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OA.A Proofs, Comparative Statics, and Discussion of

Assumptions of Theoretical Model

OA.A.1 Additional discussion of the assumptions

This section discusses in greater detail some of the assumptions in the model. The first in-

equality (A.2) states that the optimist’s initial endowment is not large enough to purchase the

entire supply of cash by issuing only fully collateralized CDS contracts.

To see this, note that the value of one unit of cash to the optimist when selling contract γ

is given by:

1 + 1
γ

[E0 [min {smax − s, γ}]− E1 [min {smax − s, γ}]]

The total amount of funding the optimist can raise by selling riskless CDS contracts γ = smax

(the contract with the maximum collateral) using 1 unit of collateral (i.e. cash) is:

1
smax

E0 [min {smax − s, smax}]

It is assumed that the optimist’s endowment is not large enough to finance the purchase of

cash using riskless CDS contracts:

n1 + 1
smax

E0 [min {smax − s, smax}] < 1 + 1
smax

[E0 [min {smax − s, smax}]− E1 [min {smax − s, smax}]]

n1 < 1− 1
smax

E1 [min {smax − s, smax}]

= 1− 1
smax

[smax − E1 [s]] = E1 [s]
smax

Since n1 <
E1[s]
smax ≤ 1, this in turn ensures that the optimist cannot simply purchase the

entire stock of cash (normalized to 1) without borrowing from the pessimist.
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OA.A.2 Proof of Proposition 2

Returning to the optimist’s problem under the principal-agent formulation (A.4), one can sub-

stitute the pessimist’s participation constraint into the objective function to reduce dimension

of the choice variable to one:

max
γ∈R+

n1(
p− 1

γ
E0 [min {smax − s, γ}]

) [1− 1
γ
E1 [min {smax − s, γ}]

]

⇔ max
γ∈R+

n1R
CDS
1 (γ)

where RCDS
1 (γ) is defined as the expected return to the optimist who buys one unit of cash

and uses it to back the sale of the CDS contract:

RCDS
1 (γ) :=

1− 1
γ
E1 [min {smax − s, γ}]

p− 1
γ
E0 [min {smax − s, γ}] = γ − E1 [min {smax − s, γ}]

pγ − E0 [min {smax − s, γ}]

(the numerator is the expected t = 1 payoff from purchasing the cash whilst simultaneously

selling the CDS; the denominator is the down payment required to purchase the cash).

Note that since Ei [min {smax − s, γ}] ≡ γFi (smax − γ) +
∫ smax

smax−γ (smax − s) dFi (s), it holds

dEi [min {smax − s, γ}]
dγ

= Fi (smax − γ)− γfi (smax − γ)− (−1) (smax − (smax − γ)) fi (smax − γ)

= Fi (smax − γ)

Therefore the derivative of RCDS
1 (γ) with respect to λ can be expressed as:

dRCDS
1 (γ)
dγ

= (1− F1 (smax − γ)) (pγ − E0 [min {smax − s, γ}])
(pγ − E0 [min {smax − s, γ}])2

− (p− F0 (smax − γ)) (γ − E1 [min {smax − s, γ}])
(pγ − E0 [min {smax − s, γ}])2

= 1
(pγ − E0 [min {smax − s, γ}])

[
(1− F1 (smax − γ))− (p− F0 (smax − γ))RCDS

1 (γ)
]
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The first order condition for the optimist’s problem simplifies to:

(1− F1 (smax − s̄)) = (p− F0 (smax − s̄)) s̄− E1 [min {smax − s, s̄}]
ps̄− E0 [min {smax − s, s̄}]

Re-arranging and simplifying notation (let Fi := Fi (smax − s̄)) gives:

p = (1− F1)E0 [min {smax − s, s̄}] + F0E1 [min {smax − s, s̄}]− s̄F0

E1 [min {smax − s, s̄}]− s̄F1

=
(1− F1)

[
s̄F0 +

∫ smax

smax−s̄ (smax − s) f0 (s) ds
]

+ F0
[
s̄F1 +

∫ smax

smax−s̄ (smax − s) f1 (s) ds
]
− s̄F0[

s̄F1 +
∫ smax

smax−s̄ (smax − s) f1 (s) ds
]
− s̄F1

= F0 + (1− F1)
∫ smax

smax−s̄ (smax − s) f0 (s) ds∫ smax

smax−s̄ (smax − s) f1 (s) ds

= F0 + (1− F1) (1− F0)E0 [smax − s|s ≥ smax − s̄]
(1− F1)E1 [smax − s|s ≥ smax − s̄]

= F0 (smax − s̄) + (1− F0 (smax − s̄)) E0 [smax − s|s ≥ smax − s̄]
E1 [smax − s|s ≥ smax − s̄]

=: popt (s̄)

as required.

Lemma 1. The price of cash (i.e. the collateral) is strictly increasing in the optimist’s desired

level of collateralization: dpopt(s̄)
ds̄

> 0 for s̄ ∈ (smin, smax).

Proof. Using the fact that

d

ds̄
Ei [smax − s|s ≥ smax − s̄]

= d

ds̄

(
1

1− Fi (smax − s̄)

∫ smax

smax−s̄
(smax − s) f1 (s) ds

)

=(s̄fi (smax − s̄)) (1− Fi (smax − s̄))− fi (smax − s̄)
∫ smax

smax−s̄ (smax − s) f1 (s) ds
(1− Fi (smax − s̄))2

= s̄fi (s
max − s̄)− fi (smax − s̄)Ei [smax − s|s ≥ smax − s̄]

1− Fi (smax − s̄)

= fi (smax − s̄)
1− Fi (smax − s̄)

(s̄− Ei [smax − s|s ≥ smax − s̄])
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Differentiating popt (s̄) (and using short-hands: fi := fi (smax − s̄), Fi := Fi (smax − s̄), and

Ei := Ei [smax − s|s ≥ smax − s̄]) yields:

dpopt (s̄)
ds̄

= −f0 +

[
f0E0 + (1− F0)

(
f0

1−F0
(s̄− E0)

)]
[E1]−

[
f1

1−F1
(s̄− E1)

]
[(1− F0)E0]

(E1)2

= −f0 + s̄f0

E1
− s̄f1

1− F0

1− F1

E0

(E1)2 + f1
1− F0

1− F1

E0

E1

= f0

(
s̄

E1
− 1

)
+ f1

1− F0

1− F1

E0

E1

(
1− s̄

E1

)

=
(
s̄

E1
− 1

)
︸ ︷︷ ︸

>0

(
f0 − f1

∫ smax

smax−s̄ (smax − s) f0 (s) ds∫ smax

smax−s̄ (smax − s) f1 (s) ds

)
︸ ︷︷ ︸

>0

where the first inequality follows from s̄ > E1 [smax − s|s ≥ smax − s̄] ∀s̄ ∈ (smin, smax), and

the second inequality holds due to assumption A2:

f0 (smax − s̄)
∫ smax

smax−s̄
(smax − s) f1 (s) ds− f1

∫ smax

smax−s̄
(smax − s) f0 (s) ds

=
∫ smax

smax−s̄
(smax − s) [f0 (smax − s̄) f1 (s)− f1 (smax − s̄) f0 (s)] ds

>0 since by A2: f1 (s)
f0 (s) >

f1 (smax − s̄)
f0 (smax − s̄) ∀s > (smax − s)

Lemma 2. The optimist’s perceived interest rate on the CDS is strictly decreasing in the level

of collateral s̄: d(1+rper
1 (s̄))
ds̄

< 0 for s̄ ∈ (smin, smax).

Recall from equation (A.3) that the perceived interest rate is defined as 1 + rper1 (s̄) :=
E1[min{smax−s,s̄}]
E0[min{smax−s,s̄}] . Differentiating with respect to s̄ (using the result dEi[min{smax−s,s̄}]

ds̄
= Fi (smax − s̄))

yields:

d (1 + rper1 (s̄))
ds̄

= F1 (smax − s̄)E0 [min {smax − s, s̄}]− F0 (smax − s̄)E1 [min {smax − s, s̄}]
(E0 [min {smax − s, s̄}])2

Because the denominator in the above expression is always positive, to show that d(1+rper
1 (s̄))
ds̄

< 0
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it is enough to show that for s̄ ∈ (smin, smax), it holds that E1[min{smax−s,s̄}]
E0[min{smax−s,s̄}] >

F1(smax−s̄)
F0(smax−s̄) . Next,

one proceed as follows:

E1 [min {smax − s, s̄}]
E0 [min {smax − s, s̄}] = s̄F1 (smax − s̄) +

∫ smax

smax−s̄ (smax − s) f1 (s) ds
s̄F0 (smax − s̄) +

∫ smax

smax−s̄ (smax − s) f0 (s) ds

>

F1(smax−s̄)
F0(smax−s̄) s̄F0 (smax − s̄) +

∫ smax

smax−s̄ (smax − s) f0 (s) F1(s)
F0(s)ds

s̄F0 (smax − s̄) +
∫ smax

smax−s̄ (smax − s) dF0 (s)

>

F1(smax−s̄)
F0(smax−s̄) s̄F0 (smax − s̄) + F1(smax−s̄)

F0(smax−s̄)
∫ smax

smax−s̄ (smax − s) f0 (s) ds
s̄F0 (smax − s̄) +

∫ smax

smax−s̄ (smax − s) dF0 (s)

= F1 (smax − s̄)
F0 (smax − s̄)

where the first inequality follows from Assumption A2 (f0 (s) F1(s)
F0(s) < f1 (s)), and the second

inequality follows from Assumption A2 ( d
ds
F0(s)
F1(s) < 0) .

OA.A.3 Proof of Proposition 3

In Appendix A, it has been argued that the principal-agent equilibrium is given by the intersec-

tion of the optimality condition popt (s̄) = F0 (smax − s̄) + (1− F0 (smax − s̄)) E0[smax−s|s>smax−s̄]
E1[smax−s|s>smax−s̄]

derived from the optimist’s optimization problem, and the market clearing condition for cash:

pmc (s̄) = n1 + 1
s̄
E0 [min {smax − s, s̄}]. From the proof to Proposition 2, it has also been es-

tablished that popt (s̄) is strictly increasing in s̄ over s̄ ∈ (smin, smax). It remains to show that

(i) pmc (s̄) is strictly decreasing in s̄ over s̄ ∈ (smin, smax); and (ii) the boundary conditions are

such that an intersection exists: pmc (smin) > popt (smax) and pmc (smax) < popt (smax).

1. Show that pmc (s̄) is strictly decreasing in s̄ over s̄ ∈ (smin, smax) .
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Given pmc (s̄) = n1 + 1
s̄
E0 [min {smax − s, s̄}], differentiating with respect to s̄ yields:

dpmc (s̄)
ds̄

= F0 (smax − s̄) s̄− E0 [min {smax − s, s̄}]
s̄2

=
s̄F0 (smax − s̄)−

(
s̄F0 (smax − s̄) +

∫ smax

smax−s̄ sdF0
)

s̄2

= −
∫ smax

smax−s̄ sdF0

s̄2 < 0 ∀s̄ ∈
(
smin, smax

)

2. Consider the boundary conditions for pmc (s̄) and popt (s̄):

(a) For s̄ = smax, it holds:

pmc (smax) = n1 +
(
smax − E0 [s]

smax

)

<
E1 [s]
smax

+
(
smax − E0 [s]

smax

)
by assumption A1

= 1 + E0 [smax − s]− E1 [smax − s]
smax

< 1 + E0 [smax − s]− E1 [smax − s]
E1 [smax − s]

= E0 [smax − s]
E1 [smax − s] = popt (smax) .

(b) For s̄ = smin ≡ 0, using L’Hospital’s rule, one gets:

lim
s̄↓0

pmc (s̄) = n1 + lim
s̄↓0

d
ds̄

(E0 [min {smax − s, s̄}])
d
ds̄

(s̄)

= n1 + lim
s̄↓0

F0 (smax − s̄)
1 = n1 + 1
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and

lim
s̄↓0

popt (s̄) = lim
s̄↓0

[
F0 (smax − s̄) + (1− F0 (smax − s̄)) E0 [smax − s|s ≥ smax − s̄]

E1 [smax − s|s ≥ smax − s̄]

]

= lim
s̄↓0

F0 (smax − s̄) + lim
s̄↓0

∫ smax

smax−s̄ (smax − s) f0 (s) ds
1

1−F1(smax−s̄)
∫ smax

smax−s̄ (smax − s) f1 (s) ds

= 1 + lim
s̄↓0

(1− F1 (smax − s̄)) lim
s̄↓0

d
ds̄

∫ smax

smax−s̄ (smax − s) f0 (s) ds
d
ds̄

∫ smax

smax−s̄ (smax − s) f1 (s) ds

= 1 + 0× lim
s̄↓0

s̄f0 (smax − s̄)
s̄f1 (smax − s̄) = 1 + 0× f0 (smax)

f1 (smax)

= 1

so

pmc
(
smin

)
= n1 + 1 > 1 = popt

(
smin

)

3. Because popt (γ) and pmc (γ) are both continuous functions, by the intermediate value

theorem they intersect at some interior point γ∗ ∈ (smin, smax) and p∗ ∈ [1, E0[smax−s]
E1[smax−s]).

Since pmc (s̄) is strictly decreasing, and popt (s̄) is strictly increasing, the intersection is

unique.

OA.A.4 Proof of Proposition 1

The existence of a unique Principal-Agent equilibrium has been shown in the proof of proposi-

tions 2 and 3. In this section, it is shown that a collateral general equilibrium as defined in the

main body exists and is equivalent to the principal-agent equilibrium.

1. Step 1: Simplifying observations for solving the collateral general equilibrium:

(a) Without loss of generality, one can show that the equilibrium price of cash satisfies

p̂ ∈
[
1, 1 + [E1[s]−E0[s]]

smax

)
. Since cash guarantees a safe return of 1, its equilibrium

price will never fall below 1. The optimist attach a higher value to cash, because by

using cash as collateral in selling CDS contracts γ, an optimist also gains the dif-
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ference in the expected delivery 1
γ

[E0 [min {smax − s, γ}]− E1 [min {smax − s, γ}]]1.

This difference in beliefs is fully exploited when the CDS is fully collateralized at

γ = smax. So the maximum price an optimist is willing to pay for cash is equal to:

1 + 1
smax [E0 [min {smax − s, smax}]− E1 [min {smax − s, smax}]] = 1 + [E1[s]−E0[s]]

smax , at

which point the optimist would also weakly prefer to hold the illiquid asset instead.
[E1[s]−E0[s]]

smax can be interpreted as the upper bound on the equilibrium collateral value

for cash. For the rest of the proof, the focus is on the more interesting cases where

p̂ is strictly less than 1 + [E1[s]−E0[s]]
smax .

(b) Note that each agent’s optimization problem (A.3) is linear in the objective variables,

thus their value functions will take the form vini, where vi denotes the return on

agent i’s endowment ni.

(c) Since the agents can always just hold their endowment of the illiquid asset or buy

cash in order to sell the fully collateralized CDS contract γ = smax, one must have:

vi ≥ max
{

1,
1− 1

smaxEi [min {smax − s, smax}]
p− 1

smaxE0 [min {smax − s, smax}]

}
∀i = {0, 1} (A.1)

In the above expression, 1 represents the rate of return on the illiquid asset; and

(
1− 1

smaxEi [min {smax − s, smax}]
p− 1

smaxE0 [min {smax − s, smax}]

)

represents the expected rate of return on buying cash to use as collateral in selling

the CDS contract γ = smax. For the latter, the expected payoff in the second period

is 1 (from the cash) minus 1
smaxEi [min {smax − s, smax}] (the expected delivery on the

CDS contract γ). The down-payment on this transaction is
(
p− 1

smaxE0 [min {smax − s, smax}]
)
,

where p is the price paid for the unit of cash, and 1
smaxE0 [min {smax − s, smax}] is

1Note that even though 1
γ [E0 [min {smax − s, γ}]− E1 [min {smax − s, γ}]] is maximized at γ = smax. This

is does not mean the optimist will always want to sell the fully collateralised CDS at any p. The popt (s̄) curve
plots the optimal collateral level s̄ for the optimist at any given price p. (Derived from the interior solution to
maxγ R, where R := 1− 1

γE1[min{smax−s,γ}]
p− 1

γE0[min{smax−s,γ}] ).
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the amount raised from selling the CDS to the pessimist who values it the most.

(d) Summing over the two agents’ budget constraints (A.1), and imposing the market

clearing conditions in equilibrium (holdings of CDS contracts must cancel out and

the sum of total cash holdings is normalized to 1) yields:

a0 + a1 + p̂× 1 = n0 + n1

Recall that by Assumption A1 n0 +n1 >
E0[smax−s]
E1[smax−s] = 1 + E1[s]−E0[s]

E1[smax−s] > 1 + [E1[s]−E0[s]]
smax ,

so p̂ ∈ [1, 1 + [E1[s]−E0[s]]
smax ] implies that a0 + a1 > 0 (i.e. one or more agents must hold

the illiquid asset in equilibrium).

(e) Since p < 1 + [E1[s]−E0[s]]
smax , it follows from equation (A.1) that v1 > 1. Therefore,

the pessimist must be the one holding the illiquid asset in the collateral equilibrium,

which gives us v0 = 1.

(f) Lastly, without loss of generality, CDS contracts with γ > smax will not be used

in equilibrium (such contracts tie down a larger amount of collateral without a

compensating increase in price).

2. Agents’ bid and ask prices for CDS contracts:

(a) An agent’s bid price is the price that would make her indifferent between buying the

CDS contract and simply receiving the equilibrium value per net worth vi , so:

qbid0 (γ) = E0 [min {smax − s, γ}]
v0

= E0 [min {smax − s, γ}]

> qbid1 (γ) = E1 [min {smax − s, γ}]
v1

(A.2)

(b) An agent’s ask price for the CDS contract γ is the price that would make the trader

indifferent between taking a negative position in the CDS γ and simply receiving the
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equilibrium value vi, so:

v0 =
1− 1

γ
E0 [min {smax − s, γ}]
p− 1

γ
qask0 (γ) = 1

v1 =
1− 1

γ
E1 [min {smax − s, γ}]
p− 1

γ
qask1 (γ) > 1 (A.3)

(c) Market clearing for CDS contracts (µ̂+
1 + µ̂+

0 = µ̂−1 + µ̂−0 ) implies:

min
i
qaski (γ) ≥ q (γ) ≥ max

i
qbidi (γ) ∀γ

(Suppose maxi qbidi (γ) > q (γ), then some buyer wants to buy an infinite amount, but

seller can only sell a finite amount due to the collateral constraint. It also cannot oc-

cur that q (γ) > max
{

mini qaski (γ) ,maxi qbidi (γ)
}

, so one must have mini qaski (γ) ≥

q (γ))

(d) A CDS contract is traded in positive quantities only if:

qaski (γ̂) = q (γ̂) = qbidj (γ̂) for some {i, j} = {0, 1}

(e) Claim the pessimist’s ask prices are always higher than optimist’s bid prices:

qask0 (γ) = γ (p− 1) + E0 [min {smax − s, γ}] from eqn (A.3)

> E0 [min {smax − s, γ}] since p > 1

= qbid0 (γ) > qbid1 (γ) from eqn (A.2)

so there are no traded CDS contracts in which the optimist buy and the pessimist

sell.
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(f) The equilibrium prices of CDS contracts are therefore:


q (γ̂) = qbid0 (γ̂) = qask1 (γ̂) for each γ̂ with positive trade

q (γ) ∈
[
maxi qbid (γ) ,mini qask (γ)

]
for each γ

3. Characterize the equilibrium in CDS markets for a given price for cash p ∈ [1, E0[smax−s]
E1[smax−s])

• The optimist faces quasi-equilibrium prices for all CDS contracts (even those that

are not positively traded in equilibrium):

q̃ (γ) = qbid0 (γ) = E0 [min {smax − s, γ}]

• Given these quasi-equilibrium prices, optimists solve the following optimization prob-

lem:

v1n1 = max
c1≥0,µ−1

c1 −
∫
γ∈BCDS

1
γ
E1 [min {smax − s, γ}] dµ−1

s.t. pc1 −
∫
γ∈BCDS

1
γ
E0 [min {smax − s, γ}] dµ−1 = n1 [budget constraint]∫

γ∈BCDS

1
γ
dµ−1 ≤ c1 [collateral constraint]

• Since v1 > 1, the collateral constraint binds in equilibrium. Let λ1 denote the La-

grangian multiplier for the collateral constraint. v1 will correspond to the multiplier

for the budget constraint

• The FOCs for c1 and µ−1 yields:

1 + λ1 = v1p

v1
1
γ
E0 [min {smax − s, γ}] ≤ 1

γ
E1 [min {smax − s, γ}] + λ1 with equality only if γ ∈ supp

(
µ−1
)
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• Combining the FOCs yield:

v1p = 1 + λ1

≥ 1 + v1
1
γ
E0 [min {smax − s, γ}]− 1

γ
E1 [min {smax − s, γ}]

⇒ v1 ≥
1− 1

γ
E1 [min {smax − s, γ}]

p− 1
γ
E0 [min {smax − s, γ}] =: RCDS

1 (γ) with equality only in γ ∈ supp
(
µ−1
)

• As per the proof of Proposition 2, RCDS
1 (γ) has a unique maximum character-

ized by popt (γ = s̃). So again the unique collateral-GE is pinned down by the in-

tersection between popt (s̄) and the market clearing condition for cash: pmc (s̃) =

n1 + 1
s̄
E0 [min {smax − s, s̃}], s.t. the equilibrium collateral level γ̂ and the price of

cash p̂ satisfies:

p̂ = popt (γ̂) = pmc (γ̂)

4. It follows that the unique general equilibrium is equivalent to the principal-agent equilib-

rium.

OA.A.5 Proof of Proposition 4

Let us consider the case where the optimist becomes ’more pessimistic’. Let g1 (s) := f1(s)
1−F1(smax−s̄) ∀s ∈

[smax − s̄, smax] , ∀s̄ ∈ [smin, smax) and g̃1 (s) := f̃1(s)
1−F̃1(smax−s̄) ∀s ∈ [smax − s̄, smax) . Then

by Assumption A2 g (·) and g̃ (·) must also satisfy the monotone likelihood ratio condition:
d
ds

(
f1
f̃1

)
> 0 ∀s ∈ S ⇒ d

ds

(
g1
g̃1

)
> 0 ∀s ≥ (smax − s̄). This in turn implies Ẽ1 [s|s > smax − s̄] <

E1 [s|s ∈ smax − s̄] ∀s̄ ∈ (smin, smax), so the upward sloping popt curve shifts down when the op-

timist becomes ’more pessimistic’. The converse of the proposition follows from the same logic.

OA.A.6 Proof of Proposition 5

The objective is to show that a sufficient (but not necessary) condition for the equilibrium

collateral level to increase is for the pessimist to attach sufficiently larger probability weights
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to the default states.

Let F0 (s) and F̃0 (s) denote the initial and the new beliefs of the pessimist respectively. For

brevity, let Ẽ0 [x] := EF̃0
[x]; p̃opt (s̄) := F̃0 (smax − s̄) +

(
1− F̃0 (smax − s̄)

)
Ẽ0[smax−s|s>smax−s̄]
E1[smax−s|s>smax−s̄] ;

and p̃mc (s̄) := n1 + 1
s̄
Ẽ0 [min {smax − s, s̄}]. Define, respectively, the initial and the new equi-

librium collateral levels γ∗ and γ∗∗ implicitly as:

popt (γ∗) = pmc (γ∗)

p̃opt (γ∗∗) = p̃mc (γ∗∗)

Then given p̃mc is strictly decreasing, popt is strictly increasing, and the two curves intersects

within (smin, smax) (see proofs for Propositions 2 and 3), it holds that γ∗∗ > γ∗ iff:

p̃mc (γ∗) > p̃opt (γ∗)

⇔ p̃mc (γ∗)− pmc (γ∗) > p̃opt (γ∗)− popt (γ∗)

With a little bit of algebra, one can show that:

p̃mc (γ∗)− pmc (γ∗)

= 1
γ∗

[
Ẽ0 [min {smax − s, γ∗}]− E0 [min {smax − s, γ∗}]

]
= 1
γ∗

[
γ∗F̃0 +

∫ smax

smax−γ∗
(smax − s) f̃0 (s) ds− γ∗F0 −

∫ smax

smax−γ∗
(smax − s) f0 (s) ds

]

=
(
F̃0 − F0

)
+ 1
γ∗

[∫ smax

smax−γ∗
(smax − s) f̃0 (s) ds−

∫ smax

smax−γ∗
(smax − s) f0 (s) ds

]
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and

p̃opt (γ∗)− popt (γ∗)

=F̃0 +
(
1− F̃0

) Ẽ0 [smax − s|s > smax − γ∗]
E1 [smax − s|s > smax − γ∗]

· · · −
[
F0 + (1− F0) E0 [smax − s|s > smax − γ∗]

E1 [smax − s|s > smax − γ∗]

]

=
(
F̃0 − F0

)
+

[∫ smax

smax−γ∗ (smax − s) f̃0 (s) ds−
∫ smax

smax−γ∗ (smax − s) f0 (s) ds
]

E1 [smax − s|s > smax − γ∗]

Taken together, one gets:

[p̃mc (γ∗)− pmc (γ∗)]−
[
p̃opt (γ∗)− popt (γ∗)

]
=
[

1
γ∗
− 1
E1 [smax − s|s > smax − γ∗]

] [∫ smax

smax−γ∗
(smax − s) f̃0 (s) ds−

∫ smax

smax−γ∗
(smax − s) f0 (s) ds

]

=
[

1
E1 [smax − s|s > smax − γ∗] −

1
γ∗

]
︸ ︷︷ ︸

>0

[∫ smax

smax−γ∗
(smax − s)

(
f0 (s)− f̃0 (s)

)
ds

]

Therefore, whether the collateral requirement in the new equilibrium increases (γ∗∗ > γ∗)

depends on whether the second term
∫ smax

smax−γ̂ (smax − s)
(
f0 (s)− f̃0 (s)

)
ds is positive, for which

a sufficient condition is that f0 (s) > f̃0 (s) ∀s ∈ [smax − γ∗, smax).

OA.B Part 39 CDS prices

End-of-day (EOD) prices within the Part 39 data set are provided by ICC in terms of points

upfront. CDS prices historically have been quoted in terms of conventional or “break-even”

spreads, defined as the annualized quarterly spread payment per unit of purchased protection

that makes the market value of the position zero at initiation. Contracts thus were negotiated

bilaterally over the counter and, depending on when they were traded, carried different spreads.

The push for standardized CDS contracts, however, has drastically changed the landscape of

CDS price quotes and traded contracts. In particular, the 2011 “CDS Big Bang” resulted in
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standardized CDSs having fixed coupons (usually 100 or 500 basis points). Thus, contract

market values are often non-zero at outset. When trading standardized CDSs, the protection

buyer makes an upfront payment to the protection seller at initiation (or vice versa). Price

quotes are then in “points upfront” instead of break-even spreads. For instance, if a CDS

contract were quoted at 0.97, the protection buyer would pay 1− 0.97 = 3% of the notional to

the seller at contract initiation. Notice that this quote convention is analogous to bond quotes,

where a higher price quote represents a lower payment for the buyer. Some data providers,

such as Bloomberg, convert the quoted prices using a standardized model provided by the

International Swaps and Derivatives Association (ISDA) and, by convention, record break-even

spreads.

We note that quoted prices are model prices. Since CDSs trade relatively thinly, EOD

transaction prices are not always available. ICC and Markit have a specific price discovery

process tailored to the CDS market. Participants submit price quotes at the end of every

business day and the clearinghouse creates periodic trade executions among participants via an

auction process. The resulting prices are used for daily mark-to-market purposes.

OA.C Market events during our sample period

In this section, we briefly review the main world events that affected, directly or indirectly, CDS

markets during our sample period May 2014-February 2019. In particular, during this period we

find: (i) the plummet of oil prices in November 2014, when Saudi Arabia blocked OPEC from

cutting oil production; (ii) the plunge in the Euro when the ECB chief Mario Draghi expressed

unexpectedly dovish outlooks on monetary policy in January 2015; (iii) the 2015–2016 stock

market sell-off, starting with the Chinese stock market burst (“Black Monday” ), and followed

by an unexpected devaluation in the Renminbi, which was further fueled by Greek Debt default;

(iv) the unexpected negative interest rate policy announced by the Bank of Japan in January

2016; (v) the volatility spike when the Brexit referendum was announced in February 2016; (vi)
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Donald Trump’s election in November 2016 which, immediately following the announcement,

created extreme volatility spikes in global markets and led the total trading volumes in CDS

markets to double on the election night; (vii) OPEC’s decision to cut oil production, followed

by non-OPEC countries, led to hikes in oil prices in November 2016, especially because this

was the first time after financial crisis; (viii) the Venezuela’s delayed payments on its sovereign

debt and bonds issued by state oil giant Petroleos de Venezuela in November 2017 constituted

a failure to pay “credit event”, and led to extreme volatility in CDS prices which sky-rocketed

in a period of 6-7 days; (ix) the current COVID 19 pandemic, which caused the US stock

market to hit the circuit breaker mechanism four times in ten days in March 2020, led to the

announcement of a zero-percent interest rate policy and a $700 billion quantitative easing (QE)

program, and led to a spike in unemployment rates which exceeded levels of 15%.

Our sample period also covers the (widely expected) interest rate hike by the Federal Reserve

in December 2015, the first increase in nearly a decade, the Bitcoin’s record price surge in the

year 2017, and the (expected) Bank of England’s decisions to raise interest in November 2017

and August 2018, respectively first and second time after the global crisis, despite the ongoing

uncertainty over the future of the UK economy.

OA.D Time-series test of the V aR rule using realized

returns

We consider the Z statistic:

Z := 1
NT

T∑
t=1

N∑
n=1

I{ΨM,t(Xn
t ) < −IMt(Xn

t )}, (D.4)

where I{·} is the indicator function. The indicator takes value 1 when realized M−day losses

exceed the initial margin requirement; this is typically referred to as an exceedance. The statistic

Z is the empirical frequency at which exceedances occur, averaged over time and across market
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participants. We have, for quite general correlation structures:

Z
P−→ α,

by the law of large numbers. For M and α specified in the null hypothesis, we can test H0

using Z as the test statistic.

We compute standard errors for the test using binomial probabilities. To proceed, we

assume that exceedances are perfectly correlated when underlying losses overlap (for robustness

against autocorrelation), and also assume that exceedances are uncorrelated across accounts.

In particular, standard errors are computed as

S.E. =
√
α(1− α)ζM

NT
.

In the above equation, the term ζM := 2M − 1 adjusts for our assumption that exceedances

are perfectly correlated when underlying losses overlap. For α = 1%, NT = 23, 310 and M = 5,

we obtain a standard error of 0.19%. We remark that our standard errors are likely to be overly

conservative. As a robustness check, we also compute one-day returns and autocorrelation

estimates. For each account, we find autocorrelation estimates on the orders of 10−4 for the

first five lags. Thus, autocorrelation would likely have a smaller impact on actual standard

errors compared to our assumption of perfect correlation.

Finally, to explicitly account for potential cross-sectional correlation in the returns on mar-

gins, we perform the test separately account by account, finding that the null hypothesis is

rejected in every case.

18



OA.E Time-series test of the V aR rule using counterfac-

tual returns

We compute our test statistic using an extended version of Eq. (D.4):

Z ′ = 1
NTU

T∑
t=1

U∑
u=1

N∑
n=1

I{Ψ5,uMtM(Xn
t ) < −IMt(Xn

t )},

where Ψ5,uMtM(Xn
t ) is constructed as in Duffie et al. (2015) (see Appendix B for additional

details), and U is the number of evaluation dates, that is, dates for which we observe the

portfolio. For each portfolio Xn
t , we estimate the frequency at which losses exceed portfolio

margins. Under the null hypothesis of a 5-day 99% VaR margining rule, Z ′ should converge to

1% in probability.

The test can be simply implemented as a regression of observed exceedances onto a constant,

with double-clustering as in Petersen (2009) by time and by account (there is no need to use

the binomial model as exceedances are observed in the data, so the variance of the residuals is

nonzero).

OA.F Cross-sectional test of the V aR rule

The margining rule H0 implies P(ΨM,t(Xn
t ) < −IMt(Xn

t )) = α for all n, which further implies

H ′0 : P(ΨM,t(Xn
t ) < −IMt(Xn

t )) = P(ΨM,t(Xn′

t ) < −IMt(Xn′

t )),

for all n 6= n′. The statistics to consider are then

Zn := 1
T

T∑
t=1

I{ΨM,t(Xn
t ) + IMt(Xn

t ) < 0} P−→ α.
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We describe here how to implement a test for equality (H ′0). The most straightforward test

for equality of the frequencies of exceedances across accounts is the G−test (i.e. the two-

way likelihood ratio test). Because the confidence level is expected to be large (the expected

frequency of exceedances is low), the typical χ2−test for homogeneity is not appropriate (Hoey

(2012)). As exceedances are expected to occur with low probability, we instead use the G−test

to test the null hypothesis.

The test statistic is computed as:

G := 2
N∑
n=1

On log On

En
,

where On is the observed number of exceedances for clearing member n, and En is the expected

number of exceedances for account n. The probability of observing an exceedance, needed for

calculating En, is estimated by pooling observations across accounts. In particular,

En := TU × Z = 1
N

T∑
t=1

U∑
u=1

N∑
n′=1

I{Ψ5,uMtM(Xn′

t ) < −IMt(Xn′

t )},

and

On :=
T∑
t=1

U∑
u=1

I{Ψ5,uMtM(Xn
t ) < −IMt(Xn

t )}.

Under the null that frequencies are the same for each account, G d→ χ2
N−1.

We also derive an extension of this test that explicitly accounts for potential autocorrelation

of the exceedances. For a fixed portfolio, we first count the number of exceedances, and then

divide it by the number of evaluation dates. This gives an estimate for the probability of an

exceedance occurring for that portfolio. We then sum the exceedance probabilities for portfolios

associated with each fixed account, and use the rounded up integer as the estimate of observed

exceedances for that account. We enter this estimate into the contingency table used for the

G−test. Formally, we estimate the probability of an exceedance for an account/day combination
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(n, t) as

p̂n,t = 1
T

T∑
u=1

I{Ψ5,uMtM(Xn
t ) < −IMt(Xn

t )}.

The number of (estimated) observed exceedances is then

Ôn :=
⌈
T∑
t=1

p̂n,t

⌉
.

The estimate Ôn replaces On in our computation of the G statistic (Eq. (OA.F)).2 The estimated

observations are thus more robust to autocorrelation compared to treating each observation as

an individual count, which may inflate the sample size.

OA.G Robustness: Details

In this section, we provide more details about the robustness tests of Section 4.4.

Value-at-Risk and maximum shortfall used in the panel analyses (Tables 4 and 8) were based

on P&L generated from our entire sample of credit spreads (that is, on the entire historical

distribution of returns for each portfolio held at time t by member n). Because our data set

covered the financial crisis, the risk measures captured extreme movements and may thus be

viewed as overly conservative for estimating portfolio losses. In this section we consider using

only the last 1000 days (approximately 4 years) of credit spreads data to generate P&L, as in

Duffie et al. (2015). Using these newly estimated counterfactual P&L, we compute Value-at-

Risk and maximum shortfall. We replicate our panel analyses and report the results in Tables

OA.3 and OA.4.

Comparing Table OA.3 to Table 4, we see there is a decrease in explanatory power of Value-

at-Risk (V aR) (column (1)). This is likely due the exclusion of the financial crisis period in

our simulation, resulting in both lower level and variability of Value-at-Risk. Aggregate short

notional (AS) still retains its strong explanatory power (columns (3) and (4)), and columns
2The ceiling operation is performed to ensure that the contingency table only contains integer entries. We

also performed the test with unrounded data, yielding similar, if not stronger, results.
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(7) and (8) show that the DSV model still captures a significant portion of variation in initial

margins, and outperforms Value-at-Risk in terms of explanatory power (columns (1) and (2)).

Our conclusions remain consistent with our previous results.

Comparing Table OA.4 to Table OA.3, we observe again that there is a non-negligible

increase in explanatory power compared to models that include only portfolio variables (Table

OA.3). This confirms that market variables can capture a dimension of initial margins not

explained by portfolio variables, especially for the VIX.
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Table OA.1: Initial margins and market variables summary statistics

Market variables, in basis points (bps)
Summary Statistic In. Margins (IMn,t) Overnight Index Swap Spread (OISt) LIBOR-OIS spread (LOISt) CBOE VIX (V IXt)
Pooled mean (over all n and t): µ (xn,t) 654.0 100.6 25.5 1,606.1
Std. deviation (over all n and t): σ (xn,t) 427.4 81.8 16.6 750.0

Market variables, in basis points (bps)
Summary Statistic In. Margins (IMn,t) CDS spread (CDSn,t) Avg. CDS spread (ACDSt)
Pooled mean (over all n and t): µ (xn,t) 654.0 73.6 73.6
Std. deviation (over all n and t): σ (xn,t) 427.4 33.8 19.8
Time-series variation of cross-sectional averages: σ (x̄t) 108.4 19.8
Mean cross-sectional dispersion: µ (σt (xn,t)) 421.0 26.4
Cross-sectional dispersion of time-series averages: σ (x̄n) 360.7 21.4
Mean time-series dispersion: µ (σn (xn,t)) 225.4 24.4

Note: The table displays summary statistics of our key market variables and initial margins, in basis points
and millions of USD, respectively. Definitions of market variables are reported in Table 2. In addition to
the overall mean and standard deviations (dispersions), we report panel statistics that describe properties of
variables both across accounts and time, the calculations of which are reviewed in Table 3. Panel summaries
are not reported for market variables that do not vary across accounts.
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Table OA.2: Check for multicollinearity

Estimates Dependent variable:
(R2)

SD ES

V aR 0.306∗∗∗ 1.422∗∗∗
(OLS) (97.1%) (95.0%)

V aR 0.295∗∗∗ 1.364∗∗∗
(Two-way Panel) (97.7%) (96.8%)

Observations 23,310 23,310

Note: We regress both expected shortfall and standard deviation on Value-at-Risk, and report the results.
The first row corresponds to estimates from (pooled) OLS regression, and the second row corresponds to
estimates after accounting for time and account fixed effects. Coefficient estimates are all significant at the
1% level. R2s are in parentheses.
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Table OA.3: Regression results for explaining initial margins with portfolio variables

Dependent variable:
Initial margins (IM) - Daily Frequency

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
Value-at-Risk (VaR) 4.284∗∗∗ 2.394∗∗∗ 1.917∗∗ 1.529∗∗∗ 0.037 0.285 0.946 0.919∗∗∗

(0.738) (0.467) (0.769) (0.332) (0.588) (0.499) (0.607) (0.316)

Maximum shortfall (MS) −0.072 −0.036 0.420∗∗∗ 0.333∗∗∗
(0.142) (0.079) (0.132) (0.063)

Aggregate short notional (AS) 0.030∗∗∗ 0.020∗∗∗ 0.034∗∗∗ 0.022∗∗∗
(0.003) (0.004) (0.004) (0.004)

Duffie et al. model (DSV) 1.085∗∗∗ 0.685∗∗∗ 1.079∗∗∗ 0.641∗∗∗
(0.131) (0.089) (0.144) (0.147)

Modified DSV model (MDSV) 0.880∗∗∗ 0.563∗∗∗
(0.107) (0.108)

Number of Observations 23310 23310 23310 23310 23310 23310 23310 23310 23310 23310 23310 23310
Adjusted R2 0.400 0.772 0.700 0.847 0.678 0.837 0.595 0.817 0.595 0.818 0.689 0.844
Account Fixed Effect N Y N Y N Y N Y N Y N Y
Time Fixed Effect N Y N Y N Y N Y N Y N Y

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Two-Way Clustered Standard Errors (by Time and Account)

Note: Same as Table 4, but computing risk measures only using the last 1000 days of simulated return on
margins and omitting the NGR explanatory variable.
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Table OA.4: Regression results for initial margins using portfolio and market variables with
last 1000 days of P&L

Dependent variable:
Initial margins (IM) - Daily Frequency

(1) (2) (3) (4) (5) (6)
Value-at-Risk (VaR) 1% 1.040∗ 0.733∗∗ 1.014∗ 0.622∗∗ 2.193∗∗∗ 1.442∗∗∗

(0.577) (0.331) (0.607) (0.303) (0.689) (0.303)

Modified DSV Model (MDSV) 0.861∗∗∗ 0.614∗∗∗ 0.864∗∗∗ 0.631∗∗∗
(0.102) (0.094) (0.102) (0.087)

Maximum Shortfall (MS) −0.171 −0.051
(0.135) (0.071)

Aggregate Short Notional (AS) 0.029∗∗∗ 0.022∗∗∗
(0.003) (0.003)

CBOE Volatility Index (VIX) 0.013 0.040∗∗ 0.006 0.020 0.037∗∗ 0.052∗∗∗
(0.016) (0.018) (0.017) (0.014) (0.015) (0.017)

Member CDS Spread (DCDS) 2.683∗∗ 0.824 2.680∗∗ 0.830 2.713∗∗ 0.987
(1.229) (0.765) (1.206) (0.739) (1.228) (0.756)

Average CDS Spread (ACDS) −0.111 −0.699 −0.424 −0.836
(1.210) (1.158) (1.207) (1.147)

LIBOR-OIS Spread (LOIS) 0.487 1.004
(0.994) (1.114)

Number of Observations 23310 23310 23310 23310 23310 23310
Adjusted R2 0.719 0.837 0.719 0.837 0.733 0.842
Account Fixed Effect N Y N Y N Y
Time Fixed Effect N N N N N N

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Two-Way Clustered Standard Errors (by Time and Account)

Note: Same as Table 8, but computing risk measures only using the last 1000 days of simulated return on
margins.
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