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Preface

In recent years, there has been great interest in the simulation of long-range dependent processes, in par-
ticular fractional Brownian motion. Motivated by applications in communications engineering, I wrote my
master’s thesis on the subject in 2002. Since many people turned out to be interested in various aspects of
fractional Brownian motion, I decided to update my thesis and make it publicly available. Some references
are added and the section on spectral simulation is rewritten according to the paper [22].

Fractional Brownian motion is not only of interest for communications engineers. Its properties have
been investigated by researchers in theoretical physics, probability, statistics, hydrology, biology, and many
others. As a result, the techniques that have been used to study this Gaussian process are quite diverse,
and it may take some effort to study them. Undoubtedly, this also makes the field more interesting.

This report gives an introduction to generation and estimation of fractional Brownian motion. However,
as the literature on the subject is quite extensive (see, for instance, [24]), it has not been my goal to write a
complete introduction. Running the risk of satisfying nobody, it is my hope that this report provides some
help to find a way through the literature. Since it is written on the level of a master’s student, limited
background is required.

I would like to take this opportunity to thank my thesis advisor, Michel Mandjes, for many discussions
and for his help to prepare this manuscript.

Finally, I refer to my homepage http://www.cwi.nl/~ton for the C code that was used to write this
report.

Amsterdam, February 2004
Ton Dieker
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CHAPTER 1

Introduction and motivation

Queueing theory plays an important role in the design of telecommunication networks. Classical queueing
models often give insightful results, for example on (long-term) delays, packet losses, and buffer content
distributions. However, research has shown that the assumptions in traditional models are not valid in
some cases. Unfortunately, these cases are particularly important for data communication networks. Those
assumptions concern mainly the arrival process of data packets.

In this report, we will study a random process, fractional Brownian motion, that models the arrivals
of network packets better than classical models (at least for some types of traffic), but is parsimonious
in the sense that only few parameters describe its statistical behavior. Research has shown that the use
of fractional Brownian motion instead of a traditional model has impact on queueing behavior; it affects
several aspects of queueing theory (e.g., buffer sizing, admission control and congestion control). The use
of conventional models (e.g., Poisson-type models) results in optimistic performance predictions and an
inadequate network design.

Since traditional models have extensively been studied in the past decades, relatively much is known
about their properties, although there are still many open problems. In contrast, few theoretical results exist
for queueing models based on fractional Brownian motion. Simulation studies that make use of generated
fractional Brownian motion traces are therefore of crucial importance, especially for complex queueing
systems.

It is the aim of this report to evaluate several simulation methods for fractional Brownian motion.
Although some methods that simulate fractional Brownian motion are known, methods that simulate this
process ‘approximately’ have been proposed to reduce the computation time. Therefore, we will focus on
the question in what respect the approximate differ from exact samples.

In this first chapter, we start with the analysis of real network traffic traces to clarify that conventional
assumptions do not hold. Thereafter, we define fractional Brownian motion and study its basic properties.
In Section 1.3, we get some feeling for the impact of the use of fractional Brownian motion in a teletraf-
fic framework by studying a simple but insightful queueing model. Section 1.4 outlines this report, and
addresses its scientific contribution.

1.1 A closer look at network traffic

1.1.1 Analysis of traffic traces

Willinger et al. [58] have analyzed high-quality Local Area Network (LAN) Ethernet traces. During more
than one day, every 10 milliseconds was measured how many packets and bytes passed the monitoring
system at Bellcore Research. (Data is sent in packets of bytes across the network.)

By studying the data, the authors find arguments for the presence of so-called self-similarity and long-
range dependence. Before giving definitions, we will make this intuitively clear by the plots in Figure 1.1,
which are taken from [58]. Starting with a time unit of 100 seconds (the upper row), each subsequent row
is obtained from the previous one by increasing the time resolution by a factor of 10 and by concentrating
on a randomly chosen subinterval, indicated by a shade. The lower row corresponds to the finest time scale
(10 milliseconds). The plots are made for actual Ethernet traffic (left column), a synthetic trace generated
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Figure 1.1: Actual Ethernet traffic (left column), a trace generated from a traditional traffic model (middle
column), and a trace generated from a self-similar model (right column) on different time scales.
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from a Poisson-type traffic model (middle column), and a synthetic trace generated from an appropriately
chosen self-similar traffic model with a single parameter (right column). For a given time resolution (or,
equivalently, interval length), the number of data packets arriving in each interval is computed and depicted
as tiny bins.

Apart from the upper left plot, which suggests the presence of a daily cycle (the LAN is observed for
27 hours), the plots in the left column look ‘similar’ in distributional sense: it is not possible to determine
what the time unit is used by just looking at the shape of the plotted bins.

However, for a conventional model as in the middle column of Figure 1.1 (a batch Poisson model was
simulated to generate the traffic), the number of packets per bin has a very low standard deviation at the
coarsest time scale: the plot looks like a solid bar. By increasing the resolution, more ‘randomness’ shows
up. This is caused by the fact that (independent) interarrival and service times have finite variance in
traditional queueing models, e.g., exponential or Erlang distributions. The amount of traffic in disjoint time
intervals is then mutual independent if the size of the intervals is large enough. We will make the limiting
behavior more precise for an (ordinary) Poisson arrival process in Section 1.3. Note that the plots in the
middle column look significantly different from those in the left column.

On the contrary, the plots in the right column (generated by a self-similar model) are visually almost
indistinguishable from those in the left column. The only clear difference is that in the upper plot no
cyclical behavior is present. However, when desirable, this daily behavior can be incorporated by adding
some deterministic or stochastic trend.

We cannot just rely on one specific network trace of 27 hours to state that all LAN network traffic is
self-similar. Therefore, Willinger et al. also study traces that are observed in other months and in a different
network layout, making their conclusions more robust.

In another paper, Willinger et al. [59] tried to explain the self-similar nature of Ethernet LAN traffic
by studying the source level, i.e., looking at the activity of all possible source-destination pairs in the LAN.
They assume that each such pair is either sending bytes (‘ON’) or inactive (‘OFF’), where the ON- and
OFF-periods strictly alternate. It is assumed that the lengths of the ON- and OFF-periods are independent
and identical distributed (i.i.d.) and that all ON- and OFF-periods are also independent from one another.
The authors find that the so-called ‘Noah Effect’ (high variability) can explain in some sense the self-similar
phenomena that are observed on the aggregate level. The Noah effect is synonymous with infinite variance;
it was empirically observed that many naturally occurring phenomena can well be described by distributions
with infinite variance. The authors study the cumulative amount of packets (or bytes) when many sources
are present. When this Noah effect is present in the ON- or OFF-periods, the cumulative amount of packets
(after rescaling time) is described by a simple transformation of fractional Brownian motion.

The same self-similar behavior as in LAN Ethernet traffic is also discovered in wide area networks
(WANs) [41], variable bit rate (VBR) video [10], etc. Many work is going on to show its presence in
different kinds of data traffic.

1.1.2 Self-similarity and long-range dependence

We will now make mathematically precise what we mean by self-similarity and long-range dependence. It
will be no surprise that these two concepts are related to fractional Brownian motion, but we will first define
them in the framework of general stationary stochastic processes.

Let X = {Xk : k = 0, 1, 2, . . .} be a stationary discrete-time stochastic process, meaning that the
vectors (Xk1

, . . . , Xkd
) and (Xk1+n, . . . , Xkd+n) have the same distribution for all integers d, n ≥ 1 and

k1, . . . , kd ≥ 0. For Gaussian processes, it is equivalent to require that γ(k) := Cov(Xn, Xn+k) does not
depend on n. These two notions are sometimes referred to as strict stationarity and second-order stationarity,
respectively. The function γ(·) is called the autocovariance function.

In Figure 1.1, we saw that summing up the amount of packets in the first 10 bins gives (up to scale)
the same plot in distributional sense. This is also valid for the next 10 bins and so on. Suppose that this
reasoning applies to a general factor m ≥ 1, not necessarily a power of 10. Mathematically, we then have
for every k ≥ 0,

Xkm + . . .+X(k+1)m−1 = amXk, (1.1)

where the equality is in the sense of equality in distribution. Although the scaling factor am > 0 is still not

defined by this intuitive reasoning, we first define a new process X (m) = {X(m)
k : k = 0, 1, 2, . . .} for every

m ≥ 1:

X
(m)
k =

1

m

(

Xkm + . . .+X(k+1)m−1

)

.
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Following Cox [16], we call a discrete-time stochastic process X self-similar with Hurst parameter 0 <
H < 1 if X and m1−HX(m) have the same finite-dimensional distributions for all m ≥ 1. This means that
for every d ≥ 1 and 0 ≤ k1 < . . . < kd the vector

(Xk1
, . . . , Xkd

)

has the same distribution as the vector

(m1−HX
(m)
k1

, . . . ,m1−HX
(m)
kd

),

implying that the correlation function r(·) = γ(·)/Var(X1) of X equals de correlation function r(m)(·) of
X(m) for all m. Thus, (1.1) holds with am = mH if X is self-similar with Hurst parameter H.

The above definitions can easily be extended to continuous-time stochastic processes. A continuous-
time stochastic process Y = {Y (t) : 0 ≤ t < ∞} is called self-similar with Hurst parameter 0 < H < 1 if
{Y (at) : 0 ≤ t <∞} and {aHY (t) : 0 ≤ t <∞} have identical finite-dimensional distributions for all a > 0.

Weaker notions than self-similarity also exist. A process is second-order self-similar if the finite dimen-
sional distributions of X and m1−HX(m) have equal mean and covariance structure. If this is only true as
m→ ∞, the process is called asymptotically second-order self-similar, see [16].

Next we introduce the definition of long-range dependence. A stationary discrete-time processes X is
said to be a process with long-range dependence, long memory, or strong dependence when its autocovariance
function γ(·) decays so slowly that

∑∞
k=0 γ(k) = ∞ (in contrast to processes with summable covariances,

which are called processes with short-range dependence, short memory, or weak dependence). Intuitively,
when long-range dependence is present, high-lag correlations may be individually small, but their cumulative
effect is significant.

As pointed out by Beran [9], such a covariance structure has an important impact on usual statistical
inference. As an example, assume we have n observations of some random variable X with finite variance.
The standard deviation of the mean is then proportional to n1/2 if the observations are uncorrelated. If
the covariances decay exponentially (as is the case with a so-called AR(1) process), the covariances are
summable and similar behavior is observed: the standard deviation of the mean is proportional to n1/2 for
sufficiently large n, although the proportionality constant is different. Suppose, on the other hand, that the
covariance function γ(·) decays hyperbolically:

γ(k) ∼ cγ |k|−α (1.2)

as |k| tends to infinity for some 0 < α < 1 and a finite positive constant cγ . [In this report, we follow
the notational convention that f(x) ∼ g(x) as x → X ∈ [−∞,∞] stands for limx→X f(x)/g(x) = 1.] It is
readily checked that the process is long-range dependent if (1.2) holds. Under this long-range dependence,
the standard deviation of the mean is proportional to n−α/2! Of course, this affects confidence intervals
for the mean of X and all related test statistics. Moreover, the standard estimator for the variance of X
becomes biased. This bias does not disappear when the sample size increases, as is the case for short-range
dependent processes.

It is important to note that Equation (1.2) determines only the decay of the correlations. It is very well
possible that there are some specific lags for which γ(k) is particularly large, which makes the detecting
of long-range dependence more difficult. In fact, it is theoretically impossible to conclude that long-range
dependence is present in a finite sample.

In general, self-similarity and long-range dependence are not equivalent. As an example, the increments
of a standard Brownian motion are self-similar with Hurst parameter H = 1/2, but clearly not long-range
dependent (the increments are even independent). However, under the restriction 1/2 < H < 1, long-range
dependence is equivalent to asymptotic second-order self-similarity for stationary processes.

Before investigating the influence of fractional Brownian motion in a queueing framework, we will first
define this process and derive its basic properties.

1.2 Fractional Brownian motion and fractional Gaussian noise

Since we will shortly see that fractional Brownian motion is a Gaussian process, its covariance structure is
one of its most important features. Therefore, the key subjects of this section are the covariance structure of

4



fractional Brownian motion and its incremental process, fractional Gaussian noise. Moreover, the properties
of fractional Gaussian noise in the so-called frequency domain are described. Finally, another long-range
dependent process is presented for later use.

1.2.1 Definitions and basic properties

Fractional Brownian motion

In the pioneering work by Mandelbrot and van Ness [43], fractional Brownian motion is defined by its
stochastic representation

BH(t) :=
1

Γ(H + 1
2 )

(∫ 0

−∞

[(t− s)H−1/2 − (−s)H−1/2]dB(s) +

∫ t

0

(t− s)H−1/2dB(s)

)

, (1.3)

where Γ represents the Gamma function Γ(α) :=
∫∞

0
xα−1 exp(−x)dx and 0 < H < 1 is called the Hurst

parameter (we soon see the connection with the Hurst parameter for self-similar processes). The integrator
B is a stochastic process, ordinary Brownian motion. Note that B is recovered by taking H = 1/2 in
(1.3). For later use, we assume that B is defined on some probability space (Ω,F , P ). We remark that this
representation in terms of an integral with respect to Brownian motion is non-unique; see, e.g., p. 140 of
[53] for a different representation. One point should be clarified in more detail: how to interpret an integral
with random integrator B.

The notation suggests that this integral can be seen as a Lebesgue-Stieltjes integral. One could therefore
think that the integral can pathwise be computed in a Lebesgue-Stieltjes sense (recall that B can be regarded
as a random function). However, this is impossible, since the paths of Brownian motion are highly irregular.
For example, though the trajectories are continuous, they are almost surely non-differentiable and, more
importantly in this case, the paths do not have bounded variation with probability 1. This property prevents
us from calculating the integral as a pathwise Lebesgue-Stieltjes integral.

Having observed this, we have still not solved the interpretation problem. In fact, the integral is a
so-called stochastic integral with respect to usual Brownian motion. We will briefly explain its definition,
but we will omit many details. For details on stochastic integration, the reader is referred to one of the
many textbooks on stochastic calculus, e.g., Karatzas and Shreve [38].

Avoiding technicalities caused by an unbounded integration interval, we will only discuss the definition
of the stochastic integral

∫ b

a

φ(s)dB(s)

for finite a and b. This integral has a natural definition when the integrand φ is a so-called simple function,
which means that there exists an integer ` > 0 and a strictly increasing sequence of real numbers (tj)

`
j=0

with t0 = a and t` = b, as well as a sequence of real numbers (φj)
`−1
j=0 such that φ(s) can be written as

φ(s) = φj for s ∈ (tj , tj+1] (the value at a turns out to have no influence). For such a simple function φ,
the stochastic integral has the following natural definition:

∫ b

a

φ(s)dB(s) =
`−1
∑

j=0

φj(B(tj+1) −B(tj)). (1.4)

A sequence of (Lebesgue) square integrable functions (ψn) is said to converge in L2–norm to a square
integrable function ψ if

lim
n→∞

∫

(ψ(s) − ψn(s))2ds = 0.

The integration interval is again [a, b], which is sometimes made explicit by calling this convergence in
L2([a, b])–norm. It is known that every square integrable function can be written as a limit in L2–norm
of a sequence of simple functions. Assume therefore that ψn is a simple function for every n. A possible
definition for

∫

ψ(s)dB(s) would be limn→∞

∫

ψn(s)dB(s). Unfortunately, this limit only exists almost
surely when ψ satisfies very restrictive conditions.

Since
∫ b

a
ψn(s)dB(s) has a finite second moment, it is known that there exists a square integrable random

variable Z on our probability space (Ω,F , P ) with the property

lim
n→∞

E





(

Z −
∫ b

a

ψn(s)dB(s)

)2


 = 0, (1.5)
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where E denotes the expectation operator with respect to P . This random variable Z is sometimes referred
to as the L2 limit of approximating stochastic integrals of simple functions, and the type of convergence is
called convergence in L2–norm (note the subtle difference in notation with the previous L2–norm). If ψ is
square integrable, this random variable is unique in the sense that another random variable that satisfies
(1.5) is almost sure equal to Z. This makes it possible to take this Z as the definition of the stochastic
integral

∫

ψ(s)dB(s). Moreover, it can be shown that Z is independent of the approximating sequence (ψn)n,
implying that if a given sequence of simple functions (ψn)n converges in L2–norm to ψ, the corresponding
sequence of stochastic integrals

(∫

ψn(s)dB(s)
)

n
converges in L2–norm to

∫

ψ(s)dB(s). We will use this
fact in Chapter 2.

Note that
∫

ψ(s)dB(s) is only defined for square integrable ψ by this reasoning. The integral Z is written
as
∫

ψ(s)dB(s), but it has nothing to do with other types of integrals with the same notation, although
some of the usual properties of integrals are shared, e.g., linearity. Also note that some specific properties
of Brownian motion are used in the way we defined the stochastic integral. Extensions to other processes
are possible using the same arguments, although the definition of the stochastic integral is still a topic of
research for interesting processes that do not fit in this framework.

Omitting details, the second moments of the stochastic integral in (1.3) can be computed by a standard
formula, which leads to the fact that the variance of BH(t) is VHt

2H for some constant VH . From now on,
we will always assume that we deal with normalized (or standardized) fractional Brownian motion, which
has exactly variance t2H . We will use the same notation for the normalized process as before.

A normalized fractional Brownian motion BH = {BH(t) : 0 ≤ t < ∞} with 0 < H < 1 is uniquely
characterized by the following properties, cf., e.g., [46]:

• BH(t) has stationary increments;

• BH(0) = 0, and EBH(t) = 0 for t ≥ 0;

• EB2
H(t) = t2H for t ≥ 0;

• BH(t) has a Gaussian distribution for t > 0.

We always suppose that we deal with a version of BH with continuous sample paths (such a version exists
by the Kolmogorov criterion for continuity of sample paths). From the first three properties it follows that
the covariance function is given by

ρ(s, t) = EBH(s)BH(t) =
1

2

{

t2H + s2H − (t− s)2H
}

(1.6)

for 0 < s ≤ t. For Gaussian processes, the mean and covariance structure determine the finite-dimensional
distributions uniquely. Therefore, we conclude from (1.6) that {BH(at) : 0 ≤ t < ∞} and {aHBH(t) : 0 ≤
t < ∞} have the same finite-dimensional distributions: fractional Brownian motion with Hurst parameter
H is self-similar with Hurst parameter H. In fact, fractional Brownian motion is the only Gaussian process
with stationary increments that is self-similar [16].

Besides communications engineering, fractional Brownian motion has applications in other areas, such as
finance, physics, and bioengineering, to name but a few. In bioengineering for instance, fractional Brownian
motion is used to model regional flow distributions in the heart, the lung and the kidney [7].

Figure 1.2 consists of simulated sample paths for three different values of H. The differences between the
graphs are more easily explained after having studied the incremental process, fractional Gaussian noise.

Fractional Gaussian noise

Define the incremental process X = {Xk : k = 0, 1, . . .} of fractional Brownian motion, which is called
fractional Gaussian noise, by

Xk = BH(k + 1) −BH(k).

It is clear that Xk has a standard normal distribution for every k, but that there is (in general) no inde-
pendence. To be precise, the corresponding autocovariance function γ(·) is of the form

γ(k) =
1

2

[

|k − 1|2H − 2|k|2H + |k + 1|2H
]

(1.7)

for k ∈ Z. If H = 1/2, all the covariances are 0 (except, of course, for k = 0). Since fractional Gaussian
noise is a Gaussian process, this implies independence. This agrees with the properties of ordinary Brownian
motion, which has independent increments.
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Figure 1.2: Samples of fractional Brownian motion for H = 0.2, H = 0.5 and H = 0.8.

By writing down the Taylor expansion at the origin of the function h(x) = (1 − x)2H − 2 + (1 + x)2H

and noting that γ(k) = 1
2k

2Hh(1/k) for k ≥ 1, it is easily seen from (1.7) that

γ(k) ∼ H(2H − 1)k2H−2 (1.8)

as k → ∞. This implies long-range dependence for 1/2 < H < 1:
∑∞

k=0 γ(k) = ∞. It is important to know
that the measurements on real traffic traces indeed suggest that 1/2 < H < 1, see [58].

Since we have noted that long-range dependence is closely related to self-similarity for 1/2 < H < 1, it
is natural to study whether fractional Gaussian noise is also a self-similar process. To make sure that this
is indeed the case, it suffices to show that mX(m) and mHX have the same finite-dimensional distributions.
Since we have already seen that fractional Brownian motion is self-similar, the following holds:

Cov(Xkm + . . .+X(k+1)m−1, Xlm + . . .+X(l+1)m−1)

= Cov(BH((k + 1)m) −BH(km), BH((l + 1)m) −BH(lm))
?
= Cov(mH(BH(k + 1) −BH(k)),mH(BH(l + 1) −BH(l)))

= Cov(mHXk,m
HXl).

At the equality
?
=, we used the fact that the vectors (BH(mk), BH(m(k + 1)), BH(ml), BH(m(l + 1))) and

(mHBH(k),mHBH(k+1),mHBH(l),mHBH(l+1)) have the same distribution for k 6= l, because all finite-
dimensional (particularly four-dimensional) distributions are equal (since fractional Brownian motion is
self-similar). A similar argument shows that this is also the case for k = l. Because of the normality, it
suffices to have equal means and covariances to conclude that the finite-dimensional distributions of mX (m)

and mHX are equal: fractional Gaussian noise is self-similar.
It can be checked from (1.7) that the covariances are negative for H < 1/2 and positive for H > 1/2.

This behavior is also recognized in Figure 1.3, in which samples of fractional Gaussian noise are depicted for
the same values of the Hurst parameter H as in Figure 1.2. For H = 0.2, the negative correlation accounts
for the high variability, whereas for H = 0.8 there are clearly periods in which the sample path increases
and periods in which it decreases. Although the range on the vertical axis is not equal for every plot, it is
plausible that the marginal distributions are independent of H (in fact, the standard deviation is 1).

We now return to Figure 1.2, in which the cumulative sums of the same samples are plotted. The
negative correlations for H = 0.2 are also observed in this plot, whereas the sample is more smooth for
H = 0.8 due to the positive correlations.
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Figure 1.3: Samples of fractional Gaussian noise for H = 0.2, H = 0.5 and H = 0.8.

1.2.2 Spectral densities

Instead of analyzing a stochastic process in the time domain as in the previous subsection, processes can also
be analyzed in the so-called frequency or spectral domain. In this subsection, we only focus on stationary
processes. This technique is called spectral analysis, which has many applications, e.g., in physics and time
series analysis. A time-domain series can be transformed into a frequency-domain series without loss of
information by the so-called Fourier transform. This means that the time-domain series is perfectly recovered
from the frequency-domain series by the so-called inverse Fourier transform. We will see in Chapter 2 how
‘approximate’ fractional Brownian motion can be simulated by generating a frequency-domain sample and
then transforming the resulting series. The required theoretical background is described in this subsection.

Fourier proved that a (deterministic) periodic function can be written as a unique linear combination
of trigonometric functions with different frequencies, making it thus possible to describe this function com-
pletely by the amount in which each frequency is present. It is possible and useful to extend this idea to
non-periodic functions; a deterministic function (or a realization of a stochastic process) can be thought
to consist of trigonometric functions with different frequencies. The information to which extend each
frequency is present in the signal is then summarized in the so-called spectral density, also called power
spectrum density because of its interpretation in physics.

When analyzing stochastic processes in a frequency framework, it is impossible to study every realization
individually. However, it turns out (see, e.g., [52]) that for stationary processes the expected frequency
information is contained in the autocovariance function.

For stationary stochastic processes, the spectral density is computed as follows for frequencies −π ≤ λ ≤
π:

f(λ) =
∞
∑

j=−∞

γ(j) exp(ijλ), (1.9)

where γ(·) again denotes the autocovariance function. The autocovariance function is recovered by the
inversion formula

γ(j) =
1

2π

∫ π

−π

f(λ) exp(−ijλ)dλ. (1.10)

In this report, we are particularly interested in the spectral density of fractional Gaussian noise. It can be
seen [9] that this density is given by

f(λ) = 2 sin(πH)Γ(2H + 1)(1 − cosλ)
[

|λ|−2H−1 +B(λ,H)
]

, (1.11)
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Figure 1.4: The spectral density for H = 0.6, H = 0.7 and H = 0.8.

with

B(λ,H) =

∞
∑

j=1

{

(2πj + λ)−2H−1 + (2πj − λ)−2H−1
}

for −π ≤ λ ≤ π. Since very high frequencies correspond to ‘waves’ between the sample points {0, 1, . . .}, it
is only useful to define the density for a range of frequencies of length 2π (see [52] for details).

Unfortunately, no closed form of the spectral density for fractional Gaussian noise is known, but a quite
useful result is the proportionality of this spectral density to |λ|1−2H near λ = 0, checked by noting that
1 − cos(λ) = 1

2λ
2 + O(λ4) as |λ| → 0. Therefore, f has a pole at zero for H > 1/2. For H < 1/2, f is

non-differentiable at zero. The spectral density is plotted for several values of H > 1/2 in Figure 1.4. Note
that a pole of the spectral density at zero is equivalent to long-range dependence (see Equation (1.9) and
Section 1.1.2).

A low frequency (i.e., small λ) corresponds to a long wavelength. Intuitively, a frequency λ has more
impact when f(λ) is larger. Thus, the larger H, the larger the low frequency component in the spectral
density, as seen in Figure 1.4. We recognize this in Figure 1.3, where bigger ‘waves’ are present in the plot
for H = 0.8.

To evaluate the spectral density numerically, the infinite sum in Equation (1.11) must be truncated.
When the truncation parameter is chosen quite large, the function evaluation becomes computationally
very demanding. Paxson [49] suggests and tests a useful approximation to overcome this problem. The key
observation is that

∞
∑

j=1

h(j) ≈
k
∑

j=1

h(j) +
1

2

∫ k+1

k

h(x)dx+

∫ ∞

k+1

h(x)dx,

for every increasing integrable function h and k = 0, 1, . . .. With ‘≈’ is meant that the right hand side is a
reasonable approximation for the left hand side. It is shown [49] that this is already a good approximation
for k = 3. In that case, the approximation becomes

B̃3(λ,H) =

3
∑

j=1

{

(a+
j )−2H−1 + (a−j )−2H−1

}

+
(a+

3 )−2H + (a−3 )−2H + (a+
4 )−2H + (a−4 )−2H

8Hπ
, (1.12)

where a±j = 2πj ± λ. The author analyzes the relative error of this approximation, and then corrects the
mean absolute error and linear variation in λ by fitting. As final approximation for B(λ,H), he arrives at
B̃(λ,H)′, where

B̃(λ,H)′ = (1.0002 − 0.000134λ)
{

B̃3(λ,H) − 2−7.65H−7.4
}

.

Some problems arise when computing a spectral density for fractional Brownian motion, being a non-
stationary process: there exists no autocovariance function and Equation (1.9) is thus not applicable.
Clearly, a time-independent density (as in the fractional Gaussian noise case) is unsuitable. We will not use
the spectral density of fractional Brownian motion in this report, but the interested reader is referred to
Flandrin [29] for a discussion.
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1.2.3 Another long-range dependent process

Another widely used process with long-range dependence is fractional ARIMA. Since we will encounter this
process only sideways, we discuss it briefly. The parameters of this model control the long-range dependence
as well as the short term behavior. The fractional ARIMA model is based on the ARMA model.

An ARMA(p, q) process W = {Wk : k = 0, 1, . . .} is a short memory process that is the solution of

φ(L)Wk = θ(L)εk,

where φ and θ are polynomials of order p and q respectively and ε is a white noise process, i.e., the εk are
i.i.d. standard normal random variables. The lag operator L is defined as LWk = Wk−1.

A generalization of this model is the ARIMA(p, d, q) process for d = 0, 1, . . ., defined by the property
that (1 − L)dWk is an ARMA(p, q) process. As implied by its name, the fractional ARIMA model admits
a fractional value for the parameter d. For this, we have to know how (1 − L)dWk is defined for fractional
d. This is formally done by the binomial expansion:

(1 − L)dWk =

∞
∑

n=0

(

d

n

)

(−L)nWk,

where the binomial coefficient is defined as
(

d

k

)

=
Γ(d+ 1)

Γ(d− k + 1)Γ(k + 1)
.

Since the case d > 1/2 can be reduced to the case −1/2 < d ≤ 1/2 by taking appropriate differences, the
latter case is particularly interesting. W is a stationary process for −1/2 < d < 1/2. Long-range dependence
occurs for 0 < d < 1/2, implying that the process is also asymptotically second order self-similar in this
case. The corresponding Hurst parameter is H = 1/2 + d.

For simulation issues, we refer to [33].

1.3 Implications for network models

Now that it is clear that fractional Brownian motion is a self-similar process with a long-range dependent
incremental process (under the restriction H > 1/2), we base a network traffic model on fractional Brownian
motion.

Norros [46] defines fractional Brownian traffic as

A(t) = Mt+
√
aMBH(t). (1.13)

Here, A(t) represents the number of bits (or data packets) that is offered in the time interval [0, t]. This
process has three parameters M , a and H. M > 0 is interpreted as the mean input rate, a > 0 as a variance
coefficient, and 1/2 ≤ H < 1 as the Hurst parameter of de fractional Brownian motion BH . Note that
ordinary Brownian traffic (i.e., fractional Brownian traffic with H = 1/2) is a special case, but that no
long-range dependence is present in the incremental process for H = 1/2.

It may seem a bit surprising that the square root of the mean input rate
√
M is present in (1.13) as a

scaling factor for the fractional Brownian motion BH(t). Norros motivates this by a superposition property:

the sum A(t) =
∑K

i=1A
(i)(t) of K independent fractional Brownian traffics with common parameters a and

H but individual mean rates Mi can then be written as A(t) =
∑K

i=1Mi +
√

a
∑K

i=1MiBH(t), where BH

is again a fractional Brownian motion with parameter H.
An obvious weakness of this traffic model is that a trajectory of the process may decrease. Since

A(t) represents the cumulative ‘traffic’ in [0, t], the amount of traffic arriving in an interval [t, t + T ] is
A(t+T )−A(t), which can be negative. However, this problem is considered of secondary importance. The
probability of decay in an interval [t, t+ T ] is time-independent and may be quite small, depending on the
choice of a and M . To make this more precise, we compute this probability explicitly using the stationarity
of the increments of fractional Brownian motion and the self-similarity:

P (A(t+ T ) −A(t) < 0) = P (
√
aM(BH(t+ T ) −BH(t)) +MT < 0)

= P (
√
aMBH(T ) +MT < 0)
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= P (BH(T ) < −
√

M/aT )

= P (BH(1) < −
√

M/aT 1−H)

= Φ(−
√

M/aT 1−H),

where Φ denotes the cumulative distribution function of the standard normal distribution. It is now clear
that this probability rapidly decreases in the interval length T and the factor M/a. This means that
negative traffic is no big issue as long as the timescale (sampling interval) and mean arrival rate (relative
to the variance coefficient) are not too small.

Besides the possibility of negative traffic, the number of bits arriving in a time interval may not be
integer-valued. This is also no big problem as long as the number of arrivals in each interval is not too
small; potential fractional values are small compared to this number, which implies that only a small ‘error’
is made. Again, this is a result of the choice of the interval length, the variance coefficient a and arrival
rate per time unit M .

Norros [45] studies a storage model with fractional Brownian traffic input. The work that is generated
by the traffic process is offered to a server with a fixed capacity of C bits (or data packets) in one time unit.
The work in the system V (t) at time t is called fractional Brownian storage and is defined as

V (t) = sup
s≤t

(A(t) −A(s) − C(t− s))

for t ≥ 0. Note that this so-called workload process is non-negative, and negative traffic (i.e., a decreasing
A) causes no problems for defining the workload process. The following logarithmic asymptotics for the tail
behavior of the distribution of V (t) are obtained:

logP (V (t) > v) ∼ − (C −M)2H

2H2H(1 −H)2−2HaM
v2−2H (1.14)

as v → ∞. Thus, the (tail) distribution can be approximated by a Weibull-type distribution. For exact
asymptotics of P (V (0) > v), the reader is referred to [36]; see also [51].

For the Brownian case H = 1/2, a = 1 and when C = 1, (1.14) reduces to an exponential tail behavior:
1
v logP (V (t) > v) ∼ −2(1−M)/M . As pointed out by the author [45], this coincides with the heavy traffic
asymptotics of the M/D/1 system.

This may be illustrated by the fact that fractional Brownian traffic (1.13) withH = 1/2 is (in some sense)
the limit of a Poisson process. We will make this precise by studying a Poisson process P = {P (t) : t ≥ 0}
with parameter M . For such a Poisson process,

Q(α)(t) =
1√
αM

[P (αt) −Mαt]

converges in distribution to a Gaussian variable with variance t as α → ∞. This is a result of the Central
Limit Theorem, the fact that P (αt) =

∑α
j=1[P (jt) − P ((j − 1)t)] and the independence of Poisson process

increments. We choose d ≥ 1 time epochs 0 ≤ t1 < . . . < td and set t0 = 0 for notational convenience.

Using the stationarity of the Poisson process, we define Q
(α)
j = Q(α)(tj) − Q(α)(tj−1) and deduce that

Q
(α)
j converges in distribution to a Gaussian random variable with variance tj − tj−1 for j = 1, . . . , d. In

addition,
(

Q
(α)
1 , . . . , Q

(α)
d

)

has independent elements for fixed α, again by the independence of Poisson

process increments. This independence is asymptotically retained, as can most easily be seen by considering
cumulative distribution functions. For every x1, . . . , xd ∈ R it holds that

F(
Q

(α)
1 ,...,Q

(α)
d

)(x1, . . . , xd) = F
Q

(α)
1

(x1) · · ·FQ
(α)
d

(xd)

→ Φt1−t0(x1) · · ·Φtd−td−1
(xd) = ΦBM(x1, . . . , xd), (1.15)

where Φσ2(·) denotes the cumulative distribution function of a Gaussian variable with variance σ2. The
last expression in (1.15) is the cumulative distribution function of the increments of Brownian motion.
We conclude that (P (αt) − αMt)/

√
αM converges in finite-dimensional distribution to ordinary Brownian

motion. This suggests the approximation A(t) ≈ Mt +
√
MB(t), which is fractional Brownian traffic with

parameters H = 1/2 and a = 1.
Obviously, different techniques (and underlying arrival processes) are required to view fractional Brow-

nian motion with Hurst parameter H 6= 1/2 as a limiting process. We will briefly come back to this in
Chapter 2.
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The example of a simple queueing system with fractional Brownian traffic input is very important,
because completely different behavior of quantities is observed when a long-range dependent arrival process
is modeled instead of a traditional (e.g., Poisson) process. Much work is done nowadays to address this
issue for different models.

For more complicated and realistic systems, simulation becomes an attractive approach. Especially
when investigating the tail behavior of random variables (e.g., the number of packets in a buffer), very small
probabilities have to be simulated. For this, importance sampling or quick simulation (often based on a
large deviation result) may be useful. Fast simulation for long-range dependent processes is a relatively new
area, but some work has been done by Huang et al. [34].

1.4 Outline and scientific contribution

As pointed out before, the evaluation of several simulation methods for fractional Brownian motion is the
main issue of this report. However, it is often more convenient to work with the (stationary) incremental
process of fractional Brownian motion, fractional Gaussian noise (see Section 1.2). Some algorithms to
simulate fractional Brownian motion (or fractional Gaussian noise) are described in Chapter 2. The first part
addresses the available exact methods (i.e., the output of the method is a sampled realization of fractional
Brownian motion). Several approximate methods are presented in the second part. A number of methods
based on the so-called Fast Fourier Transformation (FFT) are included in this survey. By the uniform
presentation, some insight is gained into the connections between these methods. The Paxson method,
which was originally proposed by Paxson [49] using purely intuitive and asymptotic arguments, thus lacking
a real theoretical foundation, is shown to fit in a general theoretical framework. This finding does not only
clarify many empirical observations, it also leads to an important improvement of the method. In addition, it
is shown that this FFT-based Paxson method and a generalization of the method, the approximate circulant
method, are asymptotically exact in the sense that the variance of the approximation error decays to zero
for every sample point as the sample size increases. It also turns out that this approximate circulant method
is closely related to an exact method, the Davies and Harte method. From this observation is benefited to
study the performance of this method.

Another important observation that is made in Chapter 2 concerns the wavelet method of Abry, Sellan
and Meyer [2, 54]. It is shown that this wavelet method does not approximate fractional Brownian motion,
but another Gaussian process that has no stationary increments.

To evaluate approximate simulation methods, we should know if generated approximate samples have
the same properties as exact samples. Statistical estimation and testing techniques that can be used to
investigate this are discussed in Chapter 3. Although most of the estimation techniques are standard tools
in the analysis of long-range dependent processes, a number of recent estimation methods, based on discrete
variations and wavelets, are also reviewed. In addition, a test is proposed that is perfectly suitable for our
evaluation purposes. However, the test is time- and memory-consuming and its power is unknown.

The final chapter, Chapter 4, consists of the actual analysis of the most promising approximate simu-
lation methods. First, an error analysis is performed using the insights of Chapter 2. When possible, the
covariance structure of approximate samples is compared to the exact covariance structure. For the so-called
Conditionalized Random Midpoint Displacement method, it is described how the covariances of the sample
can numerically be computed. In the original paper, this was only done for the two simplest cases.

Then, the approximate methods are evaluated by an approach that is different from the approaches taken
in previous studies. The accuracy of new simulation methods is mostly studied by estimating the Hurst
parameter using a number of estimation methods. Note that the Hurst parameter determines the covariance
structure completely, see (1.6). However, these estimation methods are in general based on only one property
of an exact fractional Gaussian noise sample, thus limiting the conclusive power of the estimates. We can
partially overcome this problem by estimating the Hurst parameter with several estimators. However, we
can still not be sure that the sample is fractional Gaussian noise when all available estimators produce
‘satisfactory’ estimates.

An additional problem is that most estimators are biased. We deal with this in Chapter 4 by using
nonparametric inference techniques.
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CHAPTER 2

Simulation methods

In the previous chapter, we have seen that the fractional Brownian motion, a Gaussian self-similar process,
models some types of data traffic better and more realistically than conventional models. Since few theoret-
ical results are known about queueing systems with a fractional Brownian motion-type arrival process, it is
important to know how this process can be simulated. Therefore, an important role is played by simulation
studies, especially for complex queueing systems. It is the aim of this chapter to describe some simulation
methods for fractional Brownian motion, exact as well as approximate.

Since it is only possible to simulate in discrete time, we adapt a discrete time notation Y0, Y1, . . . for the
values of the fractional Brownian motion at the discrete time epochs 0, 1, . . .. Once this fractional Brownian
motion sample is simulated, a realization on another equispaced grid is obtained by using the self-similarity
property.

2.1 Exact methods

2.1.1 The Hosking method

The Hosking method (also known as the Durbin or Levinson method) is an algorithm to simulate a gen-
eral stationary Gaussian process; therefore, we will focus on the simulation of fractional Gaussian noise
X0, X1, . . .. Recall that a fractional Brownian motion sample Y0, Y1, . . . is obtained from a fractional Gaus-
sian noise sample by taking cumulative sums. The method generates Xn+1 given Xn, . . . , X0 recursively. It
does not use specific properties of fractional Brownian motion nor fractional Gaussian noise; the algorithm
can be applied to any stationary Gaussian process. The key observation is that the distribution of Xn+1

given the past can explicitly be computed.
Write γ(·) for the covariance function of the (zero-mean) process, that is

γ(k) := EXnXn+k,

for n, k = 0, 1, 2, . . .. Assume for convenience that γ(0) = 1. Furthermore, let Γ(n) = (γ(i− j))i,j=0,...,n be
the covariance matrix and c(n) be the (n+ 1)–column vector with elements c(n)k = γ(k + 1), k = 0, . . . , n.
Define the (n+ 1)× (n+ 1) matrix F (n) = (1(i = n− j))i,j=0,...,n, where 1 denotes the indicator function.
Note that premultiplying this matrix with a column vector or postmultiplying with a row vector ‘flips’ this
vector.

The matrix Γ(n+ 1) can be splitted as follows:

Γ(n+ 1) =

(

1 c(n)′

c(n) Γ(n)

)

(2.1)

=

(

Γ(n) F (n)c(n)
c(n)′F (n) 1

)

, (2.2)

where the prime denotes vector transpose.
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We next compute the conditional distribution of Xn+1 given Xn, . . . , X0. In fact, we show that this
distribution is Gaussian with expectation µn and variance σ2

n given by

µn := c(n)′Γ(n)−1











Xn

...
X1

X0











, σ2
n := 1 − c(n)′Γ(n)−1c(n). (2.3)

Define d(n) = Γ(n)−1c(n) for convenience. It is left to the reader to check with (2.1) and (2.2) that the
following two expressions for the inverse of Γ(n+ 1) hold:

Γ(n+ 1)−1 =
1

σ2
n

(

1 −d(n)′

−d(n) σ2
nΓ(n)−1 + d(n)d(n)′

)

(2.4)

=
1

σ2
n

(

σ2
nΓ(n)−1 + F (n)d(n)d(n)′F (n) −F (n)d(n)

−d(n)′F (n) 1

)

, (2.5)

From (2.4) is readily deduced that for each x ∈ Rn+1 and y ∈ R:

(

y x′
)

Γ(n+ 1)−1

(

y
x

)

=
(y − d(n)′x)2

σ2
n

+ x′Γ(n)−1x. (2.6)

This implies that the distribution of Xn+1 given Xn, . . . , X0 is indeed Gaussian with expectation µn and
variance σ2

n.
Now that we know this distribution, the required sample is found by generating a standard normal

random variable X0 and simulate Xn+1 recursively for n = 0, 1, . . .. Of course, the difficulty is to organize
the calculations to avoid matrix inversion in each step. The algorithm proposed by Hosking [33] computes
d(n) recursively. The algorithm is presented here in a slightly different but faster way than in the original
article.

Suppose we know µn, σ2
n and τn := d(n)′F (n)c(n) = c(n)′F (n)d(n). Using (2.5), it is easy to see that

σ2
n satisfies the recursion

σ2
n+1 = σ2

n − (γ(n+ 2) − τn)2

σ2
n

.

A recursion for d(n+ 1) = Γ(n+ 1)−1c(n+ 1) is also obtained from (2.5):

d(n+ 1) =

(

d(n) − φnF (n)d(n)
φn

)

,

with

φn =
γ(n+ 2) − τn

σ2
n

.

The first n elements of the (n + 2)–row vector d(n + 1) can thus be computed from d(n) and φn. Given
d(n + 1), it is clear how to compute µn+1, σ

2
n+1 and τn+1. We start the recursion with µ0 = γ(1)X0,

σ2
0 = 1 − γ(1)2 and τ0 = γ(1)2. Note that cumulative sums have to be computed when a sample fractional

Brownian motion Y0, Y1, . . . is required.

An approach that is closely related to the Hosking algorithm is the innovations algorithm. Instead
of recursively generating Xn+1 given Xn, . . . , X0, this method simulates the innovation Xn+1 − µn given
Xn −µn−1, . . . , X1 −µ0, X0. An advantage of this algorithm is that it can also be applied to non-stationary
processes. For details we refer to [11].

Because of the computations in the recursions of d(n), µn and τn, the algorithm’s complexity is of order
N2 for a sample of size N . As an example, the computation of d(n) − φnF (n)d(n) for given φn and d(n)
requires order n computer flops. Doing this for n = 1, 2, . . . , N requires order N 2 flops.

An advantage of the Hosking method is that traces can be generated on-the-fly. This means that the
sample size does not need to be known in advance. This occurs for example when a simulation should stop
at some random time.

Another strength of this method is its extreme simplicity. This is used in Huang et al. [34] to express
some likelihoods in terms of by-products of the algorithm, like φn. Based on these likelihoods, an algorithm
for fast simulation in a queueing framework is given.
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When more than one trace is needed, as in simulation studies with more than one run, most of the
computations need not be done again. However, because the calculation of µn depends on the generated
points X0, . . . , Xn, the number of computer flops is still of order N 2; the time complexity is thus not reduced.

2.1.2 The Cholesky method

Not surprisingly, the Cholesky method (e.g., [4]) makes use of the so-called Cholesky decomposition of the
covariance matrix. This means that the covariance matrix Γ(n) can be written as L(n)L(n)′, where L(n) is
an (n+ 1)× (n+ 1) lower triangular matrix. Denoting element (i, j) of L(n) by lij for i, j = 0, . . . , n, L(n)
is said to be lower triangular if lij = 0 for j > i. It can be proven that such a decomposition exists when
Γ(n) is a symmetric positive definite matrix.

Unlike the Hosking method, the Cholesky method can be applied to non-stationary Gaussian processes,
but we assume stationarity for notational reasons.

The elements of L(n) can be computed by noting that element (i, j) of L(n)L(n)′ and Γ(n) should be
equal for j ≤ i (then also for j > i because of the symmetry). That is,

γ(i− j) =

j
∑

k=0

likljk, j ≤ i. (2.7)

This equation reduces to γ(0) = l200 for i = j = 0. For i = 1 we get the two equations

γ(1) = l10l00, γ(0) = l210 + l211

determining l10 and l11. Since it is clear from this that lij cannot depend on n, L(n+ 1) can be computed
from L(n) by adding a row (and some zeros to make L(n+ 1) lower triangular) determined by

ln+1,0 =
γ(n+ 1)

l00

ln+1,j =
1

ljj

(

γ(n+ 1 − j) −
j−1
∑

k=0

ln+1,kljk

)

, 0 < j ≤ n

l2n+1,n+1 = γ(0) −
n
∑

k=0

l2n+1,k.

From these formulas follows that L(n) is unique under the additional restriction that the elements on the
main diagonal are strictly positive. When Γ(n + 1) is a positive definite matrix, the non-negativity of
l2n+1,n+1 is guaranteed, so that the matrix L(n+ 1) is real.

Denote by V (n) = (Vi)i=0,...,n an (n+ 1)–column vector of i.i.d. standard normal random variables, and
construct V (n+ 1) from V (n) by padding a standard normal random variable. The key idea is to simulate
X(n) = L(n)V (n) recursively. For every n ≥ 0, X(n) has zero mean and covariance matrix

Cov(L(n)V (n)) = L(n)Cov(V (n))L(n)′ = L(n)L(n)′ = Γ(n).

Summarizing, Xn+1 can quite easily be simulated once L(n+ 1) is computed:

Xn+1 =

n+1
∑

k=0

ln+1,kVk. (2.8)

Like the Hosking method, one does not need to set the time horizon in advance. The drawback of the
method is that it becomes slow (order N 3 for N points) and demanding in terms of storage, because the
matrix L(n), that grows in every step of the recursion, has to be kept in memory.

When more than one sample is needed, a lot of computing time can be saved by calculating L(n) only
once. In fact, every additional sample then requires order N 2 computer flops.

Although not obvious by comparing the algorithms, the Hosking method is essentially equivalent to
the Cholesky method (but faster!) in the sense that the Hosking method computes implicitly the same
matrix L(n). Indeed, in the Hosking method, Xn+1 is generated by µn + σnVn+1 and µn only depends on
Xn, . . . , X0. Analogously, Xn is generated by µn−1 + σn−1Vn, where µn−1 only depends on Xn−1, . . . , X0.
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Repeating this, Xn+1 is generated by some linear combination of n + 1 i.i.d. standard normal random
variables:

Xn+1 =

n+1
∑

k=0

hn+1,kVk,

where we know that hn+1,n+1 = σn > 0. The analogy with (2.8) is now clear: just like the Cholesky method,
the sample is generated by multiplying a vector with i.i.d. standard normal components with a square lower
triangular matrix. But the matrices must then be equal, as the Cholesky decomposition is unique if the
elements on the main diagonal are positive!

2.1.3 The Davies and Harte method

This algorithm was originally proposed by Davies and Harte [19] and was later simultaneously generalized
by Dietrich and Newsam [23] and Wood and Chan [60]. Like the Hosking and the Cholesky method, the
method tries to find a ‘square root’ of the covariance matrix, in the sense that Γ = GG′ for some square
matrix G. Assume that a sample of size N is needed and that the size of the covariance matrix is a power
of two, which means that N = 2g for some g ∈ N. To be able to compute such a square root efficiently, the
main idea is to embed Γ in a so-called circulant covariance matrix C of size 2N = 2g+1. More precisely,
define C by























γ(0) γ(1) · · · γ(N − 1) 0 γ(N − 1) γ(N) · · · γ(2) γ(1)
γ(1) γ(0) · · · γ(N − 2) γ(N − 1) 0 γ(N − 1) · · · γ(3) γ(2)

..

.
..
.

. . .
..
.

..

.
..
.

..

.
. . .

..

.
..
.

γ(N − 1) γ(N − 2) · · · γ(0) γ(1) γ(2) γ(3) · · · γ(N − 1) 0
0 γ(N − 1) · · · γ(1) γ(0) γ(1) γ(2) · · · γ(N − 2) γ(N − 1)

γ(N − 1) 0 · · · γ(2) γ(1) γ(0) γ(1) · · · γ(N − 3) γ(N − 2)
...

...
. . .

...
...

...
...

. . .
...

...
γ(1) γ(2) · · · 0 γ(N − 1) γ(N − 2) γ(N − 3) · · · γ(1) γ(0)























. (2.9)

Note that the ith row can be constructed by shifting the first row i − 1 ‘places’ to the right and padding
the removed elements on the left. Also note that the matrix is symmetric and that the upper left corner
(the shaded area) is Γ. When γ(·) is the covariance function of fractional Gaussian noise and the zeros in
the matrix are replaced by γ(N), the matrix is positive definite [17]. It becomes clear in Section 2.2.4 why
we use zeros. This has no influence on the resulting fractional Gaussian noise sample as long as the λj are
non-negative (in practice, this is satisfied for any reasonable sample size N).

It should be said that the circulant matrix is not necessarily positive definite for general autocovariance
functions, but it is described in [23, 60] how to deal with that situation. For some autocovariance functions,
it is even impossible to embed the covariance matrix in a positive definite matrix. The authors propose to
make the method approximate in that case.

If the number of required points is no power of two, more zeros have to be padded in the first row to
obtain a circulant matrix, but this does not change the essence of the method.

The algorithm makes use of the following theorem. Every circulant matrix C can be decomposed as
C = QΛQ∗, where Λ is the diagonal matrix of eigenvalues of C, and Q is the unitary matrix defined by

(Q)jk =
1√
2N

exp

(

−2πi
jk

2N

)

, for j, k = 0, . . . , 2N − 1,

where i =
√
−1. Q∗ denotes the complex conjugate of the transpose of Q. It is easy to check that Q is

indeed unitary: QQ∗ = I. The eigenvalues, which constitute the matrix Λ, are given by

λk =

2N−1
∑

j=0

rj exp

(

2πi
jk

2N

)

for k = 0, . . . , 2N − 1, (2.10)

with rj the (j+1)th element of the first row of C. Because the matrix C is positive definite and symmetric,

the resulting eigenvalues will be positive and real. Therefore, the matrix with eigenvalues
√
λ1, . . . ,

√

λ2N−1

and the same eigenvectors as C is also positive definite and real. Note that since C = QΛQ∗ and Q is
unitary, the matrix S = QΛ1/2Q∗ satisfies SS∗ = SS′ = C. Therefore, S has exactly the desired property.
However, S is not the same matrix that was found in the Cholesky method, since S is not lower triangular.

To obtain a sample path of the process, we need to find a way to simulate QΛ1/2Q∗V , where V is a
vector with i.i.d. standard normal elements. This is done in three successive steps:
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1. Compute the eigenvalues with Equation (2.10). This can efficiently be done with the Fast Fourier
Transform (FFT). For a given complex sequence (αk)j−1

k=0, the FFT is an algorithm to compute the
Fourier transform of that sequence, i.e.,

j−1
∑

k=0

αk exp

(

2πi
nk

j

)

(2.11)

for n = 0, . . . , j − 1. When j is a power of two, the number of calculations required by the FFT is of
order j log(j); a considerable gain in speed compared to the straightforward calculation of order j2.

2. Calculate W = Q∗V . A derivation of the covariance structure of W leads to the following simulation
scheme:

• Generate two standard normal random variables W0 and WN ;

• For 1 ≤ j < N , generate two independent standard normal random variables V
(1)
j and V

(2)
j and

let

Wj =
1√
2
(V

(1)
j + iV

(2)
j )

W2N−j =
1√
2
(V

(1)
j − iV

(2)
j ).

The resulting vector W has the same distribution as Q∗V .

3. Compute Z = QΛ1/2W :

Zk =
1√
2N

2N−1
∑

j=0

√

λjWj exp

(

−2iπ
jk

2N

)

. (2.12)

Again, this calculation is best done with the Fast Fourier Transform for maximum speed. In summary,
the sequence (Zk)2N−1

k=0 is the Fourier transform of

wk :=































√

λk

2N V
(1)
k k = 0;

√

λk

4N

(

V
(1)
k + iV

(2)
k

)

k = 1, . . . , N − 1;
√

λk

2N V
(1)
k k = N ;

√

λk

4N

(

V
(1)
2N−k − iV

(2)
2N−k

)

k = N + 1, . . . , 2N − 1,

(2.13)

A sample of fractional Gaussian noise is obtained by taking the first N elements of Z. It is left to the
reader to check that Z is real by construction.

Looking at (2.9), we see that the last N elements of Z also have the desired covariance structure. So in this
setup, we get a second sample ‘for free’. However, these two samples may not be put together to obtain a
double-sized sample, because the correlation structure between the two samples is not according to fractional
Gaussian noise. Since the two samples are moreover not independent, this second sample is mostly useless.

The main advantage of this method is the speed. More precisely, the number of computations is of order
N log(N) for N sample points. When more traces are needed, the eigenvalues need only to be calculated
once. However, the calculations in the second step should be done separately for each trace. Because of
this, the number of computations is still of order N log(N).

2.2 Approximate methods

2.2.1 Stochastic representation method

As we saw in Section 1.2.1, Mandelbrot and van Ness [43] defined fractional Brownian motion by a stochastic
integral with respect to ordinary Brownian motion. A natural idea is to approximate this integral by
Riemann-type sums to simulate the process.
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When approximating (1.3) by sums, the first integral should be truncated, say at −b. The approximation
B̃H(n) is for n = 1, . . . , N given by

B̃H(n) = CH

(

0
∑

k=−b

[(n− k)H−1/2 − (−k)H−1/2]B1(k) +
n
∑

k=0

(n− k)H−1/2B2(k)

)

, (2.14)

where B1 resp. B2 are vectors of b+ 1 resp. N + 1 i.i.d. standard normal variables, mutually independent.
The constant CH in (2.14) is not equal to the constant in (1.3), since we switched to study normalized
fractional Brownian motion.

The approximation can be made better by increasing the truncation parameter b and choosing a finer
grid for the Riemann sums. In [14], it is suggested to choose b = N 3/2. This method is only interesting
from a historical point of view and is considered no good way to generate fractional Brownian motion.

2.2.2 Aggregating packet processes

A possible explanation for the self-similarity in LAN traffic is the presence of the Noah effect in the packet
processes of individual source-destination pairs, cf. Section 1.1.1. We can therefore simulate processes on
the micro-scale and aggregate them to obtain Brownian traffic.

For this, we first have to gain more insight into this aggregation result. This section is mainly based on
Willinger et al. [59].

Suppose there are S i.i.d. sources. Each source s has active and inactive periods, which is modeled by
a stationary binary time series {W (s)(t) : t ≥ 0}. W (s)(t) = 1 means that the source is sending a packet at
time t and this is not the case if W (s)(t) = 0. The lengths of the active (‘ON’) periods are i.i.d., those of
the inactive periods (‘OFF’) are i.i.d., and the lengths of the ON- and OFF-periods are independent. An
OFF-period follows an ON-period and the ON- and OFF-period lengths may have different distributions.
Rescaling time by a factor T , let

WS(Tt) =

∫ Tt

0

(

S
∑

s=1

W (s)(u)

)

du,

be the aggregated cumulative packet counts in the interval [0, T t].
For simplicity, let the distributions of the ON- and OFF-periods both be Pareto with joint parameter

1 < α < 2. Recall that a random variable X has a Pareto distribution with parameter α > 0 if P (X > t) =
t−α for t ≥ 1. Note that the ON- and OFF-periods have infinite variance as a result of 1 < α < 2.

It is pointed out in [59] that the following limit result holds for {WS(Tt) : 0 ≤ t <∞}:

lim
T→∞

lim
S→∞

T−HS−1/2

(

WS(Tt) − 1

2
TSt

)

= σBH(t) (2.15)

for some σ > 0, where H = (3−α)/2 and BH(t) denotes fractional Brownian motion with Hurst parameter
H. The limits are limits in the sense of finite-dimensional distributions. A similar result holds when other
kinds of heavy-tailed distributions for the ON- and OFF-periods are chosen.

We should interpret this asymptotic result with care, because (2.15) is not valid when the order of the
limits is reversed. Forgetting about this, we can intuitively say that WS(Tt) closely resembles

1

2
TSt+ TH

√
SσBH(t),

which is fractional Brownian traffic with parameters M = 1
2TS and a = 2σ2T 2H−1 in the notation of Section

1.3.
The above result can be used for simulation purposes, by aggregating a large number of sources with

Pareto ON- and OFF-periods. This results in an order N algorithm when N sample points are needed.
However, the number of sources that have to be aggregated to get proper output may be quite large, which
may result in a serious slowdown. Moreover, there is no clue how many sources are required to produce
reasonable results. In fact, because of the mentioned problem with the reversal of the limits, we have to be
very suspicious about the obtained sample.

Another aggregation method for simulating long-range dependent processes uses the M/G/∞ queue-
ing model, where customers arrive according to a Poisson process and have service times drawn from a
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distribution with infinite variance. When Xt denotes the number of customers in the system at time t,
{Xt : t ≥ 0} is asymptotically self-similar [41]. Again, one must trade off length of computation for degree
of self-similarity.

2.2.3 (Conditionalized) Random Midpoint Displacement

The Hosking and Cholesky method generate a fractional Gaussian noise sample recursively. Instead of
simulating Xn+1 given the whole past, the generation may be sped up by simulating Xn+1 given the last
m generated values for some m ≥ 1. However, the long-term correlations are then destroyed, which makes
this approach not suitable for generating long-range dependent processes.

The idea behind the Random Midpoint Displacement (RMD) method is to generate the Xn in an-
other order, so that conditioning on only one already generated sample point preserves some long-range
dependence. The suitability of the RMD method in a teletraffic framework was first investigated in [40].

A generalization of the RMD method, the Conditionalized RMD method [47], generates the sample in
the same order as the RMD method, but more sample points are used in the conditioning. The method has
two integer-valued truncation parameters, l ≥ 0 and r ≥ 1. We construct a sample of fractional Brownian
motion on [0, 1] for notational reasons. Note that this sample can be scaled onto an interval of any desired
length using the self-similarity property.

Denote Xij = BH(j2−i) − BH((j − 1)2−i) for i = 0, 1, 2, . . ., j = 1, . . . , 2i. For fixed i, Xi = {Xij :
j = 1, . . . , 2i} can be considered a scaled sample of fractional Gaussian noise of size 2i. However, there is a
strong correlation between these samples for different i:

Xi−1,j = Xi,2j +Xi,2j+1. (2.16)

The Conditionalized RMD algorithm makes use of this recursive structure by simulating the processes
X0,X1, . . . until the desired resolution, say N = 2g, is reached. A fractional Brownian motion sample is then
found by taking cumulative sums of Xg. We will refer to the Conditionalized RMD method with truncation
parameters l and r as RMDl,r.

Assume that we have obtained realizations of X0,X1, . . . ,Xi−1. To obtain a realization of Xi as well,
it suffices to generate Xi,j for odd j because of (2.16). Note that the realization of Xi−1 contains all
generated information so far. Let us proceed from left to right, and assume that Xi1, . . . , Xi,2k have been
generated (k = 0, 1, . . . , 2i−1 − 1). When we continue to generate Xi,2k+1 by conditioning on all past values
Xi1, . . . , Xi,2k in Xi and all values of Xi−1 that are still relevant, Xi−1,k+1, . . . , Xi−1,2i−1 , no approximation
is involved. The algorithm stays then exact but also becomes very slow. Therefore, Norros et al. [47] propose
to use only the last l values of Xi1, . . . , Xi,2k (if possible) and the first r values of Xi−1,k+1, . . . , Xi−1,2i−1

(if possible). For l = 0 and r = 1, the algorithm reduces to the original RMD method described in [40].
Putting this mathematically, we set

Xi,2k+1 = e(i, k)
(

Xi,(2k−l+1)∨1, . . . , Xi,2k, Xi−1,k+1, . . . , Xi−1,(k+r)∧2i−1

)′
+
√

v(i, k)Uik,

where {Uik : i = 0, 1, . . . ; k = 0, . . . , 2i−1 − 1} is a set of independent standard Gaussian variables, e(i, k) is
a row vector such that

e(i, k)
(

Xi,(2k−l+1)∨1, . . . , Xi,2k, Xi−1,k+1, . . . , Xi−1,(k+r)∧2i−1

)′

= E
[

Xi,2k+1|Xi,(2k−l+1)∨1, . . . , Xi,2k, Xi−1,k+1, . . . , Xi−1,(k+r)∧2i−1

]

,

and v(i, k) is the scalar given by

Var
[

Xi,2k+1|Xi,(2k−l+1)∨1, . . . , Xi,2k, Xi−1,k+1, . . . , Xi−1,(k+r)∧2i−1

]

,

following the convention a∨ b = max(a, b) and a∧ b = min(a, b). The quantities e(i, k) and v(i, k) are com-
puted with a slight modification of the technique that was used in the derivation of the Hosking algorithm,
Equation (2.6). The covariances that are needed for this are computed by straightforward substituting the
definition of Xij and applying (1.6).

By the stationarity of the increments of BH and by self-similarity, e(i, k) is independent of i and k
when 2k ≥ l and k ≤ 2i−1 − r. Moreover, it does not depend on l and r when 2i < l + 2r. Thus, the
number of vectors e(i, k) that needs to be known up to stage j, where j is the smallest integer greater
than log2(l + 2r), is the total number of vectors that should be computed. This number is not larger than
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1 + 2 + 22 + . . .+ 2j−1 = 2j − 1 < 2l+ 4r. The same holds for the scalars v(i, k), except that ‘independence
with respect to i’ is replaced by scaling a constant factor 2−2Hi.

Some optimizing may be done to calculate the needed vectors e(i, k) and scalars v(i, k) (e.g., in a recursive
approach like Hosking’s method rather than explicit matrix inversion), but since 2l + 4r is typically quite
small and since the sizes of the matrices are therefore also quite small, not much computational gain should
be expected from this (if at all).

It is clear that the algorithm as described above is unsuitable for on-the-fly generation of the sample,
because the time horizon should be known in advance. It is, however, not necessary to generate the splits
in exactly the same order as above. That is, instead of generating each resolution completely before moving
to the finer one, we can have several unfinished resolutions at the same time. For details we refer to [47].

The complexity of this algorithm is of order N when a sample of size N is needed. Note that this is faster
than the fastest exact method. Therefore, the conditionalized RMD algorithm is extremely interesting for
simulation purposes. In Chapter 4, we compare the output this method for several values of l and r to see
if a reasonable trade-off between speed and precision is made.

2.2.4 Spectral simulation, the Paxson method and the approximate circulant
method

Spectral simulation is a method to simulate stationary Gaussian processes using spectral analysis. When
extracting an algorithm out of spectral considerations, the Fast Fourier Transform (FFT) plays a major
role.

First, we describe the general principle of spectral simulation, which was already briefly touched in
Section 1.2.2. The idea of spectral simulation is to simulate a process in the frequency domain and transform
the resulting series to the time domain. Although it is not possible to obtain an exact fractional Brownian
motion sample when this approach is followed, we will shortly see that the accuracy increases as the sample
size grows.

In the course of the exposition, it becomes clear that spectral simulation is closely related to the Paxson
method and the Davies and Harte method. The resulting modification of the Davies and Harte method
(making the exact algorithm approximate to speed up the simulation) will be called the approximate circu-
lant method.

Spectral simulation

We have already seen that unambiguous spectral analysis of stochastic processes is only possible for station-
ary processes. Throughout this subsection, we assume that the required sample size N is a power of two.
We deal with a general real-valued stationary Gaussian process with spectral density f(λ), possibly with
a singularity at 0 (as in the case of fractional Gaussian noise, on which we will focus). See Section 1.2.2
for a review of spectral densities. The considerations in this subsection are mainly based on the theory of
spectral analysis, see, e.g., [42, 52]. The results of this subsection have been published as [22].

The spectral analysis of a stationary discrete-time Gaussian process X = {Xn : n = 0, . . . , N − 1} shows
that it can be represented in terms of the spectral density as

Xn =

∫ π

0

√

f(λ)

π
cos(nλ)dB1(λ) −

∫ π

0

√

f(λ)

π
sin(nλ)dB2(λ), (2.17)

where the equality is to be understood as equality in distribution. This result is called the spectral theorem.
The two integrators are mutually independent (ordinary) Brownian motions; for the definition of such a
stochastic integral, see Section 1.2.1. Using elementary stochastic calculus and (1.10), its validity is easily
checked by showing that the right-hand side of (2.17) has covariance function (1.7).

Spectral simulation is based on approximating Equation (2.17); the integrand is replaced by a simple
function. Define ξn(λ) :=

√

f(λ)/π cos(nλ) and fix some integer `. After setting tk = πk/` for k =

0, . . . , `− 1, we define a simple function ξ
(`)
n on [0, π] for 0 ≤ n ≤ N − 1 by

ξ(`)n (λ) :=

√

f(t1)

π
cos(nt1)1{0}(λ) +

`−1
∑

k=0

√

f(tk+1)

π
cos(ntk+1)1(tk,tk+1](λ). (2.18)

Let θ
(`)
n (λ) be defined as ξ

(`)
n (λ), but with the cosine terms replaced by sine terms. The first integral in

(2.17) is approximated by
∫ π

0
ξ
(`)
n (λ)dB1(λ), which can be computed using Equation (1.4). Since a similar
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approximation can be made for the second integral, we arrive at the following approximation X̂
(`)
n of Xn:

X̂(`)
n :=

`−1
∑

k=0

√

f(tk+1)

`

[

cos(ntk+1)U
(0)
k − sin(ntk+1)U

(1)
k

]

, (2.19)

where U
(i)
k are again i.i.d. standard normal random variables for k = 0, . . . , `− 1. The two vectors U (0) and

U (1) should also be mutually independent, since B1 and B2 are independent as well.
It should be noted that for H > 1/2, we approximate the spectral density by functions that have no

pole at 0. As already pointed out, this pole is equivalent to long-range dependence. Hence, we approximate
a long-range dependent process by a short-range dependent process. Still, we may obtain a sample with a
covariance structure that approximates the structure determined by (1.7) and (1.8) very well. This issue is
explored further in Section 4.2.

The FFT can be used to calculate (2.19) efficiently. To this end, we define the sequence (ak)k=0,...,2`−1

by

ak :=























0 k = 0;
1
2

(

U
(0)
k−1 + iU

(1)
k−1

)

√

f(tk)/` k = 1, . . . , `− 1;

U
(0)
k−1

√

f(tk)/` k = `;
1
2

(

U
(0)
2`−k−1 − iU

(1)
2`−k−1

)

√

f(t2`−k)/` k = `+ 1, . . . , 2`− 1.

(2.20)

Using (2.11), one can check that the Fourier transform of (ak) is real and equals (2.19).

Since ξ
(`)
n approximates ξn better for larger `, an interesting question is whether the approximate sample

converges to an exact sample as ` → ∞. However, different types of convergence of random variables
and processes exist; it is at first sight not clear in what sense the approximate sample converges. In the
remainder of this subsection, we deal with this convergence issue.

Convergence

We start by deriving the covariance structure of X̂(`). From (2.19) it follows that the covariance between

X̂
(`)
m and X̂

(`)
n for n,m = 0, . . . , N − 1 is given by

Cov(X̂(`)
m , X̂(`)

n ) =

`−1
∑

k=0

f(tk+1)

`
cos((m− n)tk+1), (2.21)

which depends only on m − n. Hence, the spectral simulation method produces stationary approximate
samples. Moreover, the covariances approach their exact values as `→ ∞:

`−1
∑

k=0

f(tk+1)

`
cos(ntk+1) → 2

∫ π

0

f(λ)

2π
cos(nλ)dλ =

1

2π

∫ π

−π

f(λ) exp(−inλ)dλ = γ(n), (2.22)

where the last equality is (1.10). A more detailed numerical analysis of the covariance structure is deferred
to Chapter 4.

It is readily checked with (1.10) that Cov(X̂
(`)
m , X̂

(`)
n ) converges to γ(|m − n|) as ` → ∞. From this

fact, it is not difficult to deduce that the finite-dimensional distributions of X̂(`) converge in distribution to
the corresponding finite-dimensional distributions of X as ` → ∞. However, we will not prove this, since

we can prove an even stronger convergence result: every sample point X̂
(`)
n converges in L2–norm to the

corresponding exact sample point Xn as `→ ∞.
The proof of this fact is based on the definition of the stochastic integral appearing in (2.17). Because f

is integrable, the function ξn is certainly square integrable for 0 ≤ n ≤ N − 1. Recall that the discussion on

stochastic integration showed that if the sequence of simple functions (ξ
(`)
n )` satisfies, for fixed 0 ≤ n ≤ N−1,

lim
`→∞

∫ π

0

[

ξn(λ) − ξ(`)n (λ)
]2

dλ = 0, (2.23)

then
∫ π

0
ξ
(`)
n (λ)dB1(λ) converges in L2–norm to

∫ π

0
ξn(λ)dB1(λ) as ` → ∞. It is indeed true that (2.23)

holds; a similar result holds for the second integrand of (2.17). A proof of these facts can be found in the
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appendix of this chapter. By the independence of B1 and B2, we deduce that every sample point X̂
(`)
n

converges to Xn in L2–norm, i.e., in mean square sense.

Since the ‘error’ X̂
(`)
n −Xn is a centered Gaussian variable for every n (with a variance that decays to

zero in `), we have

E|X̂(`)
n −Xn|p =

Γ((p+ 1)/2)√
π

[

2E|X̂(`)
n −Xn|2

]p/2

. (2.24)

Thus, X̂
(`)
n converges to Xn in Lp–norm for every p ≥ 1! Because of the normality, this is equivalent to

convergence in probability. This convergence of the individual sample points is readily extended to a joint
convergence result: the finite-dimensional distributions of X̂(`) converge in probability to the corresponding
finite-dimensional distributions of X as `→ ∞.

An interesting question is at what rate the convergence takes place. By the way the stochastic integral
is constructed, this rate is related to the rate of convergence of (2.23) and its θn-counterpart. Let ε > 0 be
arbitrary, and suppose that H > 1/2. As

√

f(λ)/(2π) cos(nλ) behaves like C|λ|1−2H near λ = 0, one has
on [0, π/`], for large `,

(C − ε)λ1/2−H ≤
√

f(λ)

2π
cos(nλ) ≤ (C + ε)λ1/2−H .

Set C ′ := [(C + ε)/(C − ε)]1/(1/2−H) < 1, then

σ2

X̂
(`)
n −Xn

= ‖ξn − ξ(`)n ‖2 + ‖θn − θ(`)
n ‖2

≥
∫ π/`

0

(
√

f(λ)

2π
cos(nλ) −

√

f(π/`)

2π
cos(nπ/`)

)2

dλ

≥
∫ C′π/`

0

(

(C − ε)λ1/2−H − (C − ε)(C ′π/`)1/2−H
)2

dλ

∼ K`2H−2,

where K denotes some constant. Thus, the rate of convergence is quite slow.
Since the length of the output sequence of the FFT algorithm applied to (2.20) must be at least the

sample size N , the smallest possible choice for ` is N/2, although better results are obtained for larger `.
For ` = N/2, the spectral simulation approach is closely related to the Paxson method, as will now be made
clear.

The Paxson method

Paxson [49] proposes a rather intuitive method for simulating fractional Gaussian noise. By studying the
output statistically, he tests if the resulting samples have indeed the desired properties. Unfortunately, the
paper lacks a thorough justification of the proposed procedure, and it remains unclear why the obtained
sample should be (close to) Gaussian.

However, with the formulas above, it is possible to make the arguments precise. In the Paxson method,
the approximate fGn sample is the Fourier transform of

bk :=











0 k = 0;
√

Rkf(tk)
N exp(iΦk) k = 1, . . . , N/2;

b∗N−k k = N/2 + 1, . . . , N − 1,

where Rk are independent exponentially distributed random variables with mean 1 for k ≥ 1, and the
asterisk denotes the complex conjugate. Besides ΦN/2, which is set to zero, the Φk are independent uniformly
distributed random variables on [0, 2π] for k ≥ 1, also independent of the Rk. In this case, tk equals 2πk/N .
Note that the obtained sample is real by construction.

Because Rk is exponentially distributed with mean 1,
√

2Rk exp(iΦk) has the same distribution as

U
(0)
k + iU

(1)
k , where U

(0)
k and U

(1)
k are independent standard normal random variables in the usual notation.

This fact is also used in the well-known Box-Muller algorithm to simulate Gaussian random variables (e.g.,
[4]).
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Let us now compare this with the spectral simulation method for ` = N/2. In that case, the sample is
the Fourier transform of (see (2.20))

b′k :=



























0 k = 0;
√

f(tk)
2N

(

U
(0)
k−1 + iU

(1)
k−1

)

k = 1, . . . , N/2 − 1;
√

2f(tk)
N U

(0)
k−1 k = N/2;

√

f(tk)
2N

(

U
(0)
N−k−1 − iU

(1)
N−k−1

)

k = N/2 + 1, . . . , N − 1,

(2.25)

where the U
(i)
k have their usual meaning. At this point it becomes clear what the relation is between the

spectral method and the Paxson method; by comparing bk to b′k, we see that the value of bN/2 is the only

difference (of course, the indexing of the random variables U (i) differs, but this has no impact). However,
this effect will vanish for ‘large’ N ; it is readily checked that it does not affect the convergence result of the
previous subsection. Thus, the accuracy of the Paxson method increases with the sample size N , and is even
exact as N → ∞ in the sense that each sample point converges to an ‘exact’ sample point in probability.

We can now argue that Paxson’s suggestion to set ΦN/2 = 0 is not useful, since this destroys the
normality of bN/2, which is reflected in every sample point, cf. (2.11). This is the reason that Paxson finds
in some cases that the resulting sample points have a ‘nearly’ normal distribution. Therefore, we set

bN/2 =

√

f(tN/2)

2N
U

(0)
N/2,

although (as before) the imaginary part has no influence on the sample. In the remaining of this paper, we
call this improved Paxson method simply the Paxson method.

The method is faster than the Davies and Harte method, although still of order N log(N). This is
because the Paxson method requires just one Fourier transform of a sequence of size N , instead of two
transforms of size 2N . Hence, the Paxson method is approximately four times faster than the exact Davies
and Harte method, provided N is large. It may thus offer a good alternative to exact simulation when large
sample sizes are required. A more detailed runtime comparison is made in Chapter 4.

The fBm samples produced with Paxson fGn samples have the special property that the end point is
always 0. This property is easily seen by using the definition of the FFT transform (2.11):

N−1
∑

n=0

N−1
∑

k=0

bk exp

(

2πi
nk

N

)

=

N−1
∑

k=0

bk

N−1
∑

n=0

exp

(

2πi
nk

N

)

= Nb0 = 0.

This highly undesirable property of Paxson fBm samples can be regarded as a fractional Brownian bridge-
effect.

Having recognized that the Paxson method equals the spectral simulation method with ` = N/2, a
natural question is what can be said about spectral simulation with ` = N . The next subsection shows that
there is a connection with the Davies and Harte method.

The approximate circulant method; connection with the Davies and Harte method

We now make the observation that the spectral simulation approach is related to the circulant diagonalization
algorithm of Davies and Harte. In that algorithm, the λk are calculated with (2.11), which can be rewritten
as

λk =

N−1
∑

j=0

γ(j) exp

(

2πi
jk

2N

)

+

N−1
∑

j=1

γ(j) exp

(

2πi
(2N − j)k

2N

)

=

N−1
∑

j=−N+1

γ(j) exp

(

2πi
jk

2N

)

. (2.26)

Letting tk = πk/N , this can be approximated by the infinite sum
∑∞

j=−∞ γ(j) exp(ijtk) when N is ‘large’.
Note that this is just the spectral density (1.9). In that case, we approximate λk with f(tk) for k =
0, 1, . . . , N and with f(t2N−k) for k = N + 1, . . . , 2N − 1. To avoid problems with the pole, f(0) has to
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be approximated by a finite value. Since we can compute λ0 directly from (2.26) using (1.7), the choice
f(0) = λ0 = N2H − (N − 1)2H seems justified.

Instead of using the exact λk, we investigate what happens when the approximations f(tk) are used in
the Davies and Harte algorithm to generate a sample. The FFT is then applied to (see (2.13))

ck :=































√

f(tk)
2N U

(0)
k k = 0;

√

f(tk)
4N

(

U
(0)
k + iU

(1)
k

)

k = 1, . . . , N − 1;
√

f(tk)
2N U

(0)
k k = N ;

√

f(t2N−k)
4N

(

U
(0)
2N−k − iU

(1)
2N−k

)

k = N + 1, . . . , 2N − 1.

(2.27)

The first N coefficients of the Fourier transform constitute an approximate fGn sample. Because the
only difference with the Davies and Harte method (that was based on a circulant matrix) is the use of
approximate λk, we will refer to this method as approximate circulant method. The input coefficients (ck)
closely resemble (2.20) with ` = N ; the differences are the coefficients for k = 0 and k = N . Again, the
effects of this difference vanish as the sample size N grows, which indicates that the method is asymptotically
exact in the sense described earlier.

Moreover, we can now measure how the spectral simulation method with ` = N performs in the spectral
domain for finite N : it can be calculated what ‘spectral’ error is made by using the spectral density (1.9)
rather than the λk. A further investigation of this issue is found in Chapter 4.

By approximating λk with the value of the spectral density at tk, the number of applications of the FFT
on a sequence of size 2N is halved. Instead, the spectral density is evaluated in 2N points; this is done in
order N time. Therefore, the spectral simulation method with ` = 2N is theoretically twice as fast as the
exact Davies and Harte method for large N . However, the method is in practice only a bit faster than the
exact method for reasonable sample sizes.

This observation indicates that it makes no sense to increase ` further to 2N in the spectral simulation
method. Still, sometimes (e.g. in time series analysis) the autocovariances of some relevant process are
unknown, although the spectral density has some known closed form. Then, it is an interesting option to
simulate such a process with the approximate spectral simulation method with ` = 2N . Note that the
proof in the appendix indicates that the convergence result holds for any stationary Gaussian process with
spectral density f(·).

Improvements

We have seen that the function ξ
(`)
n defined in (2.18) converges to ξn in the sense of (2.23), which led to all

theoretical results in the current section. A natural question is if this simple function is the only possible
choice for which this type of convergence holds. A glance at the proof indicates that the answer is negative.

The function ξ
(`)
n was constructed by evaluating the spectral density in the rightmost point of each interval

of the grid. Looking at (2.21), another interesting possiblity is to replace f(tk+1)/` by

∫ tk+1

tk

f(λ)

π
dλ. (2.28)

Unfortunately, it depends on the spectral density f(·) whether this integral can be computed (efficiently).
In the fGn case, this integral cannot be computed directly, but should be approximated (e.g., by integrating
f numerically). For k = 0, the integral can be approximated accurately by replacing f(λ) by its Taylor
expansion sin(πH)Γ(2H + 1)λ1−2H , cf. (1.11).

Instead of using computationally intensive numerical integration techniques to calculate (2.28), it is also
possible to interpolate f(·) linearly between the grid points (this is impossible for k = 0 when H > 1/2
because of the pole at 0, but the Taylor based approximation can then be used). This variant is similar to
the approach described above; the spectral density is evaluated at the middle point of each interval on the
grid, instead of the rightmost point.

2.2.5 Wavelet-based simulation

An approach that is related to spectral simulation is wavelet-based simulation. Like spectral simulation,
the idea is to simulate a process of which the transformed version can be regarded as an approximate
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sample of fractional Brownian motion. However, this is not the only resemblance between wavelet and
spectral simulation; in both cases, frequency information is stored in coefficients. A small example makes
the differences clear. Suppose we have a sample with only one frequency (e.g., a scaled sine or cosine). Its
Fourier transform is then a spike at that particular frequency. Construct a new double-sized sample by
letting the first half equal the original sample, and letting the second half be constant, e.g., zero. Still, the
Fourier transform of this new sample has a major spike at the original input frequency, but other frequencies
are also considered present in a small amount to account for the second half of the sample. Thus, although
the coefficients in the spectral case (i.e., the Fourier transform of a time-domain sample) determine the
time-domain sample uniquely, the untransformed coefficients do not provide information on the location of
these frequencies in time.

Moreover, it is desirable in applications to have more time resolution (i.e., time information) for high
frequencies than for low frequencies. Wavelet coefficients have this property. Thus, instead of simulating
the Fourier transform, it is also possible to simulate the wavelet coefficients of a fractional Brownian motion
sample. The time-domain sample is then found by transforming the wavelet coefficients.

To understand the basics of wavelets, we will have to go through some theory and technicalities. For
more details, we refer to Traas et al. [57, in Dutch] or the more technical wavelet lectures by Daubechies
[18].

Denote the space of all square-integrable functions (in Lebesgue sense) on R by L2(R). Elements of
these spaces are best thought of as classes of functions. Two functions in this space are of the same class if
they are almost everywhere equal, i.e., equal up to a countable set of points. As an example, 0 denotes all
functions that are almost everywhere zero. An inner-product in this space is defined by

〈f, g〉 =

∫

R

f(t)g(t)dt,

for f, g ∈ L2(R), and a (pseudo-)norm by ‖f‖2 = 〈f, f〉, to which we refer as the L2–norm on R. Note
that this norm is different from the previously encountered L2–norm, because that norm was a norm on our
probability space (Ω,F , P ), whereas the L2–norm is a norm on the function space L2(R).

A collection of functions {fk : k ∈ K} is called orthonormal if 〈fi, fj〉 = 1(i = j) for all i, j ∈ K. It is
called a basis for some subset A of L2(R) if every element f ∈ A can uniquely be written as

f =
∑

k∈K

αkfk

for some αk. When K is infinite but countable, e.g., K = Z,
∑

k∈Z
αkfk is the unique (in almost everywhere

sense) function for which limN→∞ ‖f −∑N
k=−N αkfk‖ = 0. In this section, orthonormal bases will play an

important role, but the results hold (with some minor modifications) as well when a weaker notion than
orthonormal basis is used. These ‘weaker’ bases are called Riesz bases. To keep things simple, we refer for
the details on the use of Riesz bases to [57].

Instead of a spectral analysis as in the spectral simulation case, a multiresolution analysis (MRA) is
performed in the wavelet case. A multiresolution analysis consists of a collection of nested subspaces
{Vj : j ∈ Z} and a function φ. Each space Vj is a linear subspace of L2(R). The subspaces satisfy the
following set of properties:

1. Vj ⊂ Vj−1 for j ∈ Z;

2.
⋂

j∈Z
Vj = {0};

3. Any function f ∈ L2(R) can be approximated by functions in Vj to arbitrary precision in L2–norm,
i.e., given f ∈ L2(R) there exists a sequence {g`} ⊂ ⋃j∈Z

Vj such that lim`→−∞ ‖g` − f‖ = 0;

4. x(t) ∈ Vj if and only if x(2jt) ∈ V0 for all t;

5. φ ∈ V0 and {φ(t− k) : k ∈ Z} is an orthonormal basis for V0.

The function φ in the fifth property is called the scaling function.
Performing a multiresolution analysis of a signal x means successively projecting it onto each of the

subspaces Vj . The projection of x onto subspace Vj is called an approximation at level j. It can be checked
that {φj,k(t) = 2−j/2φ(2−jt− k) : k ∈ Z} is an orthogonal basis for Vj . Since Vj ⊂ Vj−1, the approximation
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Figure 2.1: Illustration of a multiresolution analysis.

at level j is coarser than the approximation at level j − 1. The key idea of the MRA consists in examining
the loss of information, which is called the detail, when going from one approximation to a coarser one.
This detail can be obtained by substracting two subsequent approximations, but it may also directly be
computed, since Vj and Wj := Vj−1\Vj are orthogonal spaces (that is, any function in Vj is orthogonal to
any function in Wj). From theory on inner-product spaces follows that the detail of level j is found by the
projection of x on Wj . Moreover, the MRA theory shows that there exists a function ψ, called the mother
wavelet, to be derived from φ, such that {ψj,k(t) = 2−j/2ψ(2−jt − k) : k ∈ Z} is an orthonormal basis for
Wj .

To illustrate the idea of an MRA, the sets V1, V0 and V−1 are plotted in a Venn-diagram in Figure 2.1.
Possible elements of these spaces are also depicted. The shaded set signifies W1; its elements are orthogonal
to V1.

The mother wavelet generated by an MRA should satisfy
∫

ψ(t)dt = 0 because of some regularity issues.
Some wavelets even have more:

∫

tkψ(t)dt = 0 for k = 1, . . . ,N (and
∫

tkψ(t)dt 6= 0 for k = N +1, . . .). The
number N is called the number of vanishing moments of the wavelet, which is one of the most important
aspects of a wavelet in applications.

A number of ‘standard’ MRA’s have been developed in the literature. The MRA’s that generate the
so-called Daubechies family of wavelets are famous examples.

In an MRA, the information in x is rewritten as a collection of details at different levels and a low-
resolution approximation. To illustrate this, let us write x ∈ L2(R) as the sum of a coarse approximation
at level J and the details at all levels smaller or equal to J. The approximation is written as a linear
combination of the φJ,k, the detail at level j is written as a linear combination of the ψj,k:

x(t) =
∑

k∈Z

ax(J, k)φJ,k(t) +
J
∑

j=−∞

∑

k∈Z

dx(j, k)ψj,k(t). (2.29)

The coefficients ax(J, k) and dx(j, k) are defined by inner products of x with the scaling function resp.
mother wavelet:

ax(J, k) = 〈x, φJ,k〉
dx(j, k) = 〈x, ψj,k〉, for j ≤ J.

There exists an algorithm to compute these wavelet coefficients recursively in an efficient way, but we are
mainly interested in construction of x instead of decomposition.

Application to fractional Brownian motion

In the fractional Brownian motion case, dBH
(j, k) is computed by

dBH
(j, k) = 〈BH(t), ψj,k(t)〉 =

∫

R

BH(t)ψj,k(t)dt. (2.30)
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Omitting details, the integral is defined as a limit (in L2–norm) of stochastic integrals of approximating
simple processes. See Section 1.2.1 for a related procedure.

The covariance structure of dBH
(j, k) is studied in Flandrin [30]. The variance of dBH

(j, k) is σ22j(2H+1)

for some constant σ2 > 0. When H > 1/2, the covariances of the wavelet coefficients are quite small,
but their decay depends heavily on the choice of the mother wavelet ψ. Note that the coefficients are
(almost) independent if the covariances are very close to zero. As an example, it is shown that the simplest
orthonormal wavelet basis, the Haar system (N = 1), for which

ψ(t) =







+1 for 0 ≤ t < 1/2
−1 for 1/2 ≤ t < 1
0 otherwise

,

the assumption of independence of the wavelet coefficients is severely violated. Nevertheless, when a wavelet
with more than one vanishing moment is used, the wavelet coefficients are ‘approximately’ independent.

When we want the use the above considerations to simulate fractional Brownian motion, it is natural
to analyze BH(t) in an MRA framework. Note that a finite fractional Brownian motion sample is with
probability 1 an element of L2(R). An approximate generation method may then be based on (2.29), as
suggested in Wornell [61]. The author defines the process

B̃H(t) = lim
J→∞

J
∑

j=−∞

∑

k∈Z

d̃BH
(j, k)2−j/2ψ(2−jt− k), (2.31)

where d̃BH
(j, k) are independent Gaussian random variables with variance σ22j(2H+1) (the limit in (2.31) is

again to be understood as the limit in L2–norm). The author shows that this process has spectral properties
like fractional Brownian motion. Therefore, B̃H is a fractional Brownian motion-like process which can be
used as an approximation for real fractional Brownian motion. In fact, the quality of the approximation
improves as N increases. However, the speed of the method is often affected when a wavelet with more
vanishing moments is chosen. The Daubechies 10 wavelet, for which N ≈ 2 (because the calculation of N
was based on asymptotic arguments, the exact value is not known), is considered to be a good choice.

It is argued by Abry and Sellan [2] that this method has two major drawbacks. The first is that the
coarsest level approximation is just set to zero, because the infinite sum in (2.31) should be truncated. Their
argument is that the coarse approximation includes the low-frequency behavior of the sample, whereas the
details describe the high-frequency behavior. Forgetting about the coarse approximation means forgetting
about the long-range dependence and self-similarity, which is clearly not desirable. Moreover, they argue that
the use of independent wavelet coefficients with orthonormal wavelets results in an approximate correlation
structure.

However, they describe another wavelet-based method that is proposed by Sellan and Meyer [54]. This
method is based on the fact that the coefficients of the expansion of a white noise process W (the increment
process of ordinary Brownian motion) over an orthonormal basis will constitute a collection of uncorrelated
coefficients. That is,

W (t) =
∑

k

µkφ(t− k) +
∑

j≤0

∑

k

λj,kψj,k(t), (2.32)

where µk and λj,k are samples of i.i.d. white Gaussian processes. By integrating a white noise process (the
continuous analogue of taking cumulative sums), usual Brownian motion is obtained. To obtain a fractional
Brownian motion, the key idea is to fractionally integrate (2.32). Denote the fractional integration operator
of order s by D(−s). This operator is (for well-behaved functions) defined by [48]

D(−s)f(x) =
1

Γ(s)

∫ x

0

(x− y)s−1f(y)dy. (2.33)

It is claimed in [54] that fractionally integrating white noise of order H + 1/2 is equivalent to the definition
of fractional Brownian motion (1.3). An important comment on this claim is deferred to the end of this
section. The following representation is obtained from (2.32):

BH(t) =
∑

k

µk(D(−s)φ)(t− k) +
∑

j≤0

∑

k

λj,k(D(−s)ψj,k)(t), (2.34)

where s = H + 1/2.
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However, the Sellan and Meyer method cannot efficiently be implemented using representation (2.34),
because the result of the fractional integration of a wavelet is still a wavelet, but the orthonormality is
completely destroyed. Efficient algorithms to compute the sums in (2.34) only exist when this structure
is preserved. Therefore, Sellan [54] performs a transformation to arrive at the wavelet representation for
fractional Brownian motion:

BH(t) =
∑

k

bH(k)φ
(s)
0,k(t) +

∑

j≤0

∑

k

λj,k4−s2jsψ
(s)
j,k(t), (2.35)

where λj,k are again i.i.d. Gaussian random variables, bH(k) is a fractional ARIMA(0, s, 0) process (cf.
Section 1.2.3), and φ(s) and ψ(s) are a suitably defined fractional scaling function and wavelet function, to be

derived from φ and ψ. As before, we set φ
(s)
j,k(t) = 2−j/2φ(s)(2−jt−k) and ψ

(s)
j,k(t) = 2−j/2ψ(s)(2−jt−k). Note

that since the first term (the coarse approximation) accounts for the long-term behavior, this approximation
is expected to have better long-range dependent properties than the Wornell wavelet method.

For the details how to construct these fractional scaling and wavelet function, the reader is referred to [2].
The authors make use of reconstruction algorithms for Riesz bases. Their idea is to calculate the generating
sequences of the fractional scaling and wavelet function. These generating sequences fully characterize the
corresponding function. To be precise, the generating sequence for the fractional scaling function resp.
fractional wavelet function are the sequences that satisfy

φ(s)(t/2)/
√

2 =
∑

k

u
(s)
k φ(s)(t− k)

ψ(s)(t/2)/
√

2 =
∑

k

v
(s)
k ψ(s)(t− k).

The generating sequences of the fractional scaling function and wavelet function u(s) and v(s) are computed
using the generating sequences u and v of φ and ψ. The sequences u and v are tabulated, e.g., in [18]. The
ARIMA(0, s, 0) process is constructed by manipulating Gaussian white noise using the same techniques that
were used to compute u(s) from u and v(s) from v. However, this leads to an approximate ARIMA(0, s, 0)
sample.

When the coefficients in (2.35) are generated, the so-called fast pyramidal Mallat filter bank algorithm
can be applied to compute (2.35) in an efficient way. For this, the infinite sum has to be truncated at a
finite number −J . The authors claim to obtain already relevant approximations for J = 5 or J = 6 using
the Daubechies 10 wavelet.

As usual, denote the required sample size by N . The finest resolution that is present in a sample of size
N is determined by 2Jf = N , but a truncation parameter of J = 5 or J = 6 may be interesting to limit the
computation time. An approximate sample based on (2.35) is found by starting with a fractional ARIMA

sample bH of size N2−J . The sum
∑

k bH(k)φ
(s)
0,k(t) is then computed for t = 2−J , . . . , N2−J . Since the

number of summation terms in
∑

k λj,k4−s2jsψ
(s)
j,k(t) is N2−J−j , this results in an order N2 algorithm when

(2.35) is directly calculated. An additional complication is that no explicit expression for φ(s)(t) exists (even
for φ and ψ in the Daubechies 10 case it does not exist). However, only the generating sequences need to be
known for the reconstruction, since these sequences serve as input in the pyramidal filter bank algorithm.
This algorithm depends heavily on the convolution operation, which can efficiently be implemented using
the Fast Fourier Transform (FFT). The complexity is then reduced to N logN . Whereas the generating
sequence of the Daubechies 10 wavelet has length 20, the generating sequence of φ(s) and ψ(s) is in general
infinite and should be truncated. Obviously, this has an impact on the speed as well.

There is one more thing to take care of. An important operation in the algorithm is the convolution of
sequences. When convolving two sequences, the begin and end points of the resulting sequence are polluted
by the lack of data; the so-called border effects. These are dealt with by increasing the required sample
size with a safety margin and truncating the output sequence (on both sides!). This makes it hard to make
theoretical statements on the required amount of time. We will investigate the time complexity empirically
in Chapter 4.

An important comment

As already mentioned, it is claimed by Sellan and Meyer [54] that a fractional Brownian motion can be
obtained by fractional integration of white noise, see the discussion following (2.32). Using the definition of
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fractional integration (2.33) with s = H + 1/2, this yields (at least formally)

B0
H(t) =

1

Γ(H + 1/2)

∫ t

0

(t− s)H−1/2W (s)ds =
1

Γ(H + 1/2)

∫ t

0

(t− s)H−1/2dB(s). (2.36)

However, these formal calculations are not readily justified, since (2.33) only defined for well-defined func-
tions. A fractional stochastic integral is needed to make things precise. Note that Paul Lévy called B0

H

fractional Brownian motion in 1953, see Mandelbrot and van Ness [43].
As the wavelet decomposition is only based on the second integral in (1.3), it is natural to ask what

the influence is of the first part of (1.3). It is readily checked from (2.36) that the variance of B0
H(t) is

proportional to t2H . However, the increments of B0
H are not stationary! In fact,

EB0
H(s)B0

H(t) =
1

Γ(H + 1/2)2

∫ t∧s

0

(t− r)H−1/2(s− r)H−1/2dr.

It is therefore very well possible that we will see in Chapter 4 that wavelet samples do not have the desired
statistical properties of fractional Brownian motion. In the literature, B0

H is sometimes referred to as
fractional Brownian motion of type II, see [28].

Just before completion of this report, we found some related wavelet decompositions in the literature. In
Meyer et al. [44], a so-called infrared correction is added to the wavelet decomposition; see also the recent
papers by Ayache and Taqqu [5] and [35]. It is possible that this infrared correction corresponds to the first
integral in (1.3). In Chapter 4, we only analyze samples that are simulated using (2.35).

2.2.6 Other methods

Numerous other methods have been proposed as an approximate synthesis method for fractional Brownian
motion. In this section, we will describe a few and discuss their advantages and drawbacks. Of course, the
list is not claimed to be exhaustive.

Chaotic maps

The chaotic maps approach (Erramilli et al. [27]) is a method to simulate the source level behavior. Given
an initial random value x0 and a deterministic function f , a deterministic sequence is constructed by the
recursion xn+1 = f(xn). The active and inactive periods are determined by the observed sequence, e.g., the
source is active at time n when 0 < xn < 1/2. The chaos (irregular or seemingly stochastic behavior) arises
from a property known as Sensitive dependence on Initial Conditions. This means that a small deviation
from the initial condition results in a completely different sequence. In fact, the absolute difference in xn

increases exponentially in n.
It is shown that simple nonlinear chaotics maps already capture some of the behavior of real teletraffic.

However, the maps fail to have a direct interpretation. Therefore, several chaotic maps are tried, hoping
that satisfactory results for traffic simulation are obtained. Moreover, the output has to be aggregated,
which causes the same problems as with the Aggregating packet processes approach (see Section 2.2.2).

The Decreusefond and Lavaud method

The Decreusefond and Lavaud method [20] is based on the following representation of fractional Brownian
motion:

BH(t) =

∫ t

0

KH(t, s)dB(s)

for some function KH(t, s), where B denotes ordinary Brownian motion as in Chapter 1.
Assume that we need a fractional Brownian motion sample on the interval [0, 1], this interval is then

split in N smaller intervals of equal length. Set tn = n/N for n = 0, 1, . . . , N .
We estimate point n of the trace by

BH(tn) =

n
∑

i=0

1

ti+1 − ti

∫ ti+1

ti

KH(tn, s)ds (B(ti+1) −B(ti)) . (2.37)

29



The integral
∫ ti+1

ti
KH(tn, s)ds may not be approximated by KH(tn, ti) or KH(tn, ti+1), because KH(tn, t)

is not continuous with respect to t on [0, tn]. The approximation would then not converge to an exact trace
when N is large. In [20], the authors describe a rather technical way to overcome this.

Although this method is not really evaluated and tested, the main advantage is clearly that the integral
in (2.37) should only be computed once when more than one trace is needed. However, the number of
integrals to be calculated is of order N 2 when a sample of length N is needed. All these values should be
stored, which is a drawback of the method. Exact methods that are much faster than this method are also
known (see Section 2.1.3), so the method is not very useful in practice.

The Dzhaparidze and van Zanten methods

Dzhaparidze and van Zanten have proven a number of interesting series representations, as applications of
spectral theory for fractional Brownian motion.

The first [26] involves the positive real zeros x1 < x2 < . . . of the Bessel function J−H of the first kind
of order −H, and the positive zeros y1 < y2 < . . . of J1−H . One then has, in the sense of equality in
distribution,

BH(t) =

∞
∑

n=1

sinxnt

xn
Xn +

∞
∑

n=1

1 − cos ynt

yn
Yn,

where X1, X2, . . . and Y1, Y2, . . . are independent centered Gaussian random variables. Their variances are
given by

VarXn = 2c2Hx
−2H
n J−2

1−H(xn), VarYn = 2c2Hy
−2H
n J−2

−H(yn),

where c2H = π−1Γ(1+2H) sinπH. Both series converge absolutely and uniformly in t ∈ [0, 1] with probability
one [26].

The reason why this method is particularly interesting for simulation purposes is that efficient algorithms
exist to compute the zeros of Bessel functions. Moreover, these zeros only have to be computed once,
regardless the number of traces that need to be simulated. Of course, the series have to be truncated at
some level. The question raises what level is appropriate; we do not discuss this issue in this report, but we
note that the following estimate holds [25]:

lim sup
N→∞

NH

√
logN

E sup
t∈[0,1]

∣

∣

∣

∣

∣

∑

n>N

sin xnt

xn
Xn +

∑

n>N

1 − cos ynt

yn
Yn

∣

∣

∣

∣

∣

<∞.

It turns out that N−H
√

logN is the ‘best’ possible rate for a series expansion of fractional Brownian motion
[39].

Interestingly, since the xi and yi increase, truncation only concerns the high frequencies. Therefore, the
method is expected to work especially well if the Hurst parameter H is close to one, cf. Figure 1.2. Notice
that the high frequencies (details) are also truncated in the wavelet method.

The second series representation is similar, but only involves the zeros of a single Bessel function, J1−H .
For n ∈ N, define σn by

σ−1
n =

1 −H

H

Γ2(1 −H)Γ(3/2 −H)

Γ(H + 1/2)Γ(3 − 2H)

(ωn

2

)2H

J2
−H(ωn)T 2−2H ,

where ω1 < ω2 < . . . are the positive zeros of J1−H . Let X,Y1, Y2, . . . , Z1, Z2, . . . be i.i.d. standard normal
variables. Then with probability one the series

t√
2 − 2H

X +

∞
∑

n=1

sin 2ωnt/T

ωn/T

√
σnYn +

∞
∑

n=1

cos 2ωnt/T − 1

ωn/T

√
σnZn

converges uniformly in t ∈ [0, T ] and defines a fractional Brownian motion with Hurst parameter H. As the
first method, one can prove rate-optimality of this expansion.

Appendix: Proof of (2.23)

In this subsection, we prove that for n = 0, 1, 2, . . .:

lim
`→∞

∫ π

0

[
√

f(λ)

π
cos(nλ) − ξ(`)n (λ)

]2

dλ = 0 and (2.38)
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lim
`→∞

∫ π

0

[
√

f(λ)

π
sin(nλ) − θ(`)

n (λ)

]2

dλ = 0, (2.39)

where f denotes the spectral density of fractional Gaussian noise for some 0 < H < 1 and (with tk = kπ/`)

ξ(`)n (λ) =

√

f(t1)

π
cos(nt1)1{0}(λ) +

`−1
∑

k=0

√

f(tk+1)

π
cos(ntk+1)1(tk,tk+1](λ) and

θ(`)
n (λ) =

√

f(t1)

π
sin(nt1)1{0}(λ) +

`−1
∑

k=0

√

f(tk+1)

π
sin(ntk+1)1(tk,tk+1](λ).

We keep n fixed throughout the proof, and start by showing that θ
(`)
n converges to θn :=

√

f(λ)
π sin(nλ) in

L2–norm as ` → ∞. Note that f has a pole at 0, but that the sine-term compensates this pole. Thus,
θn(λ) is continuous on [0, π] for every Hurst parameter 0 < H < 1. It follows that [θn(λ)]2 is Riemann

integrable on [0, π], which implies that lim`→∞

∫ π

0

[

θ
(`)
n (λ)

]2

dλ =
∫ π

0
[θn(λ)]2 dλ. Since θ

(`)
n (λ) → θn(λ) for

every 0 ≤ λ ≤ π as ` → ∞, we have the desired convergence of θ
(`)
n to θn in L2–norm, see for instance

Theorem 4.5.4 of Chung [13].
More care is needed to prove (2.38). When 0 < H ≤ 1/2, the same reasoning as above applies. However,

ξn :=
√

f(λ)
π cos(nλ) has a pole at 0 for 1/2 < H < 1. Still, f is (Riemann) integrable because f is a

spectral density; in fact,
∫ π

0
f(λ)dλ = π. For any ε > 0, this makes it possible to find a δ > 0 (independent

of `) such that

∫ δ

0

[

ξ(`)n (λ) − ξn(λ)
]2

dλ ≤
∫ δ

0

[

ξ(`)n (λ) + ξn(λ)
]2

dλ ≤ 4

∫ δ

0

[ξn(λ)]
2
dλ

≤ 4

∫ δ

0

f(λ)dλ < ε/2,

where the first two inequalities use the fact that ξn(λ) ≥ ξ
(`)
n (λ) ≥ 0 for small λ. As before, we have

ξ
(`)
n (λ) → ξn(λ) for every δ ≤ λ ≤ π, and the Riemann integrability of [ξn(λ)]2 on [δ, π], which implies

that lim`→∞

∫ π

δ

[

ξ
(`)
n (λ)

]2

dλ =
∫ π

δ
[ξn(λ)]

2
dλ. Hence, it is possible to find an ` with the property that

∫ π

δ

[

ξ
(`)
n (λ) − ξn(λ)

]2

dλ < ε/2 and the claim is proven.

Note that the arguments of the proof apply for a general spectral density, not necessarily the spectral
density of fGn.
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CHAPTER 3

Estimation and testing

We have seen that there exist some fast approximate methods that may offer an alternative for exact
methods. We hope that the samples of the approximate methods share several properties with exact
samples. Among the most important properties of an approximate trace are its long-range dependence and
self-similarity; since we are especially interested in the case H > 1/2, we often tacitly impose this restriction
throughout this chapter. One of the criteria in the comparison of approximate methods, which is the topic
of Chapter 4, is how well the sample incorporates this long-range dependence. In the present chapter, we
discuss some popular methods to estimate the long-range dependence parameter H, of which we benefit in
the next chapter. In addition, two tests are described that test whether a sample can be distinguished from
fractional Gaussian noise with some specified Hurst parameter.

The biggest problem that arises when trying to estimate a Hurst parameter exceeding 1/2 is that the tail
behavior of the autocovariance function cannot be estimated from a finite sample. However, some charac-
teristics of long-range dependence and self-similarity also show up in a finite sample. These characteristics
and the related estimation methods are discussed in this chapter.

3.1 Estimation

We start with an overview of some popular estimation methods for the long-range dependence parameter H.
It should be said that this section has highly benefitted from the publicly available plotting and estimation
programs in the AT&T S-language on the homepage of M.S. Taqqu [55]. Most of the methods below are
also described by Taqqu et al. [56].

All plots are generated with the same fractional Gaussian noise sample (or its cumulative sum fractional
Brownian motion if required), that is simulated using the (exact) Davies and Harte method. The Hurst
parameter is H = 0.8 and the process is simulated on {0, 1/N, . . . , (N − 1)/N}, whereas the size of the
sample is N = 214. In Chapter 1, we denoted a fractional Brownian motion sample on {0, . . . , N − 1} by
Y0, . . . , YN−1 in Chapter 1, but we now use the same notation for the sample on {0, 1/N, . . . , (N − 1)/N}.
The same is done for the corresponding fractional Gaussian noise sample. Note that Xk thus has variance
N−2H .

Although specific properties of fractional Gaussian noise are used in the derivation of some estimators,
the estimators in this section are also widely used on general long-range dependent processes. Some of the
estimators in this chapter are heuristically motivated assuming fractional Gaussian noise input, but are in
practice applied to any sample of a (stationary) process.

3.1.1 Aggregated variance method

The aggregated variance method is based on the self-similarity property of the sample. Recall the definition
of the aggregated processes X(m):

X
(m)
k =

1

m

(

Xkm + . . .+X(k+1)m−1

)

,

for k = 0, 1, . . .. Because of the self-similarity (at least asymptotically), X (m) has the same (finite-

dimensional) distributions as mH−1X for big m. In particular, Var(X
(m)
k ) = m2H−2Var(Xk). The variance
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of X
(m)
k is equal for every k and a plausible estimator is

̂
Var(X

(m)
k ) =

1

M

M−1
∑

i=0

(

X
(m)
i −X(m)

)2

, (3.1)

where X(m) denotes the sample average of X(m):

X(m) =
1

M

M−1
∑

i=0

X
(m)
i .

In both formulas, M is the integer part of N/m. The estimator of H is obtained by plotting
̂

Var(X
(m)
k )

versus m on a log-log scale. When the estimates of the variances were equal to their real values, all the
points would lie on a straight line with slope 2H− 2. In practice, the slope is estimated by fitting a straight
line through the points. The estimate for H is found from the estimate of the slope.

However, this is very naive, since estimator (3.1) is biased in the presence of non-zero correlations,
particularly long-range dependence. It is pointed out in Beran [9] that this bias disappears when M is large
(i.e., N is large and m is small), but that this happens very slowly for samples with long-range dependence.
In fact, it holds that

E

(

̂
Var(X

(m)
k )

)

∼ Var(X
(m)
k )

[

1 − CM2H−2
]

, (3.2)

for some constant C and M → ∞. In the presence of positive correlations (i.e., H > 1/2), C is positive

and
̂

Var(X
(m)
k ) tends to underestimate Var(X

(m)
k ) for small M . This leads also to an underestimate of H

(assuming that the estimator of the slope is not too much biased). Moreover, we see that this bias increases
in H, which is also found in the empirical study by Taqqu et al. [56].

In addition to the already mentioned problems for small M (i.e., ‘large’ m), the estimates of the variances
are based on only few observations and therefore unreliable. To avoid these observations from spoiling the
estimate for H, those estimates are simply not used in the fitting procedure. The same is done for the
observations for ‘small’ m, because those may be based on the short-term correlation structure (although
these are high-quality estimates if no short-range dependence is present, as in the fractional Gaussian noise
case).

From the theory on least-squares fitting, it is known that the estimator of the slope (and thus for H)
is unbiased under some conditions on the so-called disturbance term. Among others, the independence and

normality of log

(

̂
Var(X

(m)
k )

)

for a range of values of m should be studied in more detail. If m is large

(M small), the normality is questionable, see (3.1). Independence will not occur in general, since the whole

series is used to compute
̂

Var(X
(m)
k ) for every m. Because all line-fitting estimators in this chapter share

these problems, they are all biased.
In Figure 3.1, the log-log plot is given for our sample. The observations that are used in the fitting of

the line are dotted. From this plot, the estimated Hurst parameter is 0.7889, quite close to the real value
of 0.8. As expected, the estimate is indeed lower than its real value. A weakness of the method is that the
fitting region may arbitrarily be chosen (in our plot from 0.7 to 2.5 on a log10 scale), which results in a
non-robust estimate. For our sample, the estimated variances for small m lie also on the fitted line, because
our sample was an exact fractional Gaussian noise sample without special short-term behavior. The dashed
line corresponds to a Hurst parameter of 0.5.

3.1.2 Absolute moments method

The absolute moments method is a generalization of the aggregated variance method. It uses the same
principle that X(m) has the same (finite-dimensional) distribution as mH−1X for big m (in the case of an
exact sample even for all m ≥ 1). We first intuitively study the quantity

AMm =
1

M

M−1
∑

i=0

∣

∣

∣
X

(m)
i −X(m)

∣

∣

∣

n
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Figure 3.1: The aggregated variance method.

for some n > 0. In view of (3.2), it might well be possible that the following holds:

EAMm ∼ E

∣

∣

∣X
(m)
i − EX

(m)
i

∣

∣

∣

n (

1 − CnM
n(H−1)

)

= mn(H−1)E |Xi − EXi|n
(

1 − CnM
n(H−1)

)

, (3.3)

for big m as M → ∞, where Cn is some constant. Although it is, to our knowledge, not known if (3.3) holds,
EAMm is proportional to mn(H−1) (see [56]) and an estimate of H can thus be computed from the estimated
slope in a regression on a log-log scale. A simulation study in Chapter 4 suggests that this estimator has
negative bias, which is confirmed in the intuitive setting of (3.3).

Although every value for n > 0 leads to an estimate (n is not necessarily integer-valued), the method
is typically used with n = 1, the absolute moments case. The method reduces to the aggregated variance
method if n = 2, which implies that it has the same drawbacks as the aggregate variance method, and
produces a similar plot as in Figure 3.1. Applied to our sample, an estimate of 0.7827 is obtained (with the
same values for the parameters of the estimation procedure). In what follows, n = 1 will be used.

3.1.3 Discrete variations

This method is recently proposed by Coeurjolly [14] and makes use of filtering techniques. Denote by a a
filter of length `+ 1 and of order p ≥ 1, i.e., a sequence that satisfies

∑̀

q=0

aqq
r = 0, for r = 0, . . . , p− 1, (3.4)

whereas this does not hold for r = p. The process V a is defined by filtering the sample Y = {Yi =
∑i

k=0Xk :
i = 0, . . . , N − 1}:

V a
k =

∑̀

q=0

aqYk−q, for k = `, . . . , N − 1.

An example of a filter of order p = 1 is a = (−1, 1), in which case V a
k reduces to Xk.

The discrete variations method is based on the k-th absolute moment of discrete variations, defined by

S(k, a) =
1

N − `

N−1
∑

i=`

|V a
i |k , (3.5)

for some k > 0. Assuming that the sample is Gaussian, the standard formula for the kth moment of a
Gaussian variable (see (2.24)) yields

ES(k, a) =
Γ((k + 1)/2)√

π
N−kH{2Var(NHV a

1 )}k/2. (3.6)
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Figure 3.2: The discrete variations method.

Note that unlike the two preceding methods, the mean 1
N−`

∑N−1
i=` V a

i is not substracted in (3.5) in the
discrete variations method.

The author proposes to estimate H by solving Equation (3.6) to H, where ES(k, a) is replaced by its
estimate. This is possible since Var(NHV a

1 ) does not depend on H (recall that Y0, . . . , YN−1 is a sample
on {0, 1/N, . . . , (N − 1)/N}) and can explicitly be computed. In fact, we obtain a very good estimate
for our sample; the estimate is very close to the input Hurst parameter. However, the Hurst parameter
is estimated using only the estimates of ` short term covariances. This is not desirable, since long-range
dependence mainly concerns the high-lag correlations. Therefore, a sample with a short-range component
(like a fractional ARIMA sample) would produce highly biased estimates, which is clearly undesirable for
an estimator of the long-range dependence parameter.

A second estimation method that is based on S(k, a) (also proposed in [14]) can be regarded as a
generalization of the absolute moments method. Let us define the sequence of filters (am)1≤m≤M for some
M by

am
i =

{

aj for i = jm
0 otherwise

.

Using (3.4) and (3.6) for r = 0, it is readily checked that ES(k, am) = mHkES(k, a). An estimator of H is
thus deduced from a linear regression of {logS(k, am) : 1 ≤ m ≤ M} on {k log(m) : 1 ≤ m ≤ M}. This
method reduces to the absolute moments method for a = (−1, 1) (up to the substraction of the mean, which
is close to zero).

More importantly, the author proves that this estimator converges at a rate of
√
N to a zero-mean

Gaussian distribution with variance σ2(k, a) for some σ2(k, a) > 0. He also shows that this variance is
minimal for k = 2. Although it is not clear that we can neglect the influence of the substraction of the
mean, this suggests that the estimator of the method of moments is inferior to the estimator of the method
of aggregated variance, possibly only for large sample sizes.

Note that it is assumed that the sample is Gaussian, or at least that (3.6) holds for a given k. The
performance of this method has not been investigated for non-Gaussian samples, but this is no problem for
our fractional Brownian motion setting.

To eliminate the impact of short term behavior on the estimator, it is also possible to use only the filters
am with M1 ≤ m ≤ M2 for some M1,M2 in the regression. Applied to our sample, this produces a plot as
given in Figure 3.2. The bounds M1 and M2 are chosen as in Section 3.1.1, whereas the used filter is the
Daubechies 4 filter (see Daubechies [18]) for which p = 2. The resulting estimate for the Hurst parameter
is 0.7913 (k = 2).

3.1.4 The Higuchi method

As suggested by its name, this method was proposed by Higuchi [32]. The method is quite similar to the
method of absolute moments with n = 1. Instead of using non-intersecting blocks, a sliding window is used,
which makes the method computationally much more intensive than the above methods.
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Figure 3.3: The Higuchi method.

The quantity on which the Higuchi method is based is

L(m) =
N − 1

m3

m
∑

i=1

1

Mi

Mi
∑

k=1

∣

∣

∣

∣

∣

∣

i+km
∑

j=i+(k−1)m+1

Xj

∣

∣

∣

∣

∣

∣

,

where Mi signifies the integer part of (N − i)/m. The estimate of H is found by plotting L(m) in a log-log
plot versus m and adding 2 to the slope of the fitted straight line.

Again, small and large values of m should not be used in the fitting. For our sample, the method gives
an estimate of 0.7865, see Figure 3.3.

3.1.5 Periodogram method

The periodogram method estimates the Hurst parameter by fitting a straight line in the spectral domain.
This is based on the observation that the spectral density (1.11) behaves like cf |λ|1−2H for |λ| → 0.

Equation (1.9) suggests to estimate the spectral density by the periodogram defined by

I(λ) =
N−1
∑

j=−(N−1)

γ̂(j) exp(ijλ),

with the sample autocovariance γ̂(j) function given by

γ̂(j) =
1

N

N−|j|−1
∑

k=0

(Xk − X̄)(Xk+|j| − X̄),

with an obvious definition for the sample average X̄. One can show (see, e.g., Priestley [52]) that this
definition of the periodogram equivalent is to

I(λ) =
1

N

∣

∣

∣

∣

∣

N−1
∑

k=0

(Xk − X̄) exp(ikλ)

∣

∣

∣

∣

∣

2

. (3.7)

It is clear that the periodogram is symmetric around zero, just as the spectral density. The periodogram
can be shown to be an asymptotically unbiased estimator of the spectral density f , i.e., [9]

lim
N→∞

E[I(λ)] = f(λ).

We compute I(λk) for k = 1, . . . , N , where λk = πk/N . In Figure 3.4, the values of the periodogram of
our sample at frequencies λk are plotted on a log-log scale. As can be seen, the values of the periodogram
for contiguous frequencies lie far apart. This can be explained by the fact that for a finite number of fre-
quencies λ1, . . . , λN ∈ (0, π), the corresponding periodogram ordinates I(λ1), . . . , I(λN ) are ‘approximately’
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Figure 3.4: The periodogram method.

independent exponential random variables with means f(λ1), . . . , f(λN ) (see Beran [9]). Therefore, the
periodogram method is not suitable to obtain a high-quality estimation of the Hurst parameter. However,
this fact can also be used to perform a regression analysis with an error term based on the exponential
distribution, see again [9].

An estimate of H is obtained by fitting a straight line through the data, which has theoretically a slope
of 1 − 2H, in a log-log plot. Since we know that the λ1−2H -behavior is only valid for low frequencies, we
use the lowest say 10% of the frequencies. Of course, the choice of this number is subject to ambiguity.
The line that is found in this way is also plotted in Figure 3.4, and this leads to an estimate of the Hurst
parameter of 0.7897 for our sample.

Several improvements have been proposed for the periodogram method. For example, the modified
periodogram approach divides the frequency axis in logarithmically equally spaced boxes, of which the
values are averaged to obtain one single value in one box. However, the results are not much better. For
details the reader is referred to Taqqu et al. [56].

3.1.6 Variance of the regression residuals

This method has been proposed by Peng et al. [50, cited according to [56]]. First, the series is broken

up into blocks of size m. Within each block k, the partial sums are regressed on a line α̂(k) + β̂(k)i. The
residuals of this regression are given by

ε̂
(k)
i =

km+i−1
∑

j=km

Xj − α̂(k) − β̂(k)i.

The sample variance of the residuals is then computed for each block. The average of this sample variance
over all blocks is proportional to m2H . For a proof, see [56].

In Figure 3.5, the variance of the residuals are plotted versus m on a log-log scale. This leads to an
estimate of 0.7686. As with all line-fitting techniques, we should not take the observations for small and
large m very serious. For Figure 3.5, the same range of values for m is used as in the previous methods to
compute the estimate.

The variance of the regression residuals method is extensively studied by Cannon et al. [12]. In their
terminology, the method is one of the scaled windowed variance methods. Another variant ‘detrends’ within
a block by substracting the line between the first and last point.

3.1.7 R/S analysis

In 1951, Hurst needed to determine what minimum height of the proposed Aswan dam would provide
sufficient storage capacity to govern the flow of the Nile River downstream. He observed that measurements
of flows showed series of low flow years and high flow years. Inspired by the biblical story on years of drought
and prosperity, he called this the Joseph effect, which has become synonymous with long-range dependence.
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Figure 3.5: The variance of residuals method.

He developed a tool to which is now known as rescaled range (R/S) analysis. The R/S method is widely
used in the analysis of long-range dependent processes.

To compute the R/S statistic, the whole series is divided in K non-intersecting blocks that all contain
M elements (M is then the greatest integer that is smaller than N/K). The rescaled adjusted range
R(ti, r)/S(ti, r) is then computed for a number of ranges r, where ti = M(i− 1) are the starting points of
the blocks for i = 1, . . . ,K. For a given range r, R(ti, r) can only be computed when

ti + r ≤ N. (3.8)

R(ti, r) is calculated as follows:

R(ti, r) = max{W (ti, 1), . . . ,W (ti, r)} − min{W (ti, 1), . . . ,W (ti, r)},

where

W (ti, k) =

k−1
∑

j=0

Xti+j − k





1

r

r−1
∑

j=0

Xti+j



 , k = 1, . . . , r.

Note that R(ti, r) ≥ 0, since W (ti, r) = 0 by construction. Define the sample variance S2(ti, r) of
Xti

, . . . , Xti+r−1 as

S2(ti, r) =
1

r

r−1
∑

j=0

X2
ti+j −





1

r

r−1
∑

j=0

Xti+j





2

.

For each value of r, we obtain a number of R/S samples. When r is small, K R/S samples can be computed,
since requirement (3.8) is then satisfied for all i = 1, . . . ,K. Owing to the same requirement, the number of
samples decreases for larger values of r. Note that the resulting samples are then not independent anymore,
because they partially use the same sample points. The number of R/S samples is as small as 1 when r
approaches N .

For fractional Gaussian noise or fractional ARIMA, the R/S statistic is proportional to rH as r → ∞.
At first sight, these formulas may look very complicated, and it is not clear why this proportionality should
hold. However, the needed averages are all close to zero in our fractional Gaussian noise-case, which makes
it possible to get some feeling for the method. Setting the averages to zero, {W (ti, k) : k = 1, 2, . . . , r}
is a fractional Brownian motion sample of size r, and the range R(ti, r) is just the difference between
the maximum and the minimum of that sample. The range is thus a measure of the dispersion, like the
variance. Since it holds that the variance of the last sample point is proportional to r2H , we tend to believe
that this proportionality also holds for the range. Dividing by the square root of the variance reduces the
proportionality to rH . This reasoning is only very intuitive, since one can also argue that the range is
proportional to the standard deviation instead of the variance.

The obtained samples are depicted in a log-log plot in Figure 3.6. This plot is also referred to as a
Pox-plot. The values of r used for this plot are logarithmically spaced, i.e., rk = rk

0 for some r0 > 1. This
plot is produced with K = 5 and r0 = 10. We are yet familiar with the idea of using only the middle part
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Figure 3.6: R/S analysis.

of the plot in a least-squares fitting procedure, which is again indicated by the dotted points. This yields
an estimate for the Hurst parameter in our sample of 0.7163; quite small compared to the input parameter
of 0.8.

Some variants of R/S analysis are described by Bassingthwaighte and Raymond [6]. The authors also
study the bias, accuracy and limitations of the method when applied to fractional Brownian motion samples.
Unfortunately, their conclusions cannot be interpreted since they use an approximate simulation method.

3.1.8 Whittle’s method

In all the methods so far some parameters had to be set arbitrarily, because the methods were based on some
graphical estimation procedure. Whittle’s method is based on a general approach to obtain an estimate of
one or more parameters: maximum likelihood. Since we know that our sample is Gaussian with zero mean
and covariance matrix ΓH (which depends on H), the estimator is obtained by maximizing the likelihood
of X = (X1, . . . , XN )′

L(X) = (2π)−N/2|ΓH |−1/2 exp

(

−1

2
X ′Γ−1

H X

)

with respect to H. |ΓH | denotes the determinant of ΓH . When this maximizing is done numerically, the
inverse of ΓH has to be computed for every H, which is very time-consuming.

However, the likelihood may be approximated, which leads to Whittle’s approximate likelihood (see,
e.g., Beran [9]). This likelihood converges to the exact likelihood as N → ∞. The estimate for the Hurst
parameter is obtained by minimizing

Q(H) =

∫ π

−π

I(λ)

fH(λ)
dλ,

where I denotes in the usual notation the periodogram and fH the spectral density (the dependence on H
is made explicit). Note that the evaluation of this spectral density in the fractional Gaussian noise case is
computationally intensive and this density may be approximated by the Paxson approximation (see Section
1.2.2).

The minimization of Q is further sped up by approximating the integral by a Riemann sum, and evaluat-
ing the periodogram and spectral density at the Fourier frequencies λk = 2πk/m for some m, e.g., m = N .
Using the symmetry in I and f , we minimize

Q̃(H) =

N/2
∑

k=1

I(λk)

fH(λk)

to obtain the estimate Ĥ .
Besides the asymptotical correctness of the Whittle estimator, the main advantage is that it is possible

to compute an asymptotic confidence interval. It can namely be shown that

√
N(Ĥ −H) → Z

√

√

√

√2

[

1

2π

∫ π

−π

(

d

dH
log fH(λ)

)2

dλ

]−1

, N → ∞,
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where Z is a standard normal random variable and the convergence is to be read as convergence in distri-
bution. In practice, the integration and differentiation are done numerically to find the confidence interval.

For our sample, we give as a starting parameter in the minimization procedure H = 0.5, whereafter an
estimate of 0.8005 for the Hurst parameter is obtained; very close to the real value. The corresponding
confidence interval is [0.7903, 0.8108].

When the spectral density is replaced by C|λ|1−2H , the method is called the local Whittle method. More
on the local Whittle method including references can be found in [55].

Note that the Whittle method calculates the estimate of the Hurst parameter using the spectral density,
i.e., under the assumption that the sample is fractional Gaussian noise. Since we want to analyze approximate
fractional Gaussian noise samples, the Whittle method is not perfectly suited for this analysis. However,
it is possible to test whether the periodogram of a given sample may be generated by fractional Gaussian
noise. We will present this so-called goodness-of-fit test in the next section.

3.1.9 Wavelet method

In Section 2.2.5, a wavelet method to simulate fractional Brownian motion or fractional Gaussian noise was
presented. This method was based on the generation of the wavelet coefficients and the key idea was to
transform these back to obtain the requested fractional Brownian motion sample. Wavelets are also useful
for estimation purposes, and the resulting wavelet estimator has some very nice properties. The wavelet
estimator is introduced by Abry et al. [1].

Wavelet-based estimation is closely related to the periodogram method. The data are transformed and
an estimate is obtained by estimation on the transformed data (in the periodogram method, the estimation
is done in the frequency-domain). The transformation of the given sample is not as trivial as it sounds;
we first estimate the sequence (aBH

(J , k))k for some high resolution (i.e., −J is big) from the fractional
Brownian motion sample. The sequences (dBH

(j, k))k and ((aBH
(j, k))k can be computed from this sequence

for j = J + 1, . . . , 0 using standard wavelet recursion techniques.
It remains to choose the level J . When the sample size is N (assumed to be a power of 2), the finest

possible level J satisfies N = 2−J . The sequence (aBH
(J , k))k is then estimated by

âBH
(J , k) = 2J /2

∑

i

φ(i)BH(i+ k).

More details and an error analysis can be found in [21].
Recall that in Section 2.2.5, it was pointed out that the wavelet coefficients dBH

(j, k) have zero means
and variance σ22j(2H+1). Therefore, we can perform a wavelet decomposition of the sample, and estimate
the variance of the wavelet coefficients by using all available coefficients dBH

(j, ·) at resolution j. Since
it is clear from the analysis by Flandrin [30] that (although the coefficients dBH

(j, l) and dBH
(j, k) are

correlated when l 6= k) no long-range dependence is present in the wavelet coefficients for popular wavelets,
the variance of the wavelet coefficients is estimated by

vj = 2j
2−j−1
∑

k=0

(dx(j, k))2.

Note that this estimator is in general a bad estimator for the variance because there is no independence,
but for large 2−j (see the discussion in Section 1.1.2), this estimator estimates the variance quite well, up
to a constant. However, the wavelet estimate of the Hurst parameter is not found by computing vj for the
fractional Brownian motion sample and making a least squares fit of log(vj) on j (note that the potentially
added constant is then irrelevant). Instead of this, the wavelet estimator proposed by Abry and Veitch
[3] is found by performing the same procedure on the wavelet coefficients of the corresponding fractional
Gaussian noise sample. The slope of the fitted line is then not equal to 2H+1 anymore, but equals 2H − 1.

The cited authors have also improved this method, using the expressions they found for E(εj) and
Var(εj), with

εj = log2(vj) − (2H − 1)j − 2 log2(σ).

A new estimator of H is then obtained from a linear regression of {log2(vj) − E(εj)}j1≤j≤j2 on {j}j1≤j≤j2 ,
weighted by {1/Var(εj)}j1≤j≤j2 . A confidence interval for the estimate then follows from regression theory.

This method is implemented by Coeurjolly [15] in the S-language, and makes use of the Wavetresh
wavelet S-library partly implemented in C. For our sample, H is estimated as 0.7982 with 95% confidence
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Figure 3.7: Wavelet based estimation.

interval [0.7769, 0.8194], when j1 = −11 and j2 = −2. The corresponding plot is given in Figure 3.7. Note
that −j instead of j is plotted against vj .

As mentioned in [3], the wavelet estimator H̃ is asymptotically unbiased when the number of vanishing
moments of the wavelet is bigger than H − 1, and in practice has very low bias even for short data sets. In
addition, the estimator is efficient (has asymptotically the smallest possible variance).

Another big advantage of the method is that potential trends have no influence on the estimator, as
long as the number of vanishing moments of the wavelet N is big enough to get rid of the trend. On the
contrary, Whittle’s method and the other above mentioned methods do not have this property. For linear
trends, a wavelet with N = 2 is powerful enough to exclude the influence of the trend on the estimation.
When more complicated trends may be present, N should be increased. However, this convenient property
is of no importance to us, because we will only analyze generated data without trends (strictly speaking,
a series with a trend is not stationary anymore, and we only defined long-range dependence for stationary
processes).

3.2 Testing

Except for a few estimators, the estimation methods described in the previous section can be used to estimate
the Hurst parameter of general long-range dependent samples. In this section on testing techniques, we
focus on fractional Gaussian noise. It is possible to test statistically if our sample can be distinguished
from fractional Gaussian noise. One could think that this is precisely what we need to evaluate simulation
methods of fractional Gaussian noise and fractional Brownian motion, and thus question why all above
mentioned estimation methods are needed for our analysis. Before we discuss this, we need to know more
about the hypotheses of the tests.

We will study two tests. The null hypothesis is in one case that the spectral density is given by (1.11), in
the other case that the covariances of the sample are in accordance with fractional Gaussian noise for some
specified Hurst parameter; in both cases, the alternative is that the null hypothesis does not hold. This
is the first drawback, because a test where the null and alternative hypothesis are swapped is much more
powerful. We would then have statistical evidence against the hypothesis that the sample is not fractional
Gaussian noise.

Moreover, it is unimaginable to summarize the sample in one number (the test statistic or p-value) and
not to lose information on how it was produced. Therefore, it is still useful to have a look at the other
methods that estimate the long-range dependence parameter H. By doing this, it is easier to find out
what the particular weaknesses of the simulation method are; every estimation method is namely based
on some property that a ‘proper’ fractional Gaussian noise (or fractional Brownian motion) sample should
have. In other words, we get some feeling for the approximate methods when we see which properties are
incorporated in the sample and which are not.

When two approximate methods are performing quite well, we cannot value the two methods by means
of the test statistic or its p-value of only one sample, because this value is subject to coincidence. This is
an additional problem in the use of these tests, which makes it necessary to extract more information from
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the sample. In fact, we can also exploit the possibility that we can generate as many samples as we like.
The conclusions of the tests are then more robust.

3.2.1 A goodness-of-fit test for the spectral density

Beran [8] proposed a goodness-of-fit test statistic based on the spectral properties in the sample. In fact, it
is tested whether the sample spectral density (i.e., the periodogram) could be generated by a process with
some specified spectral density (which is in our case the spectral density of fractional Gaussian noise with
the true H).

However, some problems are involved when this is tested. The observed frequencies in the sample are
compared to the expected spectral information contained in f , but nothing is said about the distribution of
these frequencies in time. Therefore, it is possible that a non-stationary series has spectral properties that
force the test to accept the null hypothesis.

Moreover, the comparison of spectral densities involves only the correlation structure. Recall that the
spectral density is defined as fH(λ) =

∑∞
j=−∞ γ(j) exp(ijλ), where γ(·) is the autocovariance function

(note that the dependence on H is again made explicit in the notation). Therefore, it is possible to have a
non-centered process that has exactly the same spectral density as fractional Gaussian noise. In addition,
some non-Gaussian process may also have the same spectral density. However, this is no problem in our
setup, since it is clear from the structure of all approximate generation methods under consideration that a
Gaussian zero-mean sample is produced.

The goodness-of-fit statistic is defined as

TN (H) =
AN (H)

BN (H)2
, (3.9)

where

AN (H) =
4π

N

N/2
∑

k=1

{

I(λk)

fH(λk)

}2

and BN (H) =







4π

N

N/2
∑

k=1

I(λk)

fH(λk)







2

.

Here, I(·) denotes the periodogram (see (3.7)) of the observed data and fH(·) the spectral density of
fractional Gaussian noise with the real H. Both are evaluated at the Fourier frequencies λk = 2πk/N .

It is shown in [8] that, under the null hypothesis,
√
N(AN (H)−µ1, BN (H)−µ2) converges in distribution

to a bivariate Gaussian random variable with mean 0 and covariance matrix Σ as N → ∞ for some known
µ1, µ2 and Σ. Using the so-called Delta method, the author deduces that TN (H) is approximately normally
distributed with mean π−1 and variance 2π−2N−1. It is claimed that the approximation of TN (H) by such
a Gaussian random variable is already good for moderately large sample sizes.

From a practical point of view, one of the strengths of this goodness-of-fit test is that the asymptotic
distribution of the test statistic is not affected when the Whittle estimated Hurst parameter is substituted in
(3.9), see again [8]. However, this is of no importance to us, since we are interested whether an approximate
sample can be distinguished from fractional Gaussian noise with the input Hurst parameter.

Beran has also implemented this test, and made the code publicly available. For our sample, the test
statistic is 0.3213, which corresponds to an asymptotic p-value of 0.3916 (i.e., in this case 2P (TN (H) >
0.3213) = 0.3916, since the test is two-sided). This means that the null hypothesis of a spectral density
with Hurst parameter H = 0.8 is accepted at any reasonable confidence level. Recall that the p-value has
to be compared with a given confidence level, e.g., 5%.

However, testing whether this sample is fractional Gaussian noise with Hurst parameter 0.76 leads to a
p-value of 0.1158, still accepting the null hypothesis even at a 10% confidence level. This makes us slightly
suspicious about the power of this test.

3.2.2 A chi-square test for fractional Gaussian noise

As indicated in the discussion of the goodness-of-fit test for the spectral density, it is desirable to test
whether the finite-dimensional distributions are in accordance with fractional Gaussian noise. Although
several goodness-of-fit tests exist to test the marginal distribution [9, Sec. 10.1], we restrict ourselves to
a chi-square test for the joint distribution. Under the null hypothesis, the sample has zero mean and
its autocovariance function γ(·) is given by (1.7). Recall from Chapter 2 that the covariance matrix Γ
determined by γ(·) has a Cholesky decomposition Γ = LL′. Denoting again the sample size by N , we can
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‘standardize’ a fractional Gaussian noise sample X = (X0, . . . , XN−1)
′ by computing Z = L−1X, such that

Z has independent standard normal elements. A chi-square test can be based on this fact.
Letting Z = (Z0, . . . , ZN−1), the test statistic is

CN (H) =
N−1
∑

k=0

Z2
k , (3.10)

which is chi-square distributed with N degrees of freedom under the null hypothesis. Again, the dependence
on H is emphasized in the notation (note that Γ and therefore L also depend on H). For a given confidence
level α, the hypothesis is rejected when CN (H) is larger than the upper α-quantile of the χ2

N distribution.
Unlike the goodness-of-fit test, it is (to our knowledge) not known if the asymptotic distribution of the

test statistic is affected when Z is computed by substituting a consistent estimator H̃ for H: more research
has to be done to see if

CN (H̃) −N√
2N

converges in distribution to a standard normal variable as N → ∞.
The power of the test against alternatives can also be studied in more detail. It is a desirable property

of a test that the distribution of the test statistic under alternatives is very different from the distribution
under the null hypothesis. The null hypothesis is then rejected with a relatively high probability when the
alternative is true. This is called the power of the test. In other words, it is desirable that the distribution
of CN (H) ‘differs’ from χ2

N when the elements of Z do not have unit variance and are not independent.
A serious problem of the test is that the matrix L should be computed and be kept in memory to make

it possible to invert the matrix. Because the inversion can be done quite fast using backward-substitution,
the memory problem is more serious. For instance, it was not possible to obtain a test value for our sample,
because it was not possible to allocate the necessary memory space. Without giving the details, the test
statistic can also be calculated once the eigenvalues of L are known. As the computation of these eigenvalues
is very time-consuming due to the size of L, this is no good option either.

It is possible to solve the memory problem, although the test loses power against specific types of
alternatives. Assume that no memory problems are involved when the sample size is K. This K should be
chosen as large as possible, and we assume that both K and the sample size N > K are powers of two.
We then split our sample in N/K blocks, and compute the test statistic for each block. Under the null
hypothesis, the sum of all obtained test statistics over the K blocks has again a χ2

N distribution, which is
easy to see. By following this procedure, some of the correlations in the sample are not taken into account
in the test. We should keep in mind that this has no influence when these correlations are zero, but that the
modified test statistic gives the same result when these correlations are non-zero. The modified test yields
a p-value of 0.4439 for our sample (K = 29).

Since we are able to simulate approximate samples, we can also simulate the distribution of the test
statistic using a certain approximate simulation method. It is possible to test if this distribution equals the
χ2

N (null)distribution, which provides a means to draw more robust conclusions than a chi-square test on
only one simulated sample. The well-known one-sample Kolmogorov-Smirnov test (see, e.g., Gibbons [31])
is the technique that can be used to test if a sample is drawn from a specified distribution.
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CHAPTER 4

Evaluation of approximate simulation
methods

When proposing a new simulation method for fractional Brownian motion, the inventors of the method
relate their method to existing ones. Besides the speed, an important aspect of the method is whether the
resulting samples are long-range dependent with the right Hurst parameter. This is checked by estimating
the Hurst parameter H, mostly with the Whittle method, and comparing these estimates to the input value
of the sample. To the author’s knowledge, no articles exists in which attention is paid to the impact of the
estimation procedure; the estimates may be biased. Although we will shortly see that simulation results
suggest that the Whittle estimator is (asymptotically) unbiased, it should first be checked whether the
sample corresponds indeed to fractional Gaussian noise, in particular its spectral properties (see Chapter
3).

When an approximate sample incorporates the right long-range dependent behavior, there is still no
reason to assume that the sample is a realization of fractional Gaussian noise or fractional Brownian motion.
For instance, we also need that the mean is zero and that the sample is Gaussian. In fact, we know precisely
what else is needed: fractional Brownian motion is characterized by the properties on page 6.

We start this chapter with a study on the errors that are made by the approximate simulation methods,
using the theory of Chapter 2. After this preliminary study, the structure of this chapter follows closely
the properties on page 6. The stationarity of the approximate (incremental) samples is thus checked first,
although the detection of stationarity is very difficult. We can regard EB2

H(t) = t2H as the self-similarity
or long-range dependence property, which enables us to use the estimation techniques presented in Chapter
3. Before it is possible to estimate the Hurst parameter, it should be first tested if the samples cannot be
distinguished from fractional Gaussian noise, as already mentioned. The requirement that the paths should
be continuous is of no interest to us, since we have discrete-time (sampled) versions of the paths. This is also
the case for the normality property, since all approximate simulation methods that we will study generate
zero-mean Gaussian sample paths.

The evaluation of approximate simulation methods has been no subject of extensive study. Jennane
et al. [37] review some methods and test statistically the normality of the process, the stationarity of the
increments (essentially only the variance-stationarity) and the self-similarity of the resulting samples. In
that respect, the structure of this chapter is closely related to their approach. However, the statistical
methods to check the validity of these properties differ. As an example, they use a chi-square test to check
the self-similarity property, thus assuming independence that is not present. Moreover, some promising
simulation methods are not studied in their article.

Coeurjolly [15] discusses a number of interesting simulation and estimation methods, but does not
evaluate these in the detail we will do.

Unless stated otherwise, all plots in this chapter are produced with a Hurst parameter H = 0.8.

4.1 Error analysis

The error analysis is first performed on the approximate circulant method, since the requires ideas are
already discussed (see Chapter 2). Unfortunately, it is impossible to compute errors of Paxson samples,
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since no exact reference sample is available. Since the Paxson method and the approximate circulant method
are both special cases of the spectral simulation method, we expect that the results concerning convergence
are also true for the Paxson method, although it may require larger sample sizes.

After having studied the errors for the approximate circulant method, we address the errors of the
RMDl,r and the wavelet method.

4.1.1 The approximate circulant method

We first study the approximation error of fractional Gaussian noise in the spectral domain, whereafter we
switch to the time domain to gain empirically more insight into the theoretical considerations of Section
2.2.4. The error of fractional Brownian motion samples is also analyzed, and the approximation is also
studied in a simple network model.

The error in the spectral domain

In the spectral domain, the approximation error that is made by the approximate circulant method is best
analyzed by comparing the eigenvalues of the Davies and Harte method λk =

∑N−1
j=−N+1 γ(j) exp(πijk/N)

to the spectral density values f(πk/N) =
∑∞

j=−∞ γ(j) exp(πijk/N) for k = 1, . . . , 2N − 1. Note that
no approximation is involved for k = 0 by construction. The only question is how to compare these two
quantities.

In the following, we denote the approximate circulant sample by X̌ = {X̌k : k = 0, . . . , N − 1} and the
exact Davies and Harte sample by X = {Xk : k = 0, . . . , N − 1}. Since we are interested in the error in
the frequency domain, a natural idea is to study the sequences that serve as input in the FFT algorithm.
For the approximate circulant method, this sequence is given by (2.27). To avoid unnecessary notationally
complicated expressions, we do not care about the scaling factor for c0 and cN ; we set c0 =

√

f(0)/(4N)

with f(0) = N2H − (N − 1)2H and cN =
√

f(π)/(4N). Likewise, we set in the FFT-input sequence (wk)k

of the Davies and Harte method (which follows from (2.12)) w0 =
√

λ0/(4N) and wN =
√

λN/(4N).
The difference (dk)k of the two sequences (ck)k and (wk)k provide information on the error in the spectral
domain. Writing things out and setting tk = πk/N , we get

dk =















(

√

λk

4N −
√

f(tk)
4N

)

(U
(0)
k + iU

(1)
k ) k = 0, . . . , N

(

√

λ2N−k

4N −
√

f(t2N−k)
4N

)

(U
(0)
2N−k − iU

(1)
2N−k) k = N + 1, . . . , 2N − 1

. (4.1)

In the following, we feel free to change the coefficient dN from time to time for explanatory reasons. Since
the expectation of the coeffients is zero, the standard deviation (or variance) of dk measures intuitively the
error in the spectral domain. We will therefore study a scaled version of the standard deviation of dk,

σk :=

∣

∣

∣

∣

∣

∣

√

√

√

√

∞
∑

j=−∞

γ(j) exp(πijk/N) −

√

√

√

√

N−1
∑

j=−N+1

γ(j) exp(πijk/N)

∣

∣

∣

∣

∣

∣

(4.2)

and the variance

σ2
k =





√

√

√

√

∞
∑

j=−∞

γ(j) exp(πijk/N) −

√

√

√

√

N−1
∑

j=−N+1

γ(j) exp(πijk/N)





2

. (4.3)

The variances are plotted as function of k in Figure 4.1 for N = 210. From this figure, it becomes clear
that traces generated by the approximate circulant method differ mainly from exact traces by their low and
high frequency behavior, but the range of frequencies that are affected by the approximation seems rather
small.

Thus, a natural question is whether the spectral performance of the approximate circulant method
becomes better as the sample size N increases, because we may think that the range of affected frequencies
becomes smaller. To avoid problems of defining when a frequency is affected, we study the mean standard
deviation 1

2N

∑2N−1
k=0 σk and the mean variance 1

2N

∑2N−1
k=0 σ2

k instead. The errors are plotted against the
(log) sample size in Figure 4.2. The solid line corresponds to the mean absolute error, and the dashed line
to the mean square error. They both show a clear decay.
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Figure 4.1: The variances σ2
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Figure 4.2: The ‘spectral’ performance measures 1
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as functions of the (log2) sample size.
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Figure 4.3: Fractional Brownian motion generated by the Davies and Harte method (solid line) and the
approximate circulant method (dashed line) using the same random numbers.

Although we may find this a satisfactory result, we are mainly interested in the time-domain error,
i.e., the error of the output sample. Approximate time-domain traces are used as input in, e.g., queueing
systems. Therefore, we leave the frequency domain and change the point of view towards the time domain.

The error of fractional Gaussian noise in the time domain

As already pointed out in Chapter 2, it is possible to compare the time-domain output of the two methods
by using the same random numbers to generate the sample. This was done for two generated fractional
Brownian motion samples in Figure 4.3, with N = 212 and (as usual) H = 0.8. The solid line is generated
by the Davies and Harte method, the other by the approximate circulant method.

The idea of using common random numbers makes it possible to analyze the (time-domain) errors, since
the error of approximate circulant samples can be computed. We perform a small simulation study to
analyze the expected error, the expected absolute error and the expected square error. After generating
1000 fractional Gaussian noise samples of length 210, we compute the three errors for every sample point
in each sample. This results in an average for each sample point, which is an estimate for the error in that
sample point. The estimates are plotted in Figure 4.4.

To be able to understand these plots, we study the random process X̌−X = {X̌k−Xk : k = 0, 1, . . . , N−
1}, which is the real part of the Fourier transform of the sequence (dk)k defined by (4.1). It is readily checked
that X̌n −Xn is a centered Gaussian variable with variance (not caring about the value of dN )

σ2
X̌n−Xn

=
1

2N

2N−1
∑

k=0

σ2
k,

which does not depend on n anymore. In fact, this variance was already plotted as a function of N in Figure
4.2. The plots in Figure 4.4 are completely in accordance with these considerations; the error seems to be
centered and the lower panel consists of (dependent) realizations of a scaled χ2

1 random variable. Moreover,
since E|X̌n−Xn| is proportial to the square root of σ2

X̌n−Xn
because of the normality, the expected absolute

error also converges to zero as the sample size increases.
In Chapter 2, it was shown that an approximate circulant sample converges to an exact sample in L2–

norm. This means that the expected square error converges to zero for every sample point, or equivalently
that σ2

X̌n−Xn
→ 0 as N → ∞. Because σ2

X̌n−Xn
was depicted as the dashed line in Figure 4.2, we see that

this theoretical result is indeed numerically confirmed.
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Figure 4.4: Simulation of the expected error, expected absolute error and expected square error made by the
approximate circulant method for fractional Gaussian noise.

The error of fractional Brownian motion

Now that we have both theoretically and empirically seen that the expected absolute and square error
converge to zero for fractional Gaussian noise samples, it is an interesting question whether the corresponding
fractional Brownian motion samples share these properties. As in Figure 4.4 for fractional Gaussian noise,
we plot the mean error, mean absolute error and mean square error for fractional Brownian motion in Figure
4.5.

The shape of the expected error and expected absolute error is quite remarkable: they are perfect
straight lines through the origin. This is not quite what we expected, especially in the case of the expected
error: the expected error of the fractional Gaussian noise sample is zero, so this must also be the case for
the cumulative errors. Let us first study the error of the fractional Brownian motion sample Y̌ − Y =
{Y̌n − Yn =

∑n
j=0(X̌j −Xj) : n = 0, 1, . . . , N − 1}. Obviously, this is a centered Gaussian process. It is left

to the reader to check that its variance depends on n and is given by

σ2
Y̌n−Yn

=
1

2N

2N−1
∑

k=0

σ2
k











n
∑

j=0

cos2(πjk/N)





2

+





n
∑

j=0

sin2(πjk/N)





2





.

We know from Figure 4.1 that σ2
k is almost everywhere zero but for values of k near 0 and 2N − 1. For

these values of k, the term between the square brackets is approximately n2, since the sine-term vanishes
and the cosine-term is very close to 1. The expected square error of the fractional Brownian motion sample
σ2

Y̌n−Yn
is thus proportional to n2 for large sample sizes, which is precisely what we see in Figure 4.5. The

normality accounts for the proportionality to n of the expected absolute error. However, the expected error
itself should approximately be zero, whereas it looks like a straight line in Figure 4.5.

The intuitive explanation for the observed phenomenon lies in the fact that the approximate circulant
method differs in the low and high frequency behavior from the exact Davies and Harte method. First note
that the scale is different in the two upper plots of Figure 4.5, and considerably smaller for the expected
error. The exact Davies and Harte sample has a low frequency component that is not incorporated in
the corresponding approximate circulant sample. When simulating errors in a fractional Brownian motion
sample, a big wave shows typically up. Depending on the realizations of these waves, averaging only 1000
errors (waves) may very well yield a small ‘non-zero wave’, although the ‘expectation’ of that wave is zero.
This is precisely what we observe in the upper panel of Figure 4.5.
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Figure 4.5: Simulation of the expected error, expected absolute error and expected square error made by the
approximate circulant method for fractional Brownian motion.

The intuitive reasoning in terms of waves also explains why the averaged absolute error starts at zero
and why it increases. However, it fails to explain why this results in a straight line.

Although the low frequency deviation explains the shape of the graphs, it is still not clear why it looks
like there are no high frequencies present in the errors. Recall that low as well as high frequencies are
affected by the approximation by the approximate circulant method. In fact, high frequencies are present
in all plots of Figure 4.5, but they can not be observed, because this effect is overshadowed by the effect of
the low frequencies.

The relative error in a network model

Since the absolute and square error for fractional Brownian motion samples increase obviously in n, the
reader might think that this approximate simulation method is of no use to simulate a network traffic
process. However, we can not be sure of that at this point. First recall the network traffic process A of
Section 1.3. It is a translated version of fractional Brownian motion, where A(t) represented the cumulative
traffic in the time interval [0, t]. The quantity of interest when the network traffic in a time interval [t, t+T ]
is simulated is thus the absolute (or square) error of the generated value relative to the ‘exact’ value. The
theoretical result of Chapter 2 is of no help in this case, so the only remaining possibility is to simulate this
relative error.

This relative error is mathematically described by

∣

∣

∣

∣

∣

√
aM(Xn − X̌n)

M +
√
aMXn

∣

∣

∣

∣

∣

for every sample point n = 0, . . . , N − 1. It is interesting how this error behaves as the sample size N
varies. We will not study this error in detail, but we set M = 1000 and

√
aM = 250 and carry out a small

simulation experiment to get some feeling for the relative error. We proceed in the same way as before: for
a range of sample sizes, we generate 100 traces and compute the relative error in each sample point. Since
we hope that the relative error also decreases in the sample size for every sample point, a natural thought
is to show graphically that the maximum over the sample points decreases to zero. However, this is not
desirable in this case. One realization of Xn of approximately −4 produces a big relative error, which has
a huge impact on the maximum. Therefore, we simulate the relative error averaged over all sample points
for several values of the sample size N .
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Expected relative error in a network model

Figure 4.6: The relative error of a typical network trace and the mean relative error as a function of the
sample size (H = 0.8).

The resulting plot is given in the lower panel of Figure 4.6. The upper panel consists of a realization of
the relative error for N = 216. As expected, some spikes show up in this plot. We conclude from the lower
plot that the approximate circulant method performs better for larger sample sizes, although the result
depends clearly on the choice of the parameters M and

√
aM .

Thinking about approximate samples as input in queueing systems, it is interesting to simulate the
errors in the queueing system of interest instead of this simple network model. The performance of the
approximate method can then be compared to the Davies and Harte method on some selected measures
(e.g., overflow probability). This is especially important when so-called rare events are simulated; rare
events are events that occur with a very small probability.

We now perform an error analysis on the RMDl,r method and compare the results to the observations
for the approximate circulant method.

4.1.2 The RMDl,r method

Unlike the approximate circulant method, no exact reference trace is available for the RMDl,r method, which
makes it impossible to compute and analyze errors. To overcome this, samples produced with relatively
small l and r (as typically used in practice) are compared to reference samples with l = 50 and r = 25, using
common random numbers. This trace is then regarded as an exact trace. This approach is also followed in
[47], where the relative error

∑N−1
k=0 |Xk − X̂k|
∑N−1

k=0 |Xk|

is studied, whereX denotes the ‘quasi-exact’ RMD50,25 sample and X̂ the approximate sample, e.g., RMD1,2.
Instead of this relative error, we focus on the same errors as we did for the approximate circulant

method to be able to compare the RMDl,r errors to the approximate circulant errors. Of course, it makes
only sense to study the error in the time domain. Since l = 1 and r = 2 are claimed to be good choices for the
parameters in [47], we will focus the error analysis on RMD1,2 traces. Recall that an RMDl,r sample is found
by simulating the processes X0,X1, . . ., which corresponds to simulating fractional Brownian motion of some
coarse equispaced grid and doubling the number of points on the grid (i.e., ‘stochastically interpolating’) in
each succesive step. This process is stopped when the sample has the required ‘resolution’.

51



0 200 400 600 800 1000

−
0.

00
4

0.
00

2
0.

00
6

0 200 400 600 800 1000

0.
01

0
0.

02
0

0.
03

0

0 200 400 600 800 1000

0.
00

05
0.

00
15

P
S
frag

rep
lacem

en
ts

log
2 (N

)nk

Expected error of a fractional Gaussian noise sample

Expected absolute error of a fractional Gaussian noise sample

Expected square error of a fractional Gaussian noise sample

er
ro

r
er

ro
r

er
ro

r

n

n

n

Figure 4.7: Simulation of the expected error and the expected absolute error made by the RMD1,2 method
for fractional Gaussian noise.

The errors of fractional Gaussian noise and fractional Brownian motion

Plots of the mean error, the mean absolute error and the mean square error of a fractional Gaussian
noise sample are given in Figure 4.7. The same quantities are plotted in Figure 4.8 for the corresponding
fractional Brownian motion samples. The plots are based on a simulation of only 100 runs, because of the
computational effort that is required to generate samples with the RMD50,25 method.

First of all, the error of an RMD1,2-fractional Gaussian noise sample has zero mean like the approxi-
mate circulant method, but the mean absolute and square errors are considerably lower than for a sample
generated with the approximate circulant method (cf. Figure 4.4). This is a clear advantage of the RMD1,2

method. It seems, however, that in the first and last part of the sample the expected absolute and square
errors are larger, which must be caused by border effects: the number of points that are used in the con-
ditioning decreases when a border is near. Because this is true for every level Xi, this affects more points
than only the first l points near the left border and the last r points near the right border.

More importantly, the errors made in the fractional Gaussian noise sample cancel out each other when
cumulative sums are taken, as seen in the two lower panels of Figure 4.8: the absolute error of the frac-
tional Brownian motion sample is non-monotone. This is in contrast to the approximate circulant method,
for which there are typically periods in which all errors have the same sign, resulting in a ‘wave’ in the
accumulated error, although the individual errors in the fractional Gaussian noise sample are small.

Another interesting property of the plot of the expected absolute error for a fractional Brownian motion
sample is that there are roots in n = 1, n = 1024, n = 2048 and n = 4096. This can be explained by
recalling how the sample was constructed. For l = 1 and r = 2, X1 + . . .+X2048 and X2049 + . . .+X4096 are
simulated in the first iteration, and no approximation is involved. In the second iteration, X1 + . . .+X1024

is simulated given X1 + . . . + X2048 and X2049 + . . . + X4096; again exact. Also, X2049 + . . . + X3072 is
simulated given X1025 + . . . + X2048 and X2049 + . . . + X4096. This is not exact anymore, because there
should be conditioned on X1 + . . .+X1024 as well in an exact algorithm (note that l = 1!).

It seems that the first and last ‘mountain’ in the second and third plot of Figure 4.8 are a bit higher
than the others. This is in line with the border effects that we observed in Figure 4.7, suggesting that the
approximation can be improved by removing some begin and end points of the sample.

From the explanation of the mountain-shape becomes clear that the size of the mountains can be reduced
by choosing l and r larger, which is intuitively clear. Choosing RMD∞,∞ as an (exact) reference instead of
RMD50,25 results in the same shape for the absolute error, up to small ‘hops’. Furthermore, we expect that
a doubling of the sample size has no influence on the shape of the expected absolute error, since the new
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Figure 4.8: Simulation of the expected error and the expected absolute error made by the RMD1,2 method
for fractional Brownian motion.

sample points are added between the existing ones.

The relative error in a network model

This should also be observed in a plot of the relative error in the same fractional Brownian traffic model as
in the previous section. Based on only 10 runs, the relative error is depicted as a function of the sample size
in Figure 4.9. It shows that the relative error indeed does not improve for larger sample sizes and increases
even for small sample sizes. The latter is easily explained, e.g., for N = 22. Only four points should be
generated while conditioning on maximal two points on the left and one point on the right. This yields a
very small (relative) error.

Note that it becomes also clear at this point that it depends highly on the application which approximate
method performs better; the absolute error of the RMD1,2 method in Figure 4.8 is clearly smaller than the
absolute error of the approximate circulant method, but the relative error in the network model is smaller
for the approximate circulant method when reasonable sample sizes are required (compare Figure 4.6 and
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Figure 4.9: The mean relative error as a function of the (log2) sample size for RMD1,2 traces.
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Figure 4.10: The construction of a fractional Brownian motion with the wavelet method.

Figure 4.9)!

4.1.3 The wavelet method

As mentioned in Chapter 2, it has been proposed to use the wavelet method with the truncation parameter
−J such that J = 5 or J = 6. A reference trace is produced with Jf determined by N = 2Jf . Although it
is in theory possible to simulate the details when going from level J to Jf, this is problematic in practice
for computational reasons; as we will shortly see, the method is already very slow for J = 6. Moreover,
the reference trace is not exact anyway, since the truncation is not the only approximation involved. Recall
that the fractional ARIMA component was also approximated and, more importantly, the wavelet method
does not produce samples with stationary increments.

However, we can gain some more insight into the mechanism of the wavelet method by generating some
plots that clarify the successive steps in the algorithm. In Figure 4.10, the ‘building blocks’ of a fractional
Brownian motion sample with N = 212 and J = 7 are depicted. The Daubechies 10 wavelet is used in the
algorithm. The program to generate fractional Brownian motion samples with wavelets was implemented
in the C-language based on the S-program by Coeurjolly, see [15].

The plots in Figure 4.10 are best understood with the help of the truncated form of Equation (2.35). Since
this formula concerns the simulation of a sample of size N on {0, 2−J , . . . , (N − 1)2−J}, the self-similarity
property is used to find the wavelet sample (B̃H(n))N−1

n=0 . This sample is given by

B̃H(n) = 2HJ





∑

k

bH(k)φ
(s)
0,k(2−Jn) +

0
∑

j=−J

∑

k

λj,k4−s2jsψ
(s)
j,k(2−Jn)



 . (4.4)

In the upper left corner, the fractional ARIMA component bH(k) is plotted (note that the length of this
sample does not equal N , but 2−JN , cf. the discussion in Section 2.2.5). The upper right corner shows

the (scaled) output sample when no details are added, i.e.,
∑

k bH(k)φ
(s)
0,k(2−Jn). The last added detail

∑

k λ−J,k4−s2−Jsψ
(s)
−J,k(2−Jn) is plotted in the lower left corner of Figure 4.10, whereas the lower right

corner consists of the resulting sample (B̃H(n))N−1
n=0 .

Let us assume that the approximation in bH(k) is negligible. It is then natural to study the details at the
subsequent approximation levels. Intuitively, the details add higher and higher frequencies to the sample.
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Figure 4.11: The details studied in more detail.

Although setting the details to zero except the first J + 1 details leads to a loss in quality of the sample, it
is very well possible that the influence of the omitted details is very small.

There are many ways to measure this influence, but we will study the behavior of the mean of the

absolute value of the details. The reason for this is that the detail
∑

k λ−J−1,k4−s2−(J+1)sψ
(s)
−J−1,k(2−Jn)

can be regarded as the most important component of the error

−J−1
∑

j=−Jf

∑

k

λj,k4−s2jsψ
(s)
j,k(2−Jn). (4.5)

Recall that we assumed that this is the only error made in the approximation (up to the error in
the definition of fractional Brownian motion), and that it is computational too intensive to com-
pute the sum (4.5) for reasonable sample sizes on a 200 MHz Pentium machine. We use the detail
∑

k λ−J−1,k4−s2−(J+1)sψ
(s)
−J−1,k(2−Jn) as a proxy for error (4.5). Since we already studied the expected

absolute error for two other approximate generation methods, we now focus on the mean absolute detail.
It is clear that the details have the same distribution for n = 0, . . . , N − 1 and a given level j, although

they are not independent. In Figure 4.11, the simulated distribution of the detail
∑

k λj,k4−s2jsψ
(s)
j,k(2−Jn)

is plotted for −j = 8 (upper panel), together with the mean absolute value for different values of j (lower
panel). The normality of the details is guaranteed, since the detail is a finite sum of independent centered
normal random variables. By visual inspection of the lower panel, it becomes clear that the mean absolute
detail (error) decays very fast in −j.

The fast decay of the studied ‘error’ indicate that the wavelet method is an interesting simulation method,
but it is not clear from the above arguments how accurate the wavelet method is. This is especially true
because the error in the definition of fractional Brownian motion was not taken into account, although this
error may be the most important approximation error. In addition, we did not analyze the long-term part,
the coarse approximation. From the plots in Figure 4.10 becomes clear that a wavelet-based sample depends
heavily on this fractional ARIMA component.

4.2 Stationarity and covariance analysis

Now that we have a rough idea of the errors made by some of the approximate methods, we proceed by
checking the characterizing properties on page 6. As already pointed out, the remaining part of the accuracy
analysis follows these properties. We start by checking if the approximate fractional Brownian motion
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sample has stationary increments or, equivalently, if the corresponding approximate fractional Gaussian
noise sample is stationary. Thereafter, the tests and estimation techniques of Chapter 3 are used in the
evaluation.

It is in general extremely difficult to show statistically that a sample is stationary (more precisely:
that a sample is a realization of a stationary process). Many tests are only suitable in certain cases. In
addition, much literature on tests for stationarity deal with testing if one particular sample can be regarded
as stationary, assuming a specific form of the underlying stochastic process. In the presence of long-range
dependence, it is even more difficult to distinguish a stationary process with long memory from a non-
stationary process; there appear to be local trends and cycles, which are spurious and disappear after some
time [9]. In our situation, we can simulate as many samples as we like, which may be exploited in the
stationarity check.

Instead of testing the stationarity statistically, we investigate theoretically whether an approximate
method produces stationary samples.

Spectral methods

An example of a method for which it is possible to show that stationary samples are produced is the spectral
simulation method (see Section 2.2.4).

Although the spectral simulation method, the Paxson, and approximate circulant method are closely
related, we cannot conclude from this fact that Paxson and approximate circulant samples are also stationary.
Whereas we could afford some sloppiness with respect to some input FFT-coeffients in the error analysis,
it is possible that these coefficients distort the stationarity.

Fortunately, this is not the case. Direct computations for the Paxson method using (2.25) show that for
Paxson samples holds that

Cov(Xm, Xn) =

N/2−1
∑

k=1

f(2πk/N)

N/2
cos(2π(m− n)k/N) +

f(π)

2N
(−1)m+n, (4.6)

which depends only on m− n, since (−1)m+n = (−1)m−n. We write γ̃P(·) for the resulting autocovariance
function. Similar computations for the approximate circulant method show that

Cov(Xm, Xn) =
N−1
∑

k=1

f(πk/N)

N
cos(π(m− n)k/N) +

N2H − (N − 1)2H

2N
+
f(π)

2N
(−1)m−n. (4.7)

From this expression it becomes clear that approximate circulant samples are stationary as well. The
resulting autocovariance function is denoted by γ̃AC(·).

Some problems arise for the Paxson method at this point. Recall that in a sample of size N , the
covariances γ(0), . . . , γ(N − 1) are approximated by γ̃P(0), . . . , γ̃P(N − 1). From (1.7) follows that the
autocovariance function γ(k) decreases in k for H > 1/2, but this is not the case for the approximation
γ̃P(k), since this function is symmetrical around k = N/2.

To illustrate this problem, the autocovariance function γ̃P is plotted together with the autocovariance
function γ for H = 0.8 and N = 28 in the upper panel of Figure 4.12. The lower panel consists of the
functions γ̃AC and γ.

Besides the symmetry problem of γ̃P, the differences with the exact autocovariance function are relatively
large; even negative covariances are present in Paxson samples. Still, the Paxson method passed many checks
(see Paxson [49]), even without the normality improvement of Chapter 2. This shows how much care should
be taken in the evaluation of approximate simulation methods! It should be said that γ̃P approximates
γ better as the sample size N increases, which is probably the reason for Paxson’s empirical finding that
satisfactory samples are obtained for N = 215.

The autocovariance function γ̃AC of the approximate circulant method is more promising, indicated
by the plot in the lower panel of Figure 4.12. Except for high-lag autocovariances, the function is almost
indistinguishable from γ, which even improves for N → ∞. In fact, from Equation (4.6) and (4.7) it becomes
clear that γ̃P as well as γ̃AC converge to γ as N → ∞ (compare (2.22)):

γ̃P/AC(k) → 2

∫ π

0

f(λ)

2π
cos(kλ)dλ = γ(k).
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Figure 4.12: The autocovariance function of the Paxson method and the approximate circulant method with
the autocovariance function of fractional Gaussian noise (dashed).

However, we are particularly interested in the rate of convergence to zero of γ̃AC, which cannot be observed
in this plot1. For a long-range dependent process with Hurst parameter H = 0.8, the graph of γ on a log-log
scale is a straight line with slope 2H − 2 = −0.4 for large k.

To check if this is the case for the autocovariance function of the approximate circulant method with
H = 0.8, the log-log plot is given in Figure 4.13 for N = 211 and N = 213. Since we are only interested in
the tail behavior, the plot of the autocovariance function starts with k = 210.

We see that the exact autocovariance function is indeed a straight line, but that this is not the case for the
autocovariance function of the approximate circulant method. The differences at the left end of the graph are
quite small, and can presumably even be made smaller by implementing one of the suggested improvements
of Section 2.2.4. It is more interesting that the solid line curves upwards for the approximate circulant
method. Because the graph was depicted on a log-log scale, this involves many high-lag autocovariances.
From these plots it becomes indeed plausible that the autocovariance function converges pointwise to the
exact autocovariance function, although in each case approximately half of the autocovariances is badly
approximated. If a sample of size N is needed, an obvious improvement is thus to take the first N elements
of an approximate circulant sample of size 2N . This also makes the method twice as slow.

The RMDl,r method

It is not always possible to find an explicit expression for the covariance function. For instance, it is not
clear how the covariances of the wavelet method can be computed. Norros et al. [47] make a plot of the
covariance matrices of the RMD0,1 and RMD1,1 method. From this becomes clear that the RMDl,r method
approximates the covariance matrix by a non-stationary ‘terrace architecture’. However, it is not discussed
in [47] how to compute the covariance matrix of the RMDl,r method for general l ≥ 0 and r ≥ 1. We will
now describe how this covariance matrix can numerically be found. Since the same techniques are used as
in the generation method, we will only discuss the main idea in a small example.

Recall that Xi = {Xij = BH(j2−i) − BH((j − 1)2−i) : j = 1, . . . , 2i}. Consider the probability density
fX2,1,X2,2,X2,3,X2,4

of the random vector (X2,1, X2,2, X2,3, X2,4). This density can be computed by noting
that (assume that l ≥ 1 and r ≥ 2)

fX2,1,X2,2,X2,3,X2,4
(x1, x2, x3, x4) = fX2,1,X2,1+X2,2,X2,3,X2,3+X2,4

(x1, x1 + x2, x3, x3 + x4)

= fX2,1,X2,3|X2,1+X2,2=x1+x2,X2,3+X2,4=x3+x4
(x1, x3)fX2,1+X2,2,X2,3+X2,4

(x1 + x2, x3 + x4)

1I am grateful to Marius Ooms for pointing this out to me.
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Figure 4.13: The tail of the autocovariance function of the approximate circulant method on a log-log scale.
The dashed line is the exact autocovariance function.

= fX2,1,X2,3|X1,1=x1+x2,X1,2=x3+x4
(x1, x3)fX1,1,X1,2

(x1 + x2, x3 + x4)

= fX2,1|X1,1=x1+x2,X1,2=x3+x4
(x1)fX2,3|X2,1=x1,X2,2=x2,X1,2=x3+x4

(x3)

·fX1,1,X1,2
(x1 + x2, x3 + x4).

In the notation of Section 2.2.3, it is readily checked that the previous formula implies that

(x1, x2, x3, x4)Γ
−1
2 (x1, x2, x3, x4)

′ =
(x1 − e(2, 0)(x1 + x2, x3 + x4)

′)2

v(2, 0)

+
(x3 − e(2, 1)(x1, x2, x3 + x4)

′)2

v(2, 1)

+ (x1 + x2, x3 + x4)Γ
−1
1 (x1 + x2, x3 + x4)

′.

From this, the inverse Γ−1
2 of the covariance matrix of (X2,1, X2,2, X2,3, X2,4) is determined uniquely and

can be computed once the inverse Γ−1
1 of the covariance matrix of (X1,1, X1,2) is known. This is done by

writing every term on the right hand side in the form (x1, x2, x3, x4)A(x1, x2, x3, x4)
′ for some matrix A,

thus rewriting the whole right hand side in this form, which gives the matrix Γ−1
2 . The same idea can be

used to compute Γ−1
3 , Γ−1

4 , and so on. The truncation parameters l and r show up when for instance r = 1
and fX2,1|X1,1=x1+x2,X1,2=x3+x4

(x1) is approximated by fX2,1|X1,1=x1+x2
(x1).

When the covariance matrix of the RMDl,r method for a sample size N = 2g should be computed, this
process is stopped once Γ−1

g is known. The inverse of Γ−1
g is then the required covariance matrix.

In Figure 4.14, the covariance matrices of the RMD1,1 and RMD1,2 method are plotted. In the ter-
minology of [47], the ‘terrace architecture’ is clearly present in the RMD1,1 matrix, whereas it seems to
have disappeared in the RMD1,2 matrix. The RMD1,2 matrix is visually almost indistinguishable from the
exact covariance matrix. However, the matrices are not equal. As already pointed out, the approximate
covariance matrix does not correspond to a stationary process. Therefore, it is impossible to analyze the
covariances of the RMDl,r method in the same way as we did for the spectral methods: the diagonal and
its parallel vectors do not have constant elements anymore. Therefore, we plot the minimum and maximum
value of each ‘diagonal’ vector. From this, we can still get an idea about the decay of the elements in the
covariance matrix. The resulting plot is given in Figure 4.15 for the RMD1,2 and RMD3,3 methods with
sample size N = 28.

Note that no information is provided by Figure 4.15 on the distribution of the ‘diagonal’ vectors; it is
well possible that all covariances are exact, except for two covariances: the minimum and the maximum
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Figure 4.14: The 32×32 covariance matrices of the RMD1,1 (left) and the RMD1,2 method (right). H = 0.8.
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Davies RMD1,2 RMD2,1 RMD3,3 Paxson approx. wavelet wavelet

& Harte circulant J = 6 J = 7

mean 0.008159 0.008615 0.01958 0.008291 0.1090 0.04486 0.02084 0.02144

max 0.04359 0.05154 0.1961 0.05010 0.3458 0.08606 0.5157 0.3549

Table 4.1: Sample mean and maximum absolute value of the elements in the error matrix.

value. In fact, the lines that correspond to the first and third quartile of this distribution lie very close
to the exact value except for the rightmost part (these quartile-lines were not depicted to prevent them
from spoiling the visual effect of the plot). Like the observations in the error analysis, this suggests that
these methods are very interesting for simulation purposes. Although the minimum and maximum value
of the RMD3,3 method seems to lie closer to the exact value, the differences between the RMD1,2 and the
RMD3,3 method are definitely not so large. An important observation is that the rightmost part of the
graph curves downwards, which is not desirable. As already suggested in the error analysis, this may be
solved by removing some sample points at the beginning and the end of the trace.

The wavelet method; a simulation experiment

To gain more insight into the approximation of the covariance structure of the wavelet method, we perform
a simulation experiment to estimate the covariances. This sample covariance matrix is then compared to
the theoretical covariance matrix determined by the autocovariance function γ(·). From the comment in
Section 2.2.5, it follows that the wavelet method does not produce stationary samples. Still, the covariances
can be very close to the desired covariances, as we saw for the RMD3,3 method.

To find a sample covariance matrix, we generate n samples of size N with the wavelet method. Denote

the ith sample by X(i) = {X(i)
k : k = 0, . . . , N − 1}. From these samples, we estimate element (l, k) of the

covariance matrix by

1

n− 1

(

n−1
∑

i=0

X
(i)
l X

(i)
k − 1

n

[

n−1
∑

i=0

X
(i)
l

n−1
∑

i=0

X
(i)
k

])

,

for l, k = 0, . . . , N − 1. After that, the theoretical covariance matrix is substracted from the estimated
matrix to obtain the ‘sample error’ matrix.

The average absolute value and the largest absolute value of the elements in the error matrix provide
information on how well the wavelet method performs. To make it possible to compare the wavelet error
matrix, the procedure is also followed for the Davies and Harte method and the other approximate methods.
The largest absolute error and the mean absolute error are tabulated in Table 4.1. All samples are of
size N = 28 and were generated with input Hurst parameter H = 0.8. The number of simulation runs
is n = 10000. We see that the performance of the RMD2,1 method is rather disappointing, whereas the
RMD1,2 and RMD3,3 methods have estimated covariance matrices quite close to the real covariance matrices,
as already suggested by the previous theoretical covariance analysis. This is especially true for the RMD3,3

method, in which more sample points are used in the conditioning. The resulting (non-stationary) samples
have covariances that are even closer to the required covariances than the (stationary) approximate circulant
samples! As expected, the approximate circulant method performs better than the Paxson method, which is
reflected by smaller values in Table 4.1. In fact, the ‘max’ value is close to the maximum absolute distance
between the two covariance functions in the upper panel of Figure 4.12, 0.3456. The two wavelet methods
perform quite badly, indicated by the large values in the table. However, we should keep in mind that the
covariance matrix was simulated, which makes it hard to draw robust conclusions.

4.3 Testing the approximate samples

According to the properties on page 6 that outline the structure of this accuracy analysis, we should test if
long-range with the right Hurst parameter is present in the approximate samples. However, we will first test
if the approximate simulation methods produce samples that can be regarded as fractional Gaussian noise.
Because it is an assumption in the Whittle estimation procedure that the sample is fractional Gaussian noise
(see Section 3.1.8), this must be done before the Hurst parameter is estimated. To test this assumption
statistically, we have the two tests described in Chapter 3 at our disposal.
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Davies RMD1,2 RMD2,1 RMD3,3 Paxson approx. wavelet wavelet
H & Harte circulant J = 6 J = 7

0.5 0.7837 0.4692 0.4990 0.7174 0.1256 0.2348 0.2683 0.4378
0.65 0.5871 0.6329 0.4219 0.4458 0.7149 0.6693 0.0000 0.0000
0.8 0.8872 0.4717 0.0000 0.4626 0.4079 0.3356 0.0000 0.0000

Table 4.2: Kolmogorov-Smirnov p-values for the goodness-of-fit test with N = 213.

Davies RMD1,2 RMD2,1 RMD3,3 Paxson approx. wavelet wavelet
& Harte circulant J = 6 J = 7

0.08686 0.8771 0.0000 0.8507 0.0000 0.5799 0.0000 0.0000

Table 4.3: p-values of the Kolmogorov-Smirnov test on the chi-square test statistic (H = 0.8).

4.3.1 The goodness-of-fit test for the spectral density

The first is Beran’s goodness-of-fit test for the spectral density, which is especially important since the
Whittle estimator is also based on a ‘spectral’ approximation of the likelihood function. Using several
approximate methods, 1000 samples of length N = 213 are generated for H = 0.5, H = 0.65 and H = 0.8.
For these samples, the test statistic is computed and compared to its theoretical (asymptotic) Gaussian
distribution using the Kolmogorov-Smirnov test. Although no problems will emerge for the exact Davies
and Harte method, the test is also performed on this method. However, our main interest is the performance
of the test on approximate samples. The results are summarized in Table 4.2 by the p-values of the
Kolmogorov-Smirnov test statistic.

The three RMDl,r methods produce samples that may be regarded as fractional Gaussian noise for
H = 0.5 and H = 0.65, but the situation is different for the RMD2,1 method with H = 0.8. In fact,
the RMDl,r method is exact for H = 0.5 for every choice l ≥ 0, r ≥ 1, see [40]. For samples generated
with the RMD2,1 method with H = 0.8, it is rejected at any reasonable confidence level that the spectral
properties of the samples are in accordance with fractional Gaussian noise. The RMD3,3 method uses more
sample points in the conditioning, which must lead to better results than the RMD1,2 and RMD2,1 methods.
However, the p-values in the table show that we cannot distinguish RMD1,2 and RMD3,3 samples with this
goodness-of-fit test (note that it was also reflected in Figure 4.15 that the RMD3,3 method is only slightly
more accurate than the RMD1,2 method). This is also the reason why we make use of various estimators
of the Hurst parameter: some estimators may be sensitive enough to conclude that the RMD3,3 method is
better than the RMD1,2 method; we need to analyze the approximate samples in more detail to get enough
feeling for the methods to draw conclusions.

The two spectral simulation methods, the Paxson and approximate circulant method, produce satisfac-
tory results. On the other hand, the results for the wavelet method are dramatically bad but for H = 0.5.
This suggests that the approximation in the definition of fractional Brownian motion is probably the reason
for the bad performance of this method, since no approximation is made for H = 0.5; compare (1.3) and
(2.36) for H = 0.5. Therefore, the chi-square test will probably reject that the wavelet samples are fractional
Gaussian noise for H 6= 0.5.

4.3.2 The chi-square test

In Section 3.2.2, a chi-square test was discussed to test if a sample is fractional Gaussian noise with some
specified parameter H.

Just like before, we simulate a large number of samples (in this case even 10000) to make it possible to
test with the Kolmogorov-Smirnov test if the distribution of the test statistic (3.10) equals the theoretical
distribution under the null hypothesis. To avoid the memory allocation problems discussed in Section 3.2.2,
we simulate samples of length N = 28. We set H = 0.8. The p-values of this Kolmogorov-Smirnov test can
be found in Table 4.3.

It is remarkable that the p-value of the Davies and Harte method is this low, since we expect a high value
for this exact method. This must be coincidence, but it is definitely no coincidence that the p-value for the
Paxson method is 0.0000. Apparently, the chi-square test is able to detect that the covariance function of
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Figure 4.16: Histogram of the periodogram estimates for exact traces.

the Paxson method differs from the covariance function of fractional Gaussian noise (see Figure 4.12). The
goodness-of-fit test in the spectral domain was not able to detect this. The other p-values are in accordance
with the results of the goodness-of-fit test in Table 4.2.

4.4 Long-range dependence in approximate samples

The long-range dependence in new approximate simulation methods for fractional Brownian motion is often
studied using a couple of estimators discussed in Chapter 3, e.g., by Norros et al. [47] and Paxson [49]. The
resulting estimates for the Hurst parameter H are then compared with the input parameter of the algorithm.
In some cases, the same approach is followed to find out what the best choice is for some parameter that
controls the approximation. An example is the RMDl,r method [47].

Without knowing what the properties of the estimator are, this may lead to wrong conclusions, e.g.,
when the estimator is biased. Assume that the estimator has negative bias; the estimate of the Hurst
parameter in exact samples is structural lower than the input parameter H. Let us also assume that we
have two approximate methods. One produces samples with exact Hurst parameter H, and one the other
produces samples with a Hurst parameter H̃ > H. Typically, the estimated Hurst parameter is smaller
than H for the first approximate method. It is possible that the estimate of the Hurst parameter of the
second method equals approximately H. The naive conclusion is then that the second approximate method
is better!

It is mostly impossible to study the properties (e.g., bias) of the estimator theoretically. As an example,
we consider the periodogram estimator. If the disturbance term in the linear fitting is a centered Gaussian
variable with equal variance for every sample point and moreover independent, the resulting least-square
estimator is unbiased and normally distributed. However, the distribution of the disturbance term is expo-
nential (see Beran [9]), so we can not be sure that the estimator is unbiased and Gaussian. The histogram
of 1000 estimates for the Davies and Harte method is given in Figure 4.16 (H = 0.8, N = 214), and suggests
that the estimator is indeed Gaussian, although slightly biased.

In some cases, it is possible to derive a theoretical result concerning the limiting distribution of the
estimator. As an example, Coeurjolly [15] uses the asymptotical distribution of his discrete variations
estimator (see Section 3.1.3) in his comparison of some approximate simulation methods.

As with all estimators in this section, the parameters of the estimation procedures are chosen as in
Chapter 3, unless stated otherwise.

To overcome the problem that the distribution of the estimator under the null hypothesis (that the
traces have the right Hurst parameter) is not known, we simply simulate this distribution. After simulating
this distribution for each approximate simulation method as well, it is tested whether the distributions are
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equal. In this section, we simulate the distributions of the estimators of Chapter 3 and perform the test of
equality in distribution. This makes it possible to draw conclusions using estimators that are highly biased,
which solves the earlier mentioned problem.

Several nonparametric tests are available to test the equality of distributions.

Assume we have two populations, X and Y , with cumulative distribution functions denoted by FX and
FY , respectively. We have an independent sample of size m drawn from the X population, X1, . . . , Xm and
another independent sample of size n drawn independently from the Y population, Y1, . . . , Yn (note that this
m and n have nothing to do with the previously used notation). It is assumed that there are no ties, which
is a reasonable assumption in our case, since we are dealing with continuous distributions. We would like
to test the hypothesis that the two samples are drawn from the same distribution, FX(x) = FY (x) for all x.
The most general two-sided alternative hypothesis is simply FX(x) 6= FY (x) for some x, but the available
tests under this hypothesis, like the Kolmogorov-Smirnov two-sample test, have little power against small
deviations in the distribution.

In our case, we expect the differences in the two samples to be rather small, so we should make some
concessions and restrict the alternative hypothesis a bit more: we will test against differences in location
(mean/median) and scale (interquartile range/variance).

For this, the Wilcoxon test and the Freund-Ansari-Bradley will be used. More details on these tests
and some other nonparametric tests with this null hypothesis can be found in Gibbons [31], on which the
following two subsections are based.

4.4.1 The Wilcoxon test

The Wilcoxon test is based on a so-called linear rank statistic. The rank r of an observation is the rank of
the observation in the combined sample (i.e., a sample of size N = n+m) after sorting. This means

r(Xi) =

m
∑

k=1

1(Xi ≥ Xk) +

n
∑

k=1

1(Xi ≥ Yk)

r(Yi) =

m
∑

k=1

1(Yi ≥ Xk) +

n
∑

k=1

1(Yi ≥ Yk).

It is easier to denote the rank in terms of a vector of indicator random variables as follows. Let

Z = (Z1, Z2, . . . , ZN ),

where Zk = 1 if the kth random variable in the combined ordered sample is an X-observation and Zk = 0
otherwise. A linear rank statistic is a linear combination of the elements of the vector Z.

The Wilcoxon test tests the null hypothesis of equality in distribution of the X and Y sample against
the alternative of a shift in location:

H1 : FX(x) = FY (x− s) for all x and some s 6= 0.

The idea is that the ranks of the X-observations will generally be larger or smaller than the ranks of the Y -
observations when the samples have a shift in location. When an X-observation has rank k in the combined
sample, the rank may be computed from Z by kZk. The Wilcoxon test statistic is

WN =

N
∑

k=1

kZk.

The probability distribution of WN may be computed by enumeration or recursion (see [31]), but for larger
sample sizes (as in our case) a normal approximation to the distribution is very accurate. The expectation
and variance of WN can easily be computed, but we will not go into details.

The test can shown to be consistent, which means that the probability of rejecting the null hypothesis
approaches 1 as the sample size increases if the alternative is true. Although the test statistic is not efficient,
it has a relatively low asymptotic variance when the samples are Gaussian.
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Figure 4.17: Box plot for the exact Davies and Harte method.

4.4.2 The Freund-Ansari-Bradley test

Once the equality of the location parameter of the two samples is not rejected, we test whether the samples
differ in scale. A nonparametric test that is designed for this is the Freund-Ansari-Bradley test. This test
has an alternative hypothesis of a shift in scale:

H1 : FX−M (x) = FY −M (sx) for all x and some s > 0, s 6= 1,

where M denotes the (common) median of the X- and Y -observations. The idea of the test is that the
deviation of the rank of the kth ordered variable about its mean rank (N + 1)/2 provides information on
the variability of the X-observations relative to the Y -observations. When the X-observations are more
spread out around the median, the deviation about the mean rank is bigger. The Freund-Ansari-Bradley
test statistic is

FN =

N
∑

k=1

(

N + 1

2
−
∣

∣

∣

∣

k − N + 1

2

∣

∣

∣

∣

)

Zk.

Again, the exact distribution of FN can be found by enumeration and recursion. A normal approximation
is already suitable for relatively moderate sample sizes. Moreover, the test is consistent.

We will use these tests to study whether the approximate simulation methods produce samples with the
same long-range dependent behavior as exact samples.

4.4.3 Estimation of H for the approximate methods

When estimating the Hurst parameter H, specific properties of the estimators come into play. Following
Taqqu et al. [56], we produce a so-called box plot for the exact Davies and Harte method to get some
feeling for these properties. This box plot, given in Figure 4.17, provides information on the distribution of
each estimator. It was produced with 1000 exact fractional Gaussian noise traces of length N = 213. For
each trace, the Hurst parameter was estimated with all estimators described in Chapter 3, which led to an
empirical distribution for each estimator.

Box plots have the property that half of the estimates lie in the region marked by the gray box, i.e., the
box gives the interquartile range. The horizontal line through each box represents the median of the sample,
whereas the whiskers end are chosen such that approximately 95% of the estimates lie between them. The
estimates that do not lie between the whisker ends are depicted as tiny dots. A big horizontal line is plotted
at the real Hurst parameter of the sample, H = 0.8.

We thus expect that the estimates of a good estimator lie close to this line. In fact, an unbiased estimator
has the property that the median equals the real Hurst parameter when the distribution of the estimator is
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RMD1,2 RMD2,1 RMD3,3 Paxson approx. wavelet wavelet
Estimator circulant J = 6 J = 7

Aggr var 0.9002 0.0009 0.5106 0.0013 0.4505 0.7750 0.5136
Abs mom 0.6273 0.2117 0.2352 0.8705 0.1576 0.0519 0.1563
Disc var 0.0400 0.0000 0.2679 0.2429 0.2719 0.0000 0.0000
Higuchi 0.6187 0.0175 0.9331 0.0000 0.0001 0.0001 0.0878

Per 0.5679 0.4240 0.2193 0.7806 0.3253 0.0427 0.2983
Var regr 0.7718 0.0000 0.6222 0.6211 0.8842 0.0000 0.0000

R/S 0.6853 0.0000 0.8757 0.3277 0.8722 0.0000 0.0000
Whittle 0.5543 0.0000 0.9722 0.0474 0.0584 0.0000 0.0000
Wavelet 0.1511 0.0000 0.4725 0.1768 0.2127 0.0000 0.0000

Table 4.4: p-values for the Wilcoxon test of location.

symmetric. We see that only the discrete variations and the Whittle method produce satisfactory results in
this respect, although some other estimators have only a small bias. However, we should keep in mind that
the distributions of the estimators are simulated, making it more difficult to draw conclusions concerning
the bias of the various estimators.

It is now possible to see what happens when we evaluate an approximate simulation method only by
means of the input Hurst parameter. Using R/S estimates, we would clearly say that Davies and Harte
samples do not have the right long-range dependent behavior. This is definitely a wrong conclusion, because
we know that the Davies and Harte method is exact! Fortunately, the most popular estimator in evaluating
approximate methods is Whittle’s estimator, which produces satisfactory results.

Long-range dependence in approximate samples

It was already pointed out that we test whether the right Hurst parameter is present in the approximate
samples by comparing the empirical distributions of various estimators for H to the simulated distribution
under the null hypothesis that the sample is exact. The nonparametric tests at the beginning of this section
make it possible to test whether the simulated distributions of the estimators differ in location (the Wilcoxon
test) and in scale (the Freund-Ansari-Bradley test).

The p-values of the Wilcoxon test are tabulated in Table 4.4 for several approximate generation methods
and estimators. Given the estimator, the p-values were obtained by performing the test on 1000 (inde-
pendent) estimates of the Hurst parameter for exact samples of length N = 213 (the X-observations in
the terminology of the beginning of this section) as well as 1000 estimates for approximate samples of the
same length (the Y -observations). The distribution of the test statistic was approximated by a normal
distribution, but this has no influence on the p-values, since the sample size (1000) is relatively large. The
p-value is interpreted by its definition; given that the test statistic is w, it is the probability that the test
statistic WN is ‘more extreme’ (i.e., further away from its mean) than w under the condition that the null
hypothesis holds; this probability is then multiplied by two since we perform a two-sided test.

It is worth noticing that the RMD3,3 gives the best results of all tested RMDl,r methods, which is
precisely what we expected. The RMD1,2 produces also quite satisfactory results. In fact, the RMD1,2

method was already called a ‘surprising exception’ by Norros et al. [47], but it is not clear how it can be
explained why this is the case. Especially the difference in the performance of the RMD1,2 and the RMD2,1

method is quite remarkable.
As was already clear from theoretical considerations, the Paxson and approximate circulant method share

many properties for large sample sizes. This is confirmed by the results in Table 4.4. The variance structure
of the approximate fractional Brownian motion samples seems to be affected by the Paxson approximation,
because the aggregated variance estimator yields a very low p-value for this method. The explanation is
that the covariance structure of Paxson samples differs significantly from the requested covariance structure,
see Section 4.2. The aggregated variance method is apparently influenced by this. It turns out that the
Higuchi method is sensitive to the approximation by spectral densities that is used in both methods. The
conclusion from the p-values in the table is that it is not likely that the median of the distribution of the
Higuchi estimator using the approximate methods equals the median of the distribution of this estimator
using an exact method. In addition, we see that the p-values for the Whittle method are rather low; at
a 5% confidence level, we reject the Wilcoxon test for the Paxson method and the approximate circulant
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RMD1,2 RMD2,1 RMD3,3 Paxson approx. wavelet wavelet
Estimator circulant J = 6 J = 7

N = 210 0.5294 0.0000 0.4438 0.5294 0.0137 0.0000 0.0000
N = 211 0.3000 0.0000 0.5936 0.1883 0.9311 0.0000 0.0000
N = 212 0.8609 0.0000 0.8853 0.3152 0.2988 0.0000 0.0000
N = 213 0.5543 0.0000 0.9722 0.0474 0.0584 0.0000 0.0000
N = 214 0.4552 0.0000 0.6016 0.7838 0.1696 0.0000 0.0000

Table 4.5: Wilcoxon p-values for the Whittle estimator when varying the sample size N .

method is ‘close to rejection’.
Looking only at the p-values of the wavelet method, it seems very questionable that long-range depen-

dence with the right Hurst parameter is present. It is no surprise that the aggregated variance method
yields a high p-value, since the variance of the process defined by (2.36) is proportional to t2H as desired.
Apparently, many other estimators are sensitive to the omission of the first integral in (1.3). Note that
the zeros do not indicate that no long-range dependence is present, but that they indicate that it does not
correspond to the requested Hurst parameter. To illustrate this, the sample mean of the discrete variations
estimates is 0.7379 for the wavelet method (J = 7) and 0.7996 for the Davies and Harte method (the
estimated variances are both close to 0.010). The differences are not always this large; the sample mean
of the wavelet estimator (performed on the same samples as the discrete variations method!) is 0.7980 for
the wavelet method and 0.8054 for the Davies and Harte method, still rejecting the equality of both sample
medians. Since the wavelet and discrete variations estimator do not have enough bias to explain this huge
difference (see Figure 4.17), it is definitely a weakness of the wavelet method that the estimate depends so
highly on the used estimation method.

The reader may be eager to find out whether a similar table as Table 4.4 for, say, H = 0.65 lead to the
same conclusions. However, we will not study this here for two reasons. The first is the practical argument
that it is simply too time-consuming (in terms of computer time) to perform another simulation study like
this. More important is that our main use of the simulation methods is the simulation of data traffic. The
measurements on Ethernet LAN traffic by Willinger et al. [58] showed that the Hurst parameter is about
0.80.

Another interesting question is what happens to the p-values when the sample size N varies. To avoid
the mentioned computational problems, we only study the influence on the Whittle estimator. The p-values
of the Wilcoxon test are found in Table 4.5. We see that the methods with a bad performance for N = 213,
the RMD2,1 and wavelet methods, do not show improvement when the sample size is varied. The results for
the other methods look also familiar, although the p-values for the two spectral simulation methods show
some improvement, except for the approximate circulant method with N = 210. This must be the result
of random fluctuations, since the theoretical results in Chapter 2 suggest that the approximate circulant
method produces qualitatively better traces than the Paxson method (compare the autocovariance function
in Figure 4.12).

Having tested whether the location of the distributions of each estimator in the exact sample case differs
from the approximate sample case, we will now test the variance of these distributions. To be able to
perform the Freund-Ansari-Bradley test, we need equality in location of the two distributions.

In Table 4.6, the Freund-Ansari-Bradley p-values are given for our samples of the distribution of the
estimators. If the equality of locations was rejected by the Wilcoxon test at a 5% confidence level, the
Freund-Ansari-Bradley test was not performed. The results show that the variances can be considered
equal in most cases. The Freund-Ansari-Bradley test does not change the impression that the RMD1,2, the
RMD3,3 and the approximate circulant method produce relatively good approximate samples.

Although the equality of the sample variances of the distribution of the estimator is clearly a desirable
property, it is more desirable that the Hurst parameter of the samples is close to the input parameter H. In
that respect, the results of the Wilcoxon test should be valued more than the results of the Freund-Ansari-
Bradley test.
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RMD1,2 RMD2,1 RMD3,3 Paxson approx. wavelet wavelet
Estimator circulant J = 6 J = 7

Aggr var 0.3983 — 0.8099 — 0.8715 0.4648 0.7045
Abs mom 0.0215 0.3108 0.5152 0.0035 0.2369 0.0619 0.1584
Disc var — — 0.1039 0.2102 0.0889 — —
Higuchi 0.4185 — 0.2501 — — — 0.0002

Per 0.4930 0.1332 0.0694 0.8564 0.6171 — 0.4288
Var regr 0.2512 — 0.8209 0.5560 0.8399 — —

R/S 0.2605 — 0.0461 0.3956 0.2174 — —
Whittle 0.5670 — 0.8200 — 0.4473 — —
Wavelet 0.5745 — 0.3198 0.8044 0.7787 — —

Table 4.6: p-values for the Freund-Ansari-Bradley test of scale.
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Figure 4.18: The amount of time (in seconds) needed to generate fractional Brownian motion samples for
several methods as function of the (log2) sample size.

4.5 Time complexity analysis

Now that we have seen that some of the approximate simulation methods may offer an alternative for the
exact Davies and Harte method in terms of accuracy, it is interesting to investigate the speed of these
methods. To make a fair comparison, the algorithms were all implemented in C and use the same ran-
dom number package Ranlib, available via Netlib (http://www.netlib.org). The matrix algebra package
Meschach was used for basic matrix algebra and the fast Fourier transform (FFT). Meschach is available
via http://www.netlib.org/c/meschach. However, no efforts have been made to tailor and optimize the
code.

For a given trace length, we compute the CPU time by generating 50 traces and average the needed
time. This time complexity analysis was performed on an Intel Pentium 200 MMX processor. The CPU
time as a function of the (log2) sample size is plotted in Figure 4.18.

In Figure 4.18(a), the needed time of the three RMDl,r methods under study is depicted. As expected,
the RMD1,2 and RMD2,1 produce samples in the same amount of time. We clearly see that it takes more time
for the RMD3,3 method to initialize the algorithm, since more matrices used in the conditioning have to be
computed. After this is done, the method is approximately as fast as the RMD1,2 or RMD2,1 method, which
makes the gain in accuracy particularly interesting when large sample sizes are required (theoretically, the
computations after initialization are a little more time-consuming, because the multiplications with vectors
of the type e(i, k) take more time. Moreover, the vectors and matrices should only be computed once when
more than one sample is required (e.g., in a simulation study).

Figure 4.18(b) consists of the time that is needed by the two spectral simulation methods and the
Davies and Harte method. We clearly see that the Paxson method is the fastest, as expected from the
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Figure 4.19: A function of the amount of time such that a straight line should appear for large N .

theoretical considerations in Chapter 2. The approximate circulant method requires about twice the amount
of computing time of the Paxson method, which was also foreseen. However, it is a bit surprising that the
approximate circulant method and the Davies and Harte method are approximately equally fast. This must
be caused by the fact that the spectral density is evaluated at N points. This is done in order N seconds,
but it only speeds up the algorithm when N is large enough (since an FFT operation of order N log(N)
seconds is saved). We also see this in the plot, because the curve for the Davies and Harte method is steeper
for larger sample sizes.

At first sight, the plot of the computing time for the wavelet method in Figure 4.18(c) looks a bit strange,
but it is possible to explain its most important features. For small sample sizes, the graph looks almost
flat and increases only a bit. In fact, the length of the fractional ARIMA trace that is used as input in
the algorithm increases only by a small amount when the number of required sample points is doubled.
This has to do with the fact that this input trace has to be convolved a couple of times. When convolving
sequences, one has to deal with border effects, i.e., the effect that the resulting sequence is spoiled by the
lack of data at the ‘border’ of the sequences. To avoid these border effects from influencing the sample, the
length of the input fractional ARIMA trace is increased by a fixed amount; we can think of this as a safety
margin. This safety margin is relatively large for small sample sizes, whereas its influence on the speed
vanishes asymptotically.

Although this may sound reasonable, it is not plausible that this causes such a flat behavior in the
computing time. Something else must play a role, which has to do with the convolution operation as well.
This convolution was implemented with the FFT algorithm, but the lengths of the input sequences are not
necessarily a power of two. When this is not the case, zeros have to be padded to make the length a power of
two. It is very well possible that an increase in the requested sample size has then no influence on the length
of the extended (i.e., padded) sequences. This explains that the computation time doubles instantaneously
for certain sample sizes. It can not be observed in the plot that this happens instantaneously, since the
graph was interpolated; the time complexity was only computed for N = 24, 25, . . . , 215.

Theoretically, the RMDl,r method is an order N algorithm. However, this can not be checked from the
plot in Figure 4.18(a). It can also not be observed for the FFT-based methods and the wavelet method
that their complexity is N log(N). Still, we can graphically check these assertions for the RMDl,r and the
FFT-based methods. For this, plots that should yield straight lines (at least for large N) are most suitable,
see Figure 4.19.

Instead of the time, the log time is plotted against the log sample size for the RMDl,r method in Figure
4.19(a), yielding indeed a straight line for ‘large’ log(N). To achieve the same for the FFT-based methods,
log log(N) is substracted from the log time. A plot for the wavelet method is not included in Figure 4.19,
because only three ‘efficient’ data points are available, since much computing time is spoiled by the padded
zeros in the FFT algorithm. These efficient data points are the points at which the graph in Figure 4.18(c)
‘jumps’.

A clear straight line can be observed in Figure 4.19(a) for large N , which is also true for the Paxson and
approximate circulant method in Figure 4.19(b). Note that the sample size ranges from N = 24 to N = 220

to make it possible to see a similar behavior for the Davies and Harte method, although it may require even
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larger sample sizes to make it more clear. Recall from Chapter 2 that for very large N , the approximate
circulant method should be about twice as fast as the Davies and Harte method. Since the Paxson method
is twice as fast as the approximate circulant method, the approximate circulant line should lie exactly in
the middle between the Davies and Harte line and the Paxson line. This is not the case (yet) for N = 220.

Now that we have understood the shape of the time complexity graphs, we are able to draw conclusions
on the accuracy-speed trade-off.
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CHAPTER 5

Conclusions

In this report, several methods to simulate fractional Brownian motion were described and discussed. The
three (theoretically) most promising ‘families’ of methods were evaluated:

• The RMDl,r method proposed by Norros et al. [47];

• The Paxson method proposed by Paxson [49] and a generalization of the Paxson method, the approx-
imate circulant method;

• A wavelet-based simulation method by Abry and Sellan [2].

A fair comparison between different methods is a difficult task. Almost any method can be favoured
above the others by changing the comparison criterion. In this report, the comparison was made by an
error analysis and by checking theoretically or statistically a number of properties that fully characterize
fractional Brownian motion: besides that the sample should be centered and Gaussian, its increments should
be stationary. The property that the variance at time t should be t2H was checked by estimating the Hurst
parameter with various estimators.

We arrive at the following conclusions:

• So-called spectral simulation provides the theoretical foundation for the Paxson method, which clarifies
many empirical observations and leads to an important improvement of the method. Moreover, a
natural extension of the Paxson method, the approximate circulant method, has a direct connection
with the exact Davies and Harte method. The obtained insights show that the accuracy of both
methods increases as the sample size grows, and that the methods are even asymptotically exact in
the sense that the finite-dimensional distributions of the approximate sample converge in probability
to the corresponding distributions of the exact sample.

• These insights make it also possible to perform an error analysis for the approximate circulant method,
in which the theoretical results are confirmed. The same errors can be analyzed for the RMD1,2

method, which shows better performance.

• The covariance structure of approximate Paxson samples, approximate circulant samples and RMDl,r

samples can numerically be calculated. Since all approximate methods under study produce zero-
mean Gaussian samples, these covariances fully characterize the approximate method. While the
errors in the covariances are quite big for the Paxson method (although they vanish asymptotically),
the autocovariance function of the approximate circulant method is visually almost indistinguishable
from the exact autocovariance function. Still, this autocovariance function does not show the desired
hyperbolical tail behavior.

• Since the RMDl,r produces in general non-stationary samples, it takes more effort to study the tail
behavior of the covariances. We showed how the covariances of an RMDl,r sample can numerically
be computed for general l ≥ 0 and r ≥ 1. An analysis of these covariances of the RMD1,2 and the
RMD3,3 method showed that these methods also do not have the desired decay in the covariances.
This can be improved by removing some begin and end points in the approximate RMDl,r sample.
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• The overall impression from the accuracy analysis is that only the RMD1,2, the RMD3,3, and the
approximate circulant method are reasonable alternatives for the exact Davies and Harte method.

• The wavelet method studied in this report is disappointing, in terms of both speed and accuracy. In
fact, it produces (approximate) samples of a process that does not have stationary increments, but is
also called fractional Brownian motion in the old literature.

• The RMDl,r method is the only studied method of which the time complexity grows linearly in the
trace length. Since the extra time needed by the RMD3,3 compared to the RMD1,2 method is almost
negligible, the RMD3,3 method is the most interesting.

• The Paxson method is faster than the exact Davies and Harte method, while the approximate circulant
method is only faster for relatively large sample sizes. As mentioned before, their accuracy also
improves as the trace length grows. Since they are based on the FFT, these methods have time
complexity N log(N).

• The wavelet method is very slow, although the time complexity is approximately N log(N).

From these observations, a final choice is readily made: the RMD3,3 method. Moreover, it is possible
to generate RMD3,3 samples on-the-fly, which is an advantage that is not shared by the Davies and Harte
method (nor by the two spectral methods). In both methods it is possible to ‘recycle’ some computations
when more samples of the same size are needed, but the RMD3,3 method stays an order N method, and
the Davies and Harte an order N log(N) method.

However, in a simulation study, for instance, it may be far more desirable to know that the samples are
exact. Therefore, the Davies and Harte method should be used in principle. When long traces or many
runs are needed in a simulation study, it may computationally be impossible to generate exact samples.
The RMD3,3 method is then a good alternative.

Before celebrating the RMDl,r method too much, we have also seen in a study of the relative error in
a network model that the approximate circulant method performs in this model better than the RMD1,2

method for reasonable sample sizes. This indicates that our conclusions are not as robust as they may seem.
If the approximate method is not first evaluated in the framework in which it is used, it is quite risky to
just use an approximate method. This is particularly the case when rare events are simulated, e.g., loss
probabilities in queues. The use of approximate methods should thus be avoided, especially since a quite
fast exact algorithm exists.
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delettes, Compte Rendus Acad. Sci. Paris Série I, 321 (1995), pp. 351–358.

[55] M.S. Taqqu, Homepage. Available from http://math.bu.edu/people/murad.

[56] M.S. Taqqu, V. Teverovsky, and W. Willinger, Estimators for long-range dependence: an
empirical study, Fractals, 3 (1995), pp. 785–798.

[57] C.R. Traas, H.G. ter Morsche, and R.M.J. van Damme, Splines en Wavelets, Epsilon Uitgaven,
Utrecht, 2000.

[58] W. Willinger, M.S. Taqqu, W.E. Leland, and D.V. Wilson, Self-similarity in high-speed packet
traffic: analysis and modeling of Ethernet traffic measurements, Statistical Science, 10 (1995), pp. 67–
85.

[59] W. Willinger, M.S. Taqqu, R. Sherman, and D.V. Wilson, Self-similarity through high-
variability: statistical analysis of Ethernet LAN traffic at the source level, IEEE/ACM Transactions on
Networking, 5 (1997), pp. 71–86.

[60] A.T.A. Wood and G. Chan, Simulation of stationary Gaussian processes in [0, 1]d, Journal of
Computational and Graphical Statistics, 3 (1994), pp. 409–432.

75
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