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1 Introduction

This note describes an open problem for two classes of diffusion processes. The first class
is semimartingale reflecting Brownian motions (SRBMs) and the second class is piecewise
Ornstein-Uhlenbeck (OU) processes. The open problem asks for conditions under which a
solution to a basic adjoint relationship (BAR) associated with such a diffusion process does
not change sign. The state space of a d-dimensional SRBM is a d-dimensional orthant, and
thus the SRBM is a constrained diffusion process. SRBMs arise as diffusion approximations
for open queueing networks in conventional heavy traffic when the number of servers at each
station is fixed to be small; see, for example, [13]. A d-dimensional piecewise OU process
is an unconstrained diffusion process that lives in Rd. These diffusion processes serve as
diffusion approximations for many-server queues when the service time distributions are of
phase-type [7, 17].

The open problem was first stated as a conjecture in [4] for SRBMs in a two-dimensional
rectangle and in [5] for SRBMs in a d-dimensional orthant. The conjecture is a critical
ingredient in determining stationary distributions of SRBMs, both numerically and ana-
lytically. For instance, numerical algorithms have been developed in [4, 5] to compute the
stationary distribution of an SRBM. The convergence of these algorithms critically relies
on the validity of the conjecture, and the open problem plays the same role in the context
of piecewise OU processes [6]. Moreover, in some known cases where a stationary distri-
bution of an SRBM has been determined analytically, an essential and challenging step is
to verify that the measure is unsigned, see [11, 16]. The validity of the conjecture would
remove the need for this verification.

The open problem could be discussed in a general setting such as general diffusion
processes or even general Markov processes. Restricting attention to SRBMS and piecewise
OU processes allows us to convey the essence of the problem in concrete settings with
minimal notation and assumptions, while the distinct features of the two classes of diffusion
processes allow us to discuss a variety of tools that could be relevant in the context of the
open problem. Also, resolving the open problem for these two specific classes of processes
is important in itself, because of the applications mentioned above.

Before we end this introduction, we introduce some notation that will be used in the rest
of this note. For a vector v, we write v > 0 to mean that each component of v is positive,
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and we write v ≥ 0 to mean that each component of v is non-negative. For an x ∈ R,
x+ = max(x, 0). For a vector v = (vi), v

+ = (v+
i ) and ‖v‖ denotes its Euclidean norm.

Let C0(Rd) be the set of continuous functions on Rd vanishing at infinity, equipped with
the topology generated by the norm ‖f‖ = supx∈Rd |f(x)|. Let C2

b (Rd+) be the set of twice
continuously differentiable functions f on Rd+ such that f and its first- and second-order
derivatives are bounded. Also let C∞c (Rd) be the set of infinitely differentiable functions
that have compact supports in Rd. For a signed measure π on Rd, we use π = π+ − π− to
denote its Jordan decomposition and set |π| = π+ + π−.

2 SRBMs

Multidimensional SRBMs are first introduced in the pioneering paper of [14]; see [9, 18]
for surveys on SRBMs. The state space for a d-dimensional SRBM Z = {Z(t), t ≥ 0} is
Rd+. The data of the SRBM are a drift vector µ, a non-singular covariance matrix Σ, and
a d× d “reflection matrix” R that specifies boundary behavior. Roughly speaking, in the
interior of the orthant, Z behaves as an ordinary Brownian motion with parameters µ and
Σ; Z is pushed in direction Rj whenever the boundary surface {z ∈ Rd+ : zj = 0} is hit,
where Rj is the jth column of R, for j = 1, . . ., d. To make this description more precise,
one represents Z in the form

Z(t) = X(t) +RY (t), t ≥ 0, (2.1)

where X is an unconstrained Brownian motion with drift vector µ, covariance matrix Σ,
and Z(0) = X(0) ∈ Rd+, and Y is a d-dimensional process with components Y1 , . . . , Yd
such that

Y is continuous and non-decreasing with Y (0) = 0, (2.2)

Yj only increases at times t for which Zj(t) = 0, j = 1, . . ., d, and (2.3)

Z(t) ∈ Rd+, t ≥ 0. (2.4)

An SRBM Z is defined to be a (weak) solution to (2.1)–(2.4); namely, there exists (X,Y, Z),
defined on some filtered probability space (Ω, {Ft},P), such that (X,Y, Z) is adapted to
{Ft}, X is an {Ft}-Brownian motion, and (X,Y, Z) satisfies (2.1)–(2.4) almost surely; see,
for example, Appendix A of [2] for a complete definition.

A d × d matrix R is said to be an S-matrix if there exists a d-vector w ≥ 0 such
that Rw > 0, and R is said to be completely-S if each of its principal sub-matrices is an
S-matrix. Given a drift vector µ and a non-singular covariance matrix Σ, there exists an
(Σ, µ,R)-SRBM satisfying (2.1)–(2.4) for each initial point Z(0) ∈ Rd+ if and only if R
is a completely-S matrix; moreover, Z is unique in distribution when R is completely-S.
References for these fundamental results can be found in the survey papers [9, 18].

Let (Σ, µ,R) be fixed. Hereafter we assume that Σ is positive definite and R is
completely-S. Let Z be the SRBM associated with the data (Rd+,Σ, µ,R). Assume that
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the SRBM has a stationary distribution. A necessary condition of the existence of the
stationary distribution is

R is non-singular and R−1µ < 0; (2.5)

see, for example, [2] for a proof. It follows from the proof in [15] that the stationary distri-
bution π is unique, and each component of Eπ(Y (1)) is finite and Eπ(Y (1)) = −R−1µ > 0,
Eπ is the expectation operator conditioned on Z(0) having stationary distribution π. (Har-
rison and Williams [15] consider an SRBM with reflection matrix R being anM-matrix, a
class of matrices defined in Chapter 6 of [1]; but its proof can be straightforwardly carried
over to a general reflection matrix.) For a Borel set A ⊂ Rd+, define

νi(A) = Eπ
∫ 1

0
1{Z(u)∈A}dYi(u), i = 1, . . . , d.

Clearly, νi defines a finite measure on Rd+, which has a support on Fi = {x ∈ Rd+ : xi = 0}.
Using Itô formula, one can immediately obtain the following relationship governing the

stationary distribution π and boundary measures ν1, . . ., νd. For each f ∈ C2
b (Rd+),∫

Rd
+

Lf(x)π(dx) +

d∑
i=1

∫
Rd
+

Dif(x)νi(dx) = 0, (2.6)

where

Lf(x) =
1

2

d∑
i,j=1

Σij
∂2f

∂xi∂xj
(x) +

d∑
i=1

µi
∂f

∂xi
(x),

Dif(x) =
d∑
j=1

Rji
∂f

∂xj
(x), i = 1, . . . , d.

Equation (2.6) is known as the basic adjoint relationship (BAR). Clearly, (2.6) holds for
all f ∈ C2

b (Rd) is equivalent to that (2.6) holds for all f ∈ C∞c (Rd). The fact that a
stationary distribution of an SRBM in Rd+ must satisfy BAR (2.6) was first proved in [15]
when R is anM-matrix. Extension to an SRBM with a general reflection matrix, when its
stationary distribution exists, can be proved without any modification; see, for example,
Proposition 3 of [5] for this fact. The following proposition establishes the converse.

Proposition 1. Assume that π, ν1, . . . , νd are finite measures on Rd+ and that νi is sup-
ported on Fi, i = 1, . . . , d. If (π, ν1, . . . , νd) jointly satisfies BAR (2.6), then π equals the
stationary distribution of Z up to a multiplicative constant.

Proposition 1 was first proved in [8] for SRBMs in polyhedron domains and more
recently in [3] for a class of reflecting Brownian motions that do not necessarily have the
semimartingale representation as in (2.1). We are now in a position to formulate our first
open problem.

3



Open problem 1. Prove Proposition 1 with ‘π, ν1, . . . , νd are finite measures’ replaced by
‘π, ν1, . . . , νd are finite signed measures’.

To resolve this open problem it suffices to show that solutions (π, ν1, . . . , νd) of (2.6)
cannot change sign, since one can then invoke Proposition 1 to conclude that π must be
equal to the stationary distribution up to a multiplicative constant.

3 Piecewise OU process

A d-dimensional piecewise Ornstein-Uhlenbeck (OU) process Z is defined to be a (strong)
solution to

Z(t) = X(t) +

∫ t

0
b(Z(s))ds t ≥ 0, (3.1)

where X is a d-dimensional driftless Brownian motion with covariance matrix Σ and the
drift function b : x ∈ Rd → b(x) ∈ Rd is a piecewise linear function that is Lipschitz
continuous in x. We are particularly interested in the case when the drift function b is of
the form

b(x) = a+Bx+ C(Dx)+,

where B, C and B are d× d matrices and a is a d-dimensional vector. The diffusion limits
in [7, 17] have such a form for their drift functions.

Assume that π is a stationary distribution of Z. By applying Ito’s formula, one can
show that π satisfies the following basic adjoint relationship (BAR)∫

Rd

Lf(x)π(dx) = 0 for each f ∈ C2
b (Rd), (3.2)

where

Lf =
1

2

d∑
i,j=1

Σij
∂f

∂xi∂xj
+

d∑
i=1

bi(x)
∂f

∂xi
.

The following lemma says that the converse is also true. The proof simply verifies all the
conditions in Echeverŕıa’s theorem, see Theorem 4.9.17 of [12].

Lemma 1. If π is a probability measure that satisfies (3.2), then it is a stationary distri-
bution.

Proof. Clearly b is locally bounded. Because b is assumed to be Lipschitz, there exists
some K > 0 such that

〈x, b(x)〉 ≤ K(1 + ‖x‖2), x ∈ Rd.

By Proposition 4.9.17 of [12], there exists a stationary solution of the martingale problem
for (L, π), where L = {(f, Lf) : f ∈ C∞c (Rd)}. Let Z be the piecewise OU process satisfying
(3.1) with Z(0) = X(0) following distribution π. Applying Ito’s formula, one can check
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that Z is a solution to the martingale problem (L, π). By Theorem 8.1.7 of [12], the solution
to the martingale problem is unique. Therefore, the piecewise OU process Z is stationary
with martingale distribution π. The claim follows from Echeverŕıa’s theorem.

Note that Lemma 1 is the analog of Proposition 1 in the piecewise OU setting. We now
formulate our second open problem.

Open problem 2. Assume that Σ and b(x) are such that the piecewise OU process has a
stationary distribution, and assume that π is a finite signed measure on Rd that satisfies
(3.2). Decide if any additional conditions on b should be imposed in order to prove that π
is a linear combination of stationary probability measures.

The conditions, if any, should be mild so that they are satisfied for the piecewise OU
process arising from the many-server diffusion approximations introduced in [7]. It has
recently been shown in [10] that these piecewise OU processes have a unique stationary
distribution. For these diffusions, the open problem thus reduces to showing that any π
satisfying (3.2) is proportional to the stationary distribution. In this sense, Open problem 2
is the analog of Open problem 1 in the setting of [7].

The remainder of this section shows that, under the additional assumption that the drift
function b is bounded, Open problem 2 can be resolved using existing theory of Markov
processes. The boundedness assumption prevents us from applying the result to piecewise
OU processes arising from many-server diffusion approximations. Our proof hints at the
difficulties to resolve the open problem in general.

Proposition 2. Suppose that Z has a unique stationary distribution. Assume that the drift
rate b : Rd → Rd is Lipschitz continuous and bounded. Let π be a finite signed measure
that satisfies (3.2). Then π must be proportional to the stationary distribution.

Proof. By Theorem 8.1.6 of [12], the minimal closed linear extension of the operator
L = {(f, Lf) : f ∈ C∞c (Rd)} on C0(Rd) × C0(Rd) is single-valued and generates a Feller
semigroup {T (t)} on C0(Rd). This semigroup must coincide with the transition semigroup
generated by our piecewise OU diffusion since the generator of the diffusion equals L on
C∞c (Rd) by Ito’s formula. Write L̄ = {(f, L̄f) : f ∈ D(L̄)} for the extended generator with
corresponding domain D(L̄).

Let π satisfy (3.2). Then we have
∫
L̄f(x)π(dx) = 0 for all f ∈ D(L̄), since∣∣∣∣∫ L̄f(x)π(dx)

∣∣∣∣ =

∣∣∣∣∫ (L̄f(x)− Lfn(x))π(dx)

∣∣∣∣ ≤ |π|(Rd) · ‖L̄f − Lfn‖ → 0

whenever (fn, Lfn)→ (f, L̄f) for some f ∈ D(L̄) and {fn} ⊂ C∞c (Rd).
Let h ∈ C0(Rd). By Proposition 1.1.5 of [12], for any t ≥ 0,

∫ t
0 T (s)hds ∈ D(L̄) and

T (t)h− h = L̄

∫ t

0
T (s)hds.
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In conjunction with
∫
L̄f(x)π(dx) = 0 for f =

∫ t
0 T (s)hds, this yields

∫
(T (t)h)(x)π(dx) =∫

h(x)π(dx) for h ∈ C0(Rd). Application of Lemma 2 in Section 4 below, with P = T (t),
completes the proof in conjunction with the assumption of a unique stationary distribution.

4 Analogs in discrete time and discrete space

In this section, we show that, in the discrete state space setting or in the discrete time
setting, the problem analogous to Open problems 1 and 2 has been resolved completely.
Thus, the difficulty of Open problems 1 and 2 stems from the continuity of time coupled
with the continuity of space of a Markov process.

When Z is a continuous time Markov chain (CTMC) on a discrete space S and it
is irreducible and positive recurrent, its stationary distribution π exists and is unique.
Furthermore, π satisfies

〈π, Lf〉 = 0 for any bounded function f on S. (4.1)

Here 〈·, ·〉 denotes the inner product of two vectors and L is the generator (a matrix)
of the CTMC. Equation (4.1) is a CTMC analog of a basic adjoint relationship. By
the irreducibility of L, any signed vector π satisfying (4.1) and

∑
i∈S |πi| < ∞ must be

proportional to the unique stationary distribution. Therefore, the result analogous to the
ones proposed in Open problems 1 and 2 is well known in the CTMC setting.

Let Z = {Zn : n = 0, 1, . . .} be a discrete time Markov chain with probability transition
function P (x,A) for x ∈ Rd and Borel set A ⊂ Rd. Here, for each x ∈ Rd , P (x, ·) is
a probability measure on Rd, and for each Borel set A, the function P (·, A) is a Borel
measurable function on Rd. A distribution π on Rd is a stationary distribution for Z if and
only if π(A) =

∫
Rd P (x,A)π(dx) for each Borel set A. The latter condition is equivalent to∫

Rd f(x)π(dx) =
∫
Rd Pf(x)π(dx) for each f ∈ C0(Rd), which is further equivalent to∫

Rd

Lf(x)π(dx) = 0 for all f ∈ C0(Rd), (4.2)

where Pf(x) =
∫
Rd P (x, dy)f(y) and Lf(x) = Pf(x)−f(x). We have the following lemma.

Lemma 2. Let P be a probability transition function on Rd. Assume π is a finite signed
measure on Rd that satisfies (4.2). Then both π+ and π− satisfy (4.2), where π = π+−π−
is the Jordan decomposition of π.

Remark. As a consequence of Lemma 2, if the corresponding Markov chain has a unique
stationary distribution, any finite signed measure π that satisfies (4.2) and π(Rd) = 1 must
be a probability measure, which is equal to the stationary distribution. Therefore, the
lemma says that the problem analogous Open problems 1 and 2 is also completely resolved
in the discrete time setting.
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Proof of Lemma 2. It readily seen that (4.2) holds for all f ∈ C0(Rd) implies that it holds
for all f ∈ B(Rd), the set of bounded functions on Rd. Indeed, for every f ∈ B(Rd) there
exists a sequence {fn} ⊂ C0(Rd) such that supn supx |fn(x)| <∞ and limn→∞ fn(x) = f(x)
for each x ∈ Rd. Applying the bounded convergence theorem twice, once relying on the
boundedness of the operator P , we obtain∫

Rd

f(x)π(dx) = lim
n→∞

∫
Rd

fn(x)π(dx) = lim
n→∞

∫
Rd

Pfn(x)π(dx) =

∫
Rd

Pf(x)π(x).

Taking f to be an indicator of a Borel set A, we have π(A) =
∫
Rd P (x,A)π(dx). Write

π = π+− π− for the Jordan decomposition of π, and let Γ be the support of π+. It follows
that

π+(Γ) = π(Γ) =

∫
Rd

P (x,Γ)π(dx) =

∫
Γ
P (x,Γ)π+(dx)−

∫
Γc

P (x,Γ)π−(dx),

where Γc denotes the complement of Γ. The right-hand side is bounded from above by
π+(Γ). We must therefore have that P (x,Γ) = 1 for x ∈ Γ, and similarly P (x,Γc) = 1 for
x ∈ Γc. It is readily seen that this implies that both π+ and π− satisfy (4.2).
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