Central Counterparty and Collateral Requirements

Jessie Jiaxu Wang Arizona State University Agostino Capponi Columbia Hongzhong Zhang Columbia

Non-bank Financial Sector and Financial Stability conference

4th October, 2019, LSE

- Counterparty failures in OTC derivatives market can cause contagion and systemic crisis, as seen in 2008.
- To manage counterparty risk, G20 leaders mandated the central clearing of standardized OTC derivatives-credit default swaps and interest rate swaps.
 - Dodd-Frank, European Market Infrastructure Regulation
 - Clearing rate is 45% for CDS and 62% for IRS (CFTC, 2018)
- CCPs act as the buyer to every seller and the seller to every buyer.
- CCPs guarantee terms of trades by pooling the counterparty risks.

Bilateral Trading Markets

Centrally Cleared Markets

Typical CCP Default Waterfall

Lack of Global Standards for Collateral Requirements

- While CCPs are systemically important, the regulation of collateral is still debatable: lack of global standards (Cunliffe, 2018; Duffie, 2019)
- Initial margin is usually set at some Value-at-Risk level.
- Default fund is subject to "Cover 2"—total default funds should cover the shortfalls of the two largest clearing members (CPSS-IOSCO)

- adopted by major CCPs: ICE Clear Credit, CME, and LCH

	Asia	Australia	Europe	North America	South America
Number of CCPs	27	1	20	12	1
Funded resources %					
Initial margin	69.2	92.8	74.0	85.2	99.6
Default fund	18.7	4.5	25.3	13.5	0.2
CCP capital	12.2	2.7	0.7	1.3	0.2

IN Q: How to regulate collateral requirements for central clearing?

This Paper

The first framework for determining optimal collateral requirements:

1 Highlight distinct role of default funds compared to initial margins

- allows for loss-mutualization \Rightarrow valuable to CCP's resilience
- distorts members' risk-taking incentive ex-ante
- Initial margins are more cost-effective to align members' incentives.

2 Determine a default fund rule to alleviate the inefficiency

- likely more stringent than "Cover 2"
- cover a fraction of members' shortfalls \Rightarrow "Cover x%"
- **3** Optimal regulation of initial margins and default fund
 - if funding collateral is more costly \Rightarrow more initial margins
 - if recapitalizing the CCP is more costly \Rightarrow more default funds

Model

- $\bullet~N$ risk-neutral CDS dealers, a continuum of risk-averse CDS buyers
- t = 0: buyers and dealers trade CDS; buyers pay a unit price
 - dealers choose $a = \{ risky (r), safe (s) \}, a is unobservable$

$$1 \xrightarrow{-q_a} \qquad R_a - p_c D$$

 $\overrightarrow{q_a}$ 0 \Rightarrow default

- p_c is probability of credit event; $R_r > R_s > D$ but $q_r > q_s$
- Assume safe project has higher expected return,
- → Safe project is socially optimal.

investment

• t = 1: i.i.d. payoffs are realized, insurance payments D are made.

- CCP guarantees insurance payment D to buyers with certainty.
- t = 0: CCP collects collateral from member: initial margins I ∈ [0, D], default fund F ∈ [0, D − I]. Members incur a funding cost β×(I + F).
- Cover 2: default fund pool covers shortfalls of at least two members:

$$NF \ge 2(D-I)$$

- CCP uses end-of-waterfall resources when $\mathcal{N}_d(D-I) > NF$ and incurs a linear cost α .
- A technical assumption: $\beta \geq \alpha p_c \mathbb{P}^r(\mathcal{N}_d > 2)$.

Centrally Cleared Market: default waterfall

Loss Mutualization Mechanism

Conditioning on the credit event occurs, we analyze member i's payoff:

- Investment fails with probability q_{a_i}
 - payoff is 0: i's collateral covers partially obligation to buyer
- Investment succeeds with probability $1 q_{a_i}$
 - receives investment return, pays fully to buyer, recovers initial margins
 - its default fund is used to absorb shortfall of \mathcal{N}_d defaulting members
- Member i chooses $a \in \{r,s\}$ to maximize expected payoff

$$\max_{a}(1-q_{a})\left[(1+f)R_{a_{i}}-D+I+\mathbb{E}\left(F-\frac{\mathcal{N}_{d}(D-I-F)}{N-\mathcal{N}_{d}}\right)^{+}\right]-(1+\beta)(I+F)$$
 remaining default fund

The equilibrium consists of members' risk choice and the collateral requirement:

- Given collateral and others' risk choice, each member chooses riskiness to maximize profit.
- Given members' risk choice, the regulator chooses collateral satisfying Cover 2 to maximize total value of all market participants.

Members' Risk Choice

Proposition: The equilibrium risk profiles depend on collateral I and F.

- 1 Excessive risk-taking can happen.
- **2** Given I, higher F increases the recovery value in default fund account,
- \rightarrow makes survival more attractive and discourages risk-taking.
- **3** $\hat{F}(I)$ is piecewise linear, strictly decreasing in I with $\partial \hat{F}/\partial I < -1$.
- \rightarrow when initial margin decreases by 1, default fund increases more than 1.
- \rightarrow initial margin is more cost-effective in aligning members' incentives.

Optimal Cover Rule for Default Fund

Proposition: Given initial margin, the optimal default fund subject to "Cover 2" is

$$F^{e}(I) = \begin{cases} \hat{F}(I) & W^{s}(\hat{F}(I)) \geq W^{r}(\frac{2(D-I)}{N}) \\ \frac{2(D-I)}{N} & \text{otherwise} \end{cases}$$

A Generalized "Cover x%" Rule

"Cover x%" Rule: $x(I;N) = \frac{F^e(I;N)}{D-I}$

- Optimal cover number Nx(I; N) increases with N; "Cover x%" has little variation with N.
- Implications: cover a fixed fraction rather than a fixed number.
 - The rule should account for the number of clearing members.
 - ICE and LCH have more than 20 members, with entries and exits.

Optimal Collateral Requirements

Proposition: The regulator's equilibrium choice of the collateral requirements $\left(I^e,F^e\right)$ is

• Case 1: $\beta > p_c \alpha$

 \Rightarrow collateral is more costly \Rightarrow More initial margins

Optimal Collateral Requirements

Proposition: The regulator's equilibrium choice of the collateral requirements $\left(I^e,F^e\right)$ is

$$(I^e,F^e) = \begin{cases} \left(I^*,\hat{F}(I^*)\right) & \text{if } W^s(I^*;\hat{F}(I^*)) \geq W^r(0;\frac{2D}{N}) \\ \left(0,\frac{2D}{N}\right) & \text{otherwise} \end{cases}$$

• Case 2: $\beta < p_c \alpha$

 $\Rightarrow\,$ end-of-waterfall is more costly $\Rightarrow\,$ More default fund

Optimal Collateral Requirements

Proposition: The regulator's equilibrium choice of the collateral requirements $\left(I^e,F^e\right)$ is

• Case 3:
$$\beta = p_c \alpha$$

 \Rightarrow costs are the same \Rightarrow Indifferent

Robustness 1: convex end-of-waterfall cost

In systemic events when multiple members default, the CCP faces increasing marginal costs to raise end-of-waterfall resources:

$$\alpha \left((\mathcal{N}_d(D-I) - NF)^+ \right)^2$$

- The trade-off between initial margins and default fund is robust.
- Nonlinearity allows to pin down interior levels of collateral.

Robustness 2: heterogeneity in size

CCPs' exposures tend to concentrate in a few large clearing members. Suppose *i* is *K* times (K > 1) the size of others: KD, K(1 + f)R

- The trade-off between initial margins and default fund is robust.
- Required collateral normalized by size is lower for a big member.
- Big member finds it easier to internalize externalities.

- The lack of global standards calls for a framework for regulating collateral.
- Optimal collateral is the cost-effective combination of *I* and *F* that ensures CCP's resilience and aligns members' risk-taking incentives.
- Current low-interest-rate environment and the inverted yield curve \Rightarrow more default funds
- Results challenge existing practices, e.g., initial margins should be lower when it is more expensive to fund collateral.

Policy Implications: irreplaceable role of default fund

Can default fund be replaced entirely by initial margins?

Can default fund be replaced entirely by initial margins?

Proposition: No. Posting 100% collateral as margin gives a lower total value and a lower member profit than the optimal collateral $(I^*, \hat{F}(I^*))$.

- Loss-mutualization mechanism is cheaper.
- A fully collateralized position in a bilateral trading market also eliminates counterparty risk ⇒ members prefer CCP than OTC.
- Central clearing generates positive social surplus under optimal regulated collateral.

- Collateral tends to be depleted during market stress when recapitalization cost is high ⇒ CCP's recapitalization relates to systemic risk.
- Our proposed optimal collateral rule minimize the probability of CCP recapitalization, and thus systemic risk.

Proposition: In the limiting case of a large CCP network, the expected losses at the CCP under the optimal collateral requirements $(I^*, \hat{F}(I^*))$ converges to 0.

- This paper develops the first framework for collateral in central clearing.
 - Default fund allows for members' risk-sharing ex-post, but distorts risk-taking incentives ex-ante.
 - Initial margin is more cost-effective to align incentives, but less valuable for CCP resilience.
- We propose optimal collateral requirements.
 - Cover 2 is suboptimal, especially in low funding cost environments
 - Load more on default fund when CCP recapitalization is costly.
 - Load more on initial margins when collateral is costly.