:

dRCDS1 (γ)

dγ
=

(1− F1 (smax − γ)) (pγ − E0 [min {smax − s, γ}])
(pγ − E0 [min {smax − s, γ}])2

− (p− F0 (smax − γ)) (γ − E1 [min {smax − s, γ}])
(pγ − E0 [min {smax − s, γ}])2

=
1

(pγ − E0 [min {smax − s, γ}])
[
(1− F1 (smax − γ))− (p− F0 (smax − γ))RCDS1 (γ)

]
.

The first order condition (FOC) for the optimist’s problem simplifies to:

(1− F1 (smax − s̄)) = (p− F0 (smax − s̄)) s̄− E1 [min {smax − s, s̄}]
ps̄− E0 [min {smax − s, s̄}]

.

Re-arranging and simplifying notation (let Fi := Fi (smax − s̄)) gives:

p =
(1− F1)E0 [min {smax − s, s̄}] + F0E1 [min {smax − s, s̄}]− s̄F0

E1 [min {smax − s, s̄}]− s̄F1

=
(1− F1)

[
s̄F0 +

∫ smax
smax−s̄ (smax − s) f0 (s) ds

]
+ F0

[
s̄F1 +

∫ smax
smax−s̄ (smax − s) f1 (s) ds

]
− s̄F0[

s̄F1 +
∫ smax
smax−s̄ (smax − s) f1 (s) ds

]
− s̄F1

= F0 +
(1− F1)

∫ smax
smax−s̄ (smax − s) f0 (s) ds∫ smax

smax−s̄ (smax − s) f1 (s) ds

= F0 +
(1− F1) (1− F0)E0 [smax − s|s ≥ smax − s̄]

(1− F1)E1 [smax − s|s ≥ smax − s̄]

= F0 (smax − s̄) + (1− F0 (smax − s̄)) E0 [smax − s|s ≥ smax − s̄]
E1 [smax − s|s ≥ smax − s̄]

=: popt (s̄) ,

as required.
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Lemma 1. The price of cash (i.e., the collateral) is strictly increasing in the optimist’s desired level
of collateralization: dpopt(s̄)

ds̄ > 0 for s̄ ∈
(
smin, smax

)
.

Proof. We first evaluate the following derivative

d

ds̄
Ei [smax − s|s ≥ smax − s̄]

=
d

ds̄

(
1

1− Fi (smax − s̄)

∫ smax

smax−s̄
(smax − s) f1 (s) ds

)
=

(s̄fi (smax − s̄)) (1− Fi (smax − s̄))− fi (smax − s̄)
∫ smax
smax−s̄ (smax − s) f1 (s) ds

(1− Fi (smax − s̄))2

=
s̄fi (smax − s̄)− fi (smax − s̄)Ei [smax − s|s ≥ smax − s̄]

1− Fi (smax − s̄)

=
fi (smax − s̄)

1− Fi (smax − s̄)
(s̄− Ei [smax − s|s ≥ smax − s̄]) .

Differentiating popt (s̄) (and using shorthand notations: fi := fi (smax − s̄), Fi := Fi (smax − s̄), and
Ei := Ei [smax − s|s ≥ smax − s̄]) yields:

dpopt (s̄)

ds̄
= −f0 +

[
f0E0 + (1− F0)

(
f0

1−F0
(s̄− E0)

)]
[E1]−

[
f1

1−F1
(s̄− E1)

]
[(1− F0)E0]

(E1)2

= −f0 +
s̄f0

E1
− s̄f1

1− F0

1− F1

E0

(E1)2 + f1
1− F0

1− F1

E0

E1

= f0

(
s̄

E1
− 1

)
+ f1

1− F0

1− F1

E0

E1

(
1− s̄

E1

)
=

(
s̄

E1
− 1

)
︸ ︷︷ ︸

>0

(
f0 − f1

∫ smax
smax−s̄ (smax − s) f0 (s) ds∫ smax
smax−s̄ (smax − s) f1 (s) ds

)
︸ ︷︷ ︸

>0

,

where the first inequality follows from s̄ > E1 [smax − s|s ≥ smax − s̄] ∀s̄ ∈
(
smin, smax

)
, and the

second inequality holds by Assumption A2:

f0 (smax − s̄)
∫ smax

smax−s̄
(smax − s) f1 (s) ds− f1

∫ smax

smax−s̄
(smax − s) f0 (s) ds

=

∫ smax

smax−s̄
(smax − s) [f0 (smax − s̄) f1 (s)− f1 (smax − s̄) f0 (s)] ds

>0 since by A2:
f1 (s)

f0 (s)
>
f1 (smax − s̄)
f0 (smax − s̄)

∀s > (smax − s) .

Lemma 2. The optimist’s perceived interest rate on the CDS is strictly decreasing in the level of
collateral s̄: d(1+rper1 (s̄))

ds̄ < 0 for s̄ ∈
(
smin, smax

)
.
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Proof. Recall from equation (10) that the perceived interest rate is defined as 1+rper1 (s̄) := E1[min{smax−s,s̄}]
E0[min{smax−s,s̄}] .

Differentiating with respect to s̄ (using the result dEi[min{smax−s,s̄}]
ds̄ = Fi (smax − s̄)) yields:

d (1 + rper1 (s̄))

ds̄
=
F1 (smax − s̄)E0 [min {smax − s, s̄}]− F0 (smax − s̄)E1 [min {smax − s, s̄}]

(E0 [min {smax − s, s̄}])2 .

Because the denominator in the above expression is always positive, to prove that d(1+rper1 (s̄))
ds̄ < 0 is

enough to show that for s̄ ∈
(
smin, smax

)
, we have E1[min{smax−s,s̄}]

E0[min{smax−s,s̄}] >
F1(smax−s̄)
F0(smax−s̄) . Proceed as follows:

E1 [min {smax − s, s̄}]
E0 [min {smax − s, s̄}]

=
s̄F1 (smax − s̄) +

∫ smax
smax−s̄ (smax − s) f1 (s) ds

s̄F0 (smax − s̄) +
∫ smax
smax−s̄ (smax − s) f0 (s) ds

>

F1(smax−s̄)
F0(smax−s̄) s̄F0 (smax − s̄) +

∫ smax
smax−s̄ (smax − s) f0 (s) F1(s)

F0(s)ds

s̄F0 (smax − s̄) +
∫ smax
smax−s̄ (smax − s) dF0 (s)

>

F1(smax−s̄)
F0(smax−s̄) s̄F0 (smax − s̄) + F1(smax−s̄)

F0(smax−s̄)
∫ smax
smax−s̄ (smax − s) f0 (s) ds

s̄F0 (smax − s̄) +
∫ smax
smax−s̄ (smax − s) dF0 (s)

=
F1 (smax − s̄)
F0 (smax − s̄)

,

where the first inequality follows from Assumption A2 (f0 (s) F1(s)
F0(s) < f1 (s)), and the second inequality

above is implied from the previous inequality ( dds
F0(s)
F1(s) < 0) .

C. Proof of Proposition 3

In the main body, we have argued that the principal-agent equilibrium is given by the intersection
of the optimality condition popt (s̄) = F0 (smax − s̄) + (1− F0 (smax − s̄)) E0[smax−s|s>smax−s̄]

E1[smax−s|s>smax−s̄] derived
from the optimist’s optimization problem, and the market clearing condition for cash: pmc (s̄) =

n1 + 1
s̄E0 [min {smax − s, s̄}]. In the proof of Proposition 2, we have also established that popt (s̄) is

strictly increasing in s̄ over the interval
(
smin, smax

)
. It remains to show that (i) pmc (s̄) is strictly

decreasing in s̄ over s̄ ∈
(
smin, smax

)
; and (ii) the boundary conditions are such that an intersection

exists: pmc
(
smin

)
> popt (smax) and pmc (smax) < popt (smax).

1. Show that pmc (s̄) is strictly decreasing in s̄ over s̄ ∈
(
smin, smax

)
.

Using that pmc (s̄) = n1 + 1
s̄E0 [min {smax − s, s̄}], differentiating with respect to s̄ yields:

dpmc (s̄)

ds̄
=
F0 (smax − s̄) s̄− E0 [min {smax − s, s̄}]

s̄2

=
s̄F0 (smax − s̄)−

(
s̄F0 (smax − s̄) +

∫ smax
smax−s̄ sdF0

)
s̄2

= −
∫ smax
smax−s̄ sdF0

s̄2
< 0 ∀s̄ ∈

(
smin, smax

)
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2. Consider the boundary conditions for pmc (s̄) and popt (s̄):

(a) For s̄ = smax, we have:

pmc (smax) = n1 +

(
smax − E0 [s]

smax

)
<
E1 [s]

smax
+

(
smax − E0 [s]

smax

)
by assumption A1

= 1 +
E0 [smax − s]− E1 [smax − s]

smax

< 1 +
E0 [smax − s]− E1 [smax − s]

E1 [smax − s]

=
E0 [smax − s]
E1 [smax − s]

= popt (smax) .

(b) For s̄ = smin ≡ 0, using L’Hospital’s rule, we have:

lim
s̄↓0

pmc (s̄) = n1 + lim
s̄↓0

d
ds̄ (E0 [min {smax − s, s̄}])

d
ds̄ (s̄)

= n1 + lim
s̄↓0

F0 (smax − s̄)
1

= n1 + 1,

and

lim
s̄↓0

popt (s̄) = lim
s̄↓0

[
F0 (smax − s̄) + (1− F0 (smax − s̄)) E0 [smax − s|s ≥ smax − s̄]

E1 [smax − s|s ≥ smax − s̄]

]
= lim

s̄↓0
F0 (smax − s̄) + lim

s̄↓0

∫ smax
smax−s̄ (smax − s) f0 (s) ds

1
1−F1(smax−s̄)

∫ smax
smax−s̄ (smax − s) f1 (s) ds

= 1 + lim
s̄↓0

(1− F1 (smax − s̄)) lim
s̄↓0

d
ds̄

∫ smax
smax−s̄ (smax − s) f0 (s) ds

d
ds̄

∫ smax
smax−s̄ (smax − s) f1 (s) ds

= 1 + 0× lim
s̄↓0

s̄f0 (smax − s̄)
s̄f1 (smax − s̄)

= 1 + 0× f0 (smax)

f1 (smax)

= 1,

so
pmc

(
smin

)
= n1 + 1 > 1 = popt

(
smin

)
3. Because popt (γ) and pmc (γ) are both continuous functions, by the intermediate value theorem

they intersect at some interior point γ∗ ∈
(
smin, smax

)
and p∗ ∈ [1, E0[smax−s]

E1[smax−s]). Since pmc (s̄) is
strictly decreasing, and popt (s̄) is strictly increasing, the intersection is unique.
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D. Proof of Proposition 1

The existence of a unique Principal-Agent equilibrium has been shown in the proof of propositions 2
and 3. In this section, we show that a collateral general equilibrium as defined in the main body exists
and is equivalent to the principal-agent equilibrium.

1. Step 1: Simplifying observations for solving the collateral general equilibrium:

(a) Without loss of generality, we can show that the equilibrium price of cash satisfies p̂ ∈[
1, 1 + [E1[s]−E0[s]]

smax

)
. Since cash guarantees a safe return of 1, its equilibrium price will

never fall below 1. The optimist attach a higher value to cash because, by using cash as
collateral when selling CDS contracts indexed by the collateral requirement γ, the optimist
also gains the difference in expected delivery:

1

γ
[E0 [min {smax − s, γ}]− E1 [min {smax − s, γ}]] .8

This difference in beliefs is fully exploited when the CDS is fully collateralized at γ = smax.
So the maximum price an optimist is willing to pay for cash is equal to:

1 +
1

smax
[E0 [min {smax − s, smax}]− E1 [min {smax − s, smax}]] = 1 +

[E1 [s]− E0 [s]]

smax
,

at which point the optimist would also weakly prefer to hold the illiquid asset instead.
[E1[s]−E0[s]]

smax can be interpreted as the upper bound on the equilibrium collateral value for
cash. For the rest of the proof, We restrict attention to the more interesting cases where p̂
is strictly less than 1 + [E1[s]−E0[s]]

smax .

(b) Note that each agent’s optimization problem (3) is linear in the objective variables, thus their
value functions will take the form vini, where vi denotes the return on agent i’s endowment
ni.

(c) Since the agents can always just hold their endowment of the illiquid asset or buy cash in
order to sell the fully collateralized CDS contract γ = smax, we must have:

vi ≥ max

{
1,

1− 1
smaxEi [min {smax − s, smax}]

p− 1
smaxE0 [min {smax − s, smax}]

}
∀i = {0, 1} . (A.3)

Above, 1 represents the rate of return on the illiquid asset; and
(

1− 1
smax

Ei[min{smax−s,smax}]
p− 1

smax
E0[min{smax−s,smax}]

)
represents the expected rate of return on buying cash to use as collateral in selling the CDS
contract γ = smax. For the latter, the expected payoff in the second period is 1 (from the

8Note the fact that 1
γ

[E0 [min {smax − s, γ}]− E1 [min {smax − s, γ}]] is maximized at γ = smax does not imply
that the optimist will always want to sell the fully collateralised CDS at any p. The popt (s̄) curve plots the optimal
collateral level s̄ for the optimist at any given price p. (Derived from the interior solution to maxγ R, where R :=
1− 1

γ
E1[min{smax−s,γ}]

p− 1
γ
E0[min{smax−s,γ}] ).
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cash) minus 1
smaxEi [min {smax − s, smax}] (the expected delivery on the CDS contract γ).

The down-payment on this transaction is
(
p− 1

smaxE0 [min {smax − s, smax}]
)
, where p is

the price paid for the unit of cash, and 1
smaxE0 [min {smax − s, smax}] is the amount raised

from selling the CDS to the pessimist who values it the most.

(d) Summing over the two agents’ budget constraints (1), and imposing the market clearing
conditions in equilibrium (holdings of CDS contracts must cancel out and the sum of total
cash holdings is normalized to 1) yields:

a0 + a1 + p̂× 1 = n0 + n1

Recall that by Assumption A1 n0 + n1 >
E0[smax−s]
E1[smax−s] = 1 + E1[s]−E0[s]

E1[smax−s] > 1 + [E1[s]−E0[s]]
smax ,

so p̂ ∈ [1, 1 + [E1[s]−E0[s]]
smax ] implies that a0 + a1 > 0 (i.e. one or more agents must hold the

illiquid asset in equilibrium).

(e) Since p < 1+ [E1[s]−E0[s]]
smax , we know from equation (A.3) that v1 > 1. Therefore, the pessimist

must be the one holding the illiquid asset in the collateral equilibrium, which gives us v0 = 1.

(f) Lastly, without loss of generality, CDS contracts with γ > smax will not be used in equilib-
rium (such contracts tie down a larger amount of collateral without a compensating increase
in price).

2. Agents’ bid and ask prices for CDS contracts:

(a) An agent’s bid price is the price that would make her indifferent between buying the CDS
contract and simply receiving the equilibrium value per net worth vi , so:

qbid0 (γ) =
E0 [min {smax − s, γ}]

v0
= E0 [min {smax − s, γ}]

> qbid1 (γ) =
E1 [min {smax − s, γ}]

v1
(A.4)

(b) An agent’s ask price for the CDS contract γ is the price that would make the trader indiffer-
ent between taking a negative position in the CDS γ and simply receiving the equilibrium
value vi, so:

v0 =
1− 1

γE0 [min {smax − s, γ}]
p− 1

γ q
ask
0 (γ)

= 1

v1 =
1− 1

γE1 [min {smax − s, γ}]
p− 1

γ q
ask
1 (γ)

> 1 (A.5)

(c) Market clearing for CDS contracts (µ̂+
1 + µ̂+

0 = µ̂−1 + µ̂−0 ) implies:

min
i
qaski (γ) ≥ q (γ) ≥ max

i
qbidi (γ) ∀γ
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(Suppose maxi q
bid
i (γ) > q (γ), then the buyer wants to buy an infinite amount, but the seller

can only sell a finite amount due to the collateral constraint. Moreover, it cannot occur that
q (γ) > max

{
mini q

ask
i (γ) ,maxi q

bid
i (γ)

}
, so we must have mini q

ask
i (γ) ≥ q (γ)).

(d) A CDS contract is traded in positive quantities only if

qaski (γ̂) = q (γ̂) = qbidj (γ̂) for some {i, j} = {0, 1} .

(e) Claim the pessimist’s ask prices are always higher than optimist’s bid prices:

qask0 (γ) = γ (p− 1) + E0 [min {smax − s, γ}] from eqn (A.5)

> E0 [min {smax − s, γ}] since p > 1

= qbid0 (γ) > qbid1 (γ) from eqn , (A.4)

so there are no traded CDS contracts in which the optimist buy and the pessimist sell.

(f) The equilibrium prices of CDS contracts are therefore:q (γ̂) = qbid0 (γ̂) = qask1 (γ̂) for each γ̂ with positive trade

q (γ) ∈
[
maxi q

bid (γ) ,mini q
ask (γ)

]
for each γ.

(A.6)

3. Characterize the equilibrium in CDS markets for a given price for cash p ∈ [1, E0[smax−s]
E1[smax−s]).

• The optimist faces quasi-equilibrium prices for all CDS contracts (even those that are not
positively traded in equilibrium):

q̃ (γ) = qbid0 (γ) = E0 [min {smax − s, γ}] (A.7)

• Given these quasi-equilibrium prices, optimists solve the following optimization problem:

v1n1 = max
c1≥0,µ−1

c1 −
∫
γ∈BCDS

1

γ
E1 [min {smax − s, γ}] dµ−1 (A.8)

s.t. pc1 −
∫
γ∈BCDS

1

γ
E0 [min {smax − s, γ}] dµ−1 = n1 [budget constraint] (A.9)∫

γ∈BCDS

1

γ
dµ−1 ≤ c1 [collateral constraint] (A.10)

• Since v1 > 1, the collateral constraint binds in equilibrium. Let λ1 denote the Lagrangian
multiplier for the collateral constraint. v1 will correspond to the multiplier for the budget
constraint.
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• The FOCs for c1 and µ−1 yields:

1 + λ1 = v1p

v1
1

γ
E0 [min {smax − s, γ}] ≤ 1

γ
E1 [min {smax − s, γ}] + λ1 with equality only if γ ∈ supp

(
µ−1
)
.

• Combining the FOCs yield:

v1p = 1 + λ1

≥ 1 + v1
1

γ
E0 [min {smax − s, γ}]− 1

γ
E1 [min {smax − s, γ}]

⇒ v1 ≥
1− 1

γE1 [min {smax − s, γ}]
p− 1

γE0 [min {smax − s, γ}]
=: RCDS1 (γ) with equality only in γ ∈ supp

(
µ−1
)
.

• As per the proof of Proposition 2, RCDS1 (γ) has a unique maximum characterized by
popt (γ = s̃). So, again, the unique collateral-GE is pinned down by the intersection between
popt (s̄) and the market clearing condition for cash: pmc (s̃) = n1 + 1

s̄E0 [min {smax − s, s̃}],
s.t. the equilibrium collateral level γ̂ and the price of cash p̂ satisfies:

p̂ = popt (γ̂) = pmc (γ̂)

4. It follows that the unique general equilibrium is equivalent to the principal-agent equilibrium.

E. Proof of Proposition 4

We prove the case where the optimist becomes ’more pessimistic’. Let g1 (s) := f1(s)
1−F1(smax−s̄) ∀s ∈

[smax − s̄, smax] , ∀s̄ ∈ [smin, smax) and g̃1 (s) := f̃1(s)

1−F̃1(smax−s̄) ∀s ∈ [smax − s̄, smax) . Then, by

Assumption A2, g (·) and g̃ (·) must also satisfy the monotone likelihood ratio condition: d
ds

(
f1

f̃1

)
>

0 ∀s ∈ S ⇒ d
ds

(
g1

g̃1

)
> 0 ∀s ≥ (smax − s̄). This in turn implies Ẽ1 [s|s > smax − s̄] < E1 [s|s ∈ smax − s̄]

∀s̄ ∈
(
smin, smax

)
, so the upward sloping popt curve shifts down when the optimist becomes “more pes-

simistic”. The converse of the proposition follows from the same logic.

F. Proof of Proposition 5

We show that a sufficient (but not necessary) condition for the equilibrium collateral level to increase
is for the pessimist to attach sufficiently larger probability weights to the default states.

Let F0 (s) and F̃0 (s) denote the initial and the new beliefs of the pessimist respectively. For brevity,
let Ẽ0 [x] := EF̃0

[x]; p̃opt (s̄) := F̃0 (smax − s̄) +
(

1− F̃0 (smax − s̄)
)
Ẽ0[smax−s|s>smax−s̄]
E1[smax−s|s>smax−s̄] ; and p̃

mc (s̄) :=

n1 + 1
s̄ Ẽ0 [min {smax − s, s̄}]. Define, respectively, the initial and the new equilibrium collateral levels
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γ∗ and γ∗∗ implicitly as:

popt (γ∗) = pmc (γ∗)

p̃opt (γ∗∗) = p̃mc (γ∗∗) .

Then, given that p̃mc is strictly decreasing, popt is strictly increasing, and the two curves intersects
within

(
smin, smax

)
(see proofs for Propositions 2 and 3), we have that γ∗∗ > γ∗ iff:

p̃mc (γ∗) > p̃opt (γ∗)

⇔ p̃mc (γ∗)− pmc (γ∗) > p̃opt (γ∗)− popt (γ∗)

With a little bit of algebra, we can show that:

p̃mc (γ∗)− pmc (γ∗)

=
1

γ∗

[
Ẽ0 [min {smax − s, γ∗}]− E0 [min {smax − s, γ∗}]

]
=

1

γ∗

[
γ∗F̃0 +

∫ smax

smax−γ∗
(smax − s) f̃0 (s) ds− γ∗F0 −

∫ smax

smax−γ∗
(smax − s) f0 (s) ds

]
=
(
F̃0 − F0

)
+

1

γ∗

[∫ smax

smax−γ∗
(smax − s) f̃0 (s) ds−

∫ smax

smax−γ∗
(smax − s) f0 (s) ds

]
,

and

p̃opt (γ∗)− popt (γ∗)

=F̃0 +
(

1− F̃0

) Ẽ0 [smax − s|s > smax − γ∗]
E1 [smax − s|s > smax − γ∗]

· · · −
[
F0 + (1− F0)

E0 [smax − s|s > smax − γ∗]
E1 [smax − s|s > smax − γ∗]

]

=
(
F̃0 − F0

)
+

[∫ smax
smax−γ∗ (smax − s) f̃0 (s) ds−

∫ smax
smax−γ∗ (smax − s) f0 (s) ds

]
E1 [smax − s|s > smax − γ∗]

.

Taken together, we obtain:

[p̃mc (γ∗)− pmc (γ∗)]−
[
p̃opt (γ∗)− popt (γ∗)

]
=

[
1

γ∗
− 1

E1 [smax − s|s > smax − γ∗]

] [∫ smax

smax−γ∗
(smax − s) f̃0 (s) ds−

∫ smax

smax−γ∗
(smax − s) f0 (s) ds

]
=

[
1

E1 [smax − s|s > smax − γ∗]
− 1

γ∗

]
︸ ︷︷ ︸

>0

[∫ smax

smax−γ∗
(smax − s)

(
f0 (s)− f̃0 (s)

)
ds

]
(A.11)

Therefore, whether the collateral requirement in the new equilibrium increases (γ∗∗ > γ∗) depends
on whether the second term

∫ smax
smax−γ̂ (smax − s)

(
f0 (s)− f̃0 (s)

)
ds is positive, for which a sufficient
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condition is that f0 (s) > f̃0 (s) ∀s ∈ [smax − γ∗, smax).
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