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1. Introduction

Stochastic networks arise in many fields of science, engineering and business, where they play
a fundamental role as canonical models for a broad spectrum of multi-resource applications. A
wide variety of examples span numerous application domains, including communication and data
networks, distributed computing and data centers, inventory control and manufacturing systems,
call and contact centers, and workforce management systems. Of particular interest are strategic
planning applications, the complexity of which continue to grow at a rapid pace. This in turn
increases the technical difficulties of solving for functionals of stochastic networks as part of the
analysis, modeling and optimization within strategic planning applications across diverse domains.

A large number of such strategic planning applications involve resource capacity management
problems in which resources of different types provide services to various customer flows structured
according to a particular network topology. Stochastic networks are often used to capture the
dynamics and uncertainty of this general class of resource management problems, where each type
of service requires processing by a set of resources with certain capabilities in a specific order and the
customer processing demands are uncertain. The objective of these resource management problems
is to determine the capacity allocation for each resource type comprising the stochastic network
that maximize the expectation of a given financial or performance functional (or both) over a long-
run planning horizon with respect to the customer workload demand and subject to constraints on
either performance or financial metrics (or both). It is typically assumed that the planning horizon
is sufficiently long for the underlying multidimensional stochastic process modeling the network to
reach stationarity, where the multiple time scales involved in most applications of interest provide
both theoretical and practical support for such a steady-state approach. The objective function
is often based on rewards gained for servicing customers, costs incurred for the resource capacity
allocation deployed, and penalties incurred for violating any quality-of-service agreements.
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Our present study of resource capacity management problems in stochastic networks is primarily
motivated by two particular application domains, although the same class of problems arise nat-
urally in many other domains. The first application domain concerns capacity planning across a
wide range of computer environments. This area has traditionally received a great deal of attention
within the context of high-performance computing and Internet-based computing environments.
However, with the recent proliferation of large-scale data centers and cloud computing platforms
(see, e.g., Dikaiakos et al. (2009), Armbrust et al. (2009), Gartner (2012), Iyoob et al. (2012)),
this application domain has become an even more important source of resource capacity manage-
ment problems in practice. For these problem instances, the computer infrastructure is modeled
as a stochastic network reflecting the topology of the infrastructure and the uncertainty of both
the customer processing requirements and the overall demand. Various companies, such as BMC
Software and IBM, provide products that address these resource capacity management problems
within the context of information technology service management, data center automation, and
computer performance management. The objectives of such solutions include minimizing the costs
of a computing infrastructure while satisfying certain performance targets, as well as maximizing
performance metrics within a given computing infrastructure budget.

The second application domain motivating our present study is business process management,
which is a key emerging technology that seeks to enable the optimization of business process
operations within an organization. Here, a business process generally consists of any series of
activities performed within an organization to achieve a common business goal, such that revenues
can be generated and costs are incurred at any step or along any flow comprising the process. A
simple business process example is the processing of various types of medical claims by an insurance
company. Another recent representative example is the flow of patients through the emergency
department of a hospital, where the goal is to address a chronic inability of hospitals to deliver
emergency services on demand in a highly dynamic and highly volatile environment in which the
failure to match demand carries significant clinical risks to patients and financial risks to the
hospital; see Guarisco and Samuelson (2011). For these problem instances, the business process is
modeled as a stochastic network reflecting the topology of the series of activities to be performed
and the uncertainty of both the processing requirements for each activity and the overall demand.
Various companies, such as IBM and Oracle, provide products that address these resource capacity
management problems within the context of business process modeling and optimization.

The primary state-of-the-art approaches for solving resource capacity management problems in
stochastic networks from the two foregoing application domains fall into two main categories. These
two sets of solution approaches also represent the state-of-the-art for a wide variety of application
domains beyond our motivating applications. The first category of solution approaches is based
on fairly direct applications of product-form network results, despite the fact that the underlying
stochastic network does not have a product-form solution. Indeed, it is only under strong restrictions
that the stationary joint distribution for the stochastic network is a product of the stationary
distribution for each queue in isolation (see, e.g., Baskett et al. (1975), Harrison and Williams
(1992)). This approach is often employed in computer capacity planning applications, even though
the requirements for product-form solutions almost always never hold in practical capacity planning
instances across a broad spectrum of computer environments. Instead, the approach is used as
a simple approximation typically together with a wide range of ad hoc heuristics, which include
applying product-form results for performance metrics of interest in a modified version of the
original stochastic network in an attempt to address characteristics that yield a network with a non-
product-form solution; e.g., refer to Menasce and Almeida (1998, 2000), Menasce et al. (2004) and
the references therein. One example of this approach consists of increasing the service requirements
of customers at a bottleneck resource in an attempt to have the results reflect the types of bursty
arrival processes often found in computer environments. Another example consists of (artificially)
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splitting the customer service requirements at a network station into multiple classes in an attempt
to capture heavy tails in the service time distributions (ignoring correlation effects). Although
the closed-form expressions render a direct solution for the corresponding optimization problem
in a very efficient manner, the serious accuracy problems inherent in this simple approximation
approach have been well established and thus are a great concern from both a theoretical and
practical perspective.

The second category of state-of-the-art solution approaches is based on simulation-based opti-
mization. Here, the literature can be broadly divided into those that use a broad spectrum of
metaheuristics (e.g., tabu search, scatter search, neural networks) to control a sequence of sim-
ulation runs in order to find an optimal solution (see, e.g., Glover et al. (1999) and Chapter 20
in Nelson and Henderson (2007)), and those that apply several direct methods (e.g., stochastic
approximation) which have been widely studied to address simulation-based optimization problems
with a more rigorous theoretical foundation (refer to, e.g., Chapter 8 in Asmussen and Glynn (2007)
and Chapter 19 in Nelson and Henderson (2007)). A great disadvantage of all these simulation-
based optimization methods, however, is the often prohibitive costs in both time and resources
required to obtain optimal solutions in practice for problems involving multidimensional stochastic
networks. This is in large part due to the numerous parameters involved in each method that must
be set via experimental tweaking for every problem instance. In fact, a recent study illustrates how
simulation-based optimization can require on the order of a few days to determine optimal resource
capacity levels in a much simpler class of stochastic processes than those considered in the present
paper; see Heching and Squillante (2013).

The metaheuristic approach is often employed in business process management applications,
where there is essentially exclusive use of simulation for the analysis and optimization of stochastic
network representations of business processes; refer to, e.g., Laguna and Marklund (2004). More
generally, the metaheuristic approach is employed in nearly all major simulation software prod-
ucts that support optimization, such as those offered by Arena and AnyLogic through partnership
with companies like OptTek that provide a software control procedure which integrates various
metaheuristic methods. At each step of the control procedure, there is a comparison between the
simulation results for the current set of decision variables (server capacity in our application) and
those for all previous settings, and then the procedure suggests another set of decision variable val-
ues for the next simulation run. Once no further improvement to the results is observed, the control
procedure terminates and the best set of decision variable values found through this sequence of
simulation runs are selected to be an (local) optimum. The metaheuristic approach ignores any
structure of the underlying stochastic network, and therefore can be prone to accuracy concerns
with respect to the true optimal solution from both a theoretical and practical perspective.

The stochastic approximation algorithm for simulation-based optimization has been extensively
studied in great generality with rigorous results available on the rates of convergence under rea-
sonable conditions for the objective function. These methods are regrettably not as common in
practice as the metaheuristic approach. One stumbling block has been that the method requires
the setting of certain critical parameters to “good” values in order to realize an efficient implemen-
tation, where practitioner experience demonstrates that “good” values typically depend on each
instance of the problem being solved. As our results further demonstrate and quantify, this impor-
tant requirement of stochastic approximation to find “good” values for certain critical parameters
remains a key problem in practice for the general stochastic networks of interest in this study.

In this paper, our goal is to develop a general solution framework that provides the benefits of
each of the above solution approaches while also addressing their serious limitations. Namely, we
seek to realize the efficiency of analytical methods together with the accuracy of simulation-based
methods within a unified framework for solving resource capacity management problems. We devise
a two-phase solution framework in which a new and general form of stochastic decomposition is
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derived and leveraged as part of a fixed-point iteration in the first phase to obtain a nearly optimal
solution in a very efficient manner. The second phase, taking the first-phase solution as a starting
point, then exploits advanced methods that deal directly with the original network to obtain an
optimal solution. A good candidate for our second-phase solution is the stochastic approximation
algorithm, given that it represents the only simulation-based optimization approach with a rigorous
theoretical foundation. It is important to note, however, that any direct method can be used as
the basis of the second phase of our framework. This second phase is much more accurate than
the first phase, at the expense of much higher computational and temporal costs, but the nearly
optimal starting point from the first phase allows us to leverage these detailed methods in a
more surgical manner. By establishing and exploiting fundamental properties of the underlying
multidimensional process of the stochastic network throughout this framework, we believe that
significant improvements in computational costs and solution accuracy are possible over various
state-of-the-art approaches for solving resource capacity management problems in general.

Our study includes a wide variety of numerical experiments to investigate the performance of
a particular realization of our general solution framework over a broad range of problem settings.
The results of these experiments clearly and convincingly demonstrate the significant benefits of
our general solution framework over existing state-of-the-art approaches, namely product-form and
stochastic approximation solutions. In particular, we show that the two-phase framework provides
vastly superior results than product-form solutions and converges much faster than stochastic
approximation approaches with respect to finding (locally) optimal solutions. Moreover, the princi-
ple new stochastic decomposition algorithm introduced as an accelerant in the first phase performs
very well in producing good approximate solutions that are typically within a tiny percentage of
optimality for well-behaved problem settings and within 5% of optimality in more diverse settings.
This is of great advantage to the general user in practice because the algorithm has no parameters
that must be tweaked to obtain such fast convergence to good approximate solutions. These high
quality approximations support efficient exploration of the entire resource capacity management
space across various assumptions, conditions, scenarios and workloads. Furthermore, these high
quality approximations as starting points obviously benefit the method used in the second phase. In
contrast, our numerical experiments clearly illustrate the difficulty encountered by users in tuning
parameters to realize the best results from the sole use of the stochastic approximation algorithm.

The remainder of this paper is organized as follows. Section 2 presents our general solution frame-
work. We then consider in Section 3 a specific instance of our general problem, namely a single-class
Brownian tree network, for which we derive structural properties that play a fundamental role in an
analysis of our algorithm presented in Section 4, including results on uniqueness, convergence and
bounded optimality gap in the tree-network setting. A representative set of numerical experiments
are provided in Section 5, which includes a brief introduction to the stochastic approximation algo-
rithm. Concluding remarks then follow, with the appendices presenting additional technical details
and some of our proofs.

Notation. All vectors in this paper are L-dimensional, where L represents the number of
stations in the network. Throughout, we use boldface for vectors and identify their elements through
subscripts: the i-th element of the vector v is given by vi. We similarly use boldface for vector-
valued functions regardless their domain, and write for instance fi(x) for the i-th element of f(x).
We also write 〈u,v〉 for the inner product of vectors u and v.

2. A General Approach

The complexity of solving resource capacity management problems is due in great part to the
technical difficulties of solving for functionals of stationary stochastic networks. A major source of
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difficulty in such analysis, modeling and optimization of stochastic networks concerns the multidi-
mensional aspects of the underlying stochastic processes, which involve various dependencies and
dynamic interactions among the different dimensions of the multidimensional process.

In this section, we present our general approach to address these complexities and difficulties in
developing a novel resource capacity management solution framework. We first discuss the basic
idea to provide a proper context for our approach, and then we formally present our general
solution framework. Due to the highly nonlinear and possibly nonconvex nature of resource capacity
management problems in general, our focus lies on finding “good” local optima.

2.1. Basic idea

Given our goal of developing a solution approach that provides the efficiencies of analytical methods
together with the accuracies of simulation-based methods, we devise a general two-phase solution
framework for optimal resource capacity management problems in stochastic networks.

The first phase is based on a fixed-point iteration approach where observed queue lengths at the
current iterate determine the resource capacity allocation for the next iterate. If one of the queue
lengths is disproportionally high in the current iterate, the next iterate will allocate more resource
capacity at the corresponding station. This process repeats, forming the basis of an efficient fixed-
point iteration that renders a nearly (locally) optimal solution to the resource capacity management
problem. Depending on the stochastic network setting in which our general solution framework is
applied, the required queue length information can be obtained from (a combination of) advanced
analytical (e.g., Baskett et al. (1975), Dieker and Gao (2011), Harrison and Williams (1992),
Pollett (2009)), numerical (e.g., Dai and Harrison (1992), Saure et al. (2009)) or simulation-based
(e.g., Asmussen and Glynn (2007), Nelson and Henderson (2007)) methods. As a result, our first-
phase approach can be applied to stochastic networks that are analytically intractable as long as
they can be simulated.

Our iterative algorithm updates resource allocations based on the square root of the observed
queue lengths, as motivated and formalized mathematically in the next subsection. Roughly speak-
ing, our updating rule is derived from an appropriate separable functional form for performance
metrics of each station in the network, such as expected steady-state queue length or expected
steady-state sojourn time at the queue. The functional form is given by τ/(β − λ), where λ and
β are the arrival and service rates for the queue and τ is a function of various characteristics of
the arrival and service processes at all stations in the network. This particular functional form
naturally arises in all known queueing formulas; refer to, e.g., Kingman (1962) for an enlightening
example of how it appears and see the next subsection for a more detailed discussion.

This first phase of our methodology is similar in spirit to a traditional approach from the field of
applied probability, which approximates the complex multidimensional stochastic process through a
set of simpler processes of reduced dimensionality together with fixed-point equations that capture
the dependencies and dynamic interactions among the dimensions; see, e.g., Squillante (2011). A
classical example of this basic approach is the well-known Erlang fixed-point approximation in
which the multidimensional Erlang formula is replaced by a system of nonlinear equations in terms
of the one-dimensional Erlang formula; refer to, e.g., Kelly (1991). Our approach similarly uses
a functional form for the one-dimensional queueing processes as the basis of a multidimensional
approximation, but our fixed-point iteration critically relies on the multidimensional queueing
dynamics as captured through the means of, for instance, numerical or simulation methods. As a
result, since we do not rely on explicit queueing formulas that hold under restrictive assumptions,
our approach requires effectively no underlying assumptions and promises to be widely applicable.

The resource allocation decisions from the first phase subsequently serve as a starting point
for the second phase. This second phase is based on general search methods that deal directly
with the original stochastic network to further improve upon the first-phase starting point and



Dieker, Ghosh, and Squillante: Optimal resource capacity management for stochastic networks
6

obtain a locally optimal solution. When the original stochastic network has a product-form solution
(see, e.g., Baskett et al. (1975), Harrison and Williams (1992)), then the results of our first-phase
algorithm lead to the desired optimal resource capacities after exactly one iteration and the second
phase of our general solution framework is not needed.

2.2. Mathematical formalization

We now formalize our approach in a setting where the goal is to minimize the sum of the weighted
expected steady-state queue lengths in a stochastic network subject to a budgetary constraint.
We gear the discussion towards application of our approach to generalized Jackson networks (refer
to, e.g., Chen and Yao (2001)) and their Brownian counterparts (see, e.g., Harrison and Williams
(1987)); other settings are discussed in the next subsection.

Some additional notation is needed. We write γ for the effective arrival rate vector and β for
the vector of service rates. Further parameters of the network, such as the routing matrix and the
exact external interarrival and service distributions, need not be specified to present our approach
and thus we do not introduce them here. We write Zβi for the steady-state queue length at the i-th
station (alternatively one can similarly study sojourn times). The dependence on β is made explicit
since we are interested in comparing a functional of the steady-state vector Zβ as we change the
service-rate vector β. Assume that each unit of resource capacity at station i costs ci, comprising
a cost vector c, and that we have a total budget of C for allocating resources in the network.

We aim to minimize the expected steady-state queue lengths weighted by a vector w, subject
to the constraints that we cannot spend more than the budget C and that the queueing system is
stable. This leads to the following optimization problem:

(OPT) min
β∈(0,∞)L

L∑
i=1

wiEZβi

s.t. 〈c,β〉 ≤C,
βi >γi, i= 1, . . . ,L.

Throughout, we shall assume 〈c,γ〉<C so that the above mathematical program is feasible. One
can expect the solution to satisfy 〈c,β〉=C; see Section 4.2 for a result in this direction.

After defining
τi(β) = (βi− γi)EZβi , (1)

the objective function takes the form t(β,w,τ (β)), where for β−γ,w,τ > 0 we have

t(β,w,τ ) =
L∑
k=1

wk
τk

βk− γk
. (2)

For a queue in a single-class product-form network, τ is known to be equal to λ; see for instance Bas-
kett et al. (1975). Furthermore, τ equals λ(c2A + c2S)/2 in a single-class Brownian product-form
network of GI/GI/1 queues, where c2A and c2S denote the second-order variation terms for the arrival
and service process, respectively; see Harrison and Williams (1992). In general stochastic networks,
however, τ (β) is mathematically intractable.

Our approach relies on the idea that β 7→ t(β,w,τ (β)) can be reasonably approximated locally
by β 7→ t(β,w,τ (β̄)) in the neighborhood of a given point β̄. Through this functional form, the i-th
summand in the approximating objective function only depends on β through the one-dimensional
quantity βi, thus effectively “decomposing” the objective function. The explicit incorporation of
βi−γi in the denominator is motivated by the aforementioned natural occurrences of this functional
form, which includes product-form results that effectively arise from one-dimensional queueing
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formulas. We note that the idea of locally approximating the objective function is a well-known
principle in trust-region based optimization; refer to, e.g., Conn et al. (2000). Our approach, how-
ever, is very different from traditional trust-region methods in that we exploit structural properties
of the stochastic network through a global functional-form decomposition whose (few) unknown
parameters are estimated locally, whereas trust-region methods take a black-box approach in which
the parameters of an arbitrary polynomial approximation of the objective function are fitted locally.

The following lemma, which is readily proved by applying standard Lagrangian methods, then
becomes an essential ingredient in our analysis. Kleinrock (1964) and Wein (1989) used this result
in their work on capacity allocation for product-form networks.

Lemma 1. The minimum of t(β,w,τ ) over the feasible region in (OPT) is β∗(w,τ ), where for
`= 1, . . . ,L

β∗` (w,τ ) = γ` + (C −〈c,γ〉)
√
w`τ`/c`∑L

k=1

√
wkτkck

.

As an extension of the idea that queue lengths may be approximated locally by functions of the
form (2), we propose to use the capacity allocation β∗ determined through the following system of
nonlinear equations as the outcome of the first phase of our approach: For `= 1, . . . ,L,

β∗` = γ` + (C −〈c,γ〉)
√
w`τ`(β∗)/c`∑L

i=1

√
wiτi(β∗i )ci

. (3)

Section 4 shows that this system of equations is guaranteed to have a unique solution for a certain
class of stochastic networks, but we leave open the question of existence and uniqueness for other
settings.

In an attempt to numerically find a vector β∗ satisfying (3), assuming existence, we propose the
fixed-point iteration scheme with iterates {β(k) : k≥ 0} given by

β
(k+1)
` = γ` + (C −〈c,γ〉)

√
w`τ`(β(k))/c`∑L

i=1

√
wiτi(β(k))ci

. (4)

This can be rewritten in the following insightful way. In view of (1), we find that (4) implies

β
(k+1)
i − γi
β
(k+1)
j − γj

=

√√√√β
(k)
i − γi
β
(k)
j − γj

× wiEZβ
(k)

i /ci

wjEZβ
(k)

j /cj
, (5)

which lies at the heart of the first phase of our approach because this equation establishes an
important connection with a resource capacity iteration scheme based on observed queue length
information. Since we must allocate at least capacity γi to station i, (βi−γi)/(βj −γj) is the ratio
of “additional” resource capacities allocated to station i and j, respectively. Equation (5) expresses
this ratio in terms of the ratio of mean queue lengths, so that more capacity is allocated in the
next iterate to stations with disproportionally long queue lengths in the current iterate.

The right-hand side of (5) can be interpreted as the geometric mean of two fractions, and thus
we can think of (5) as a “slowed down” version of the iterative scheme

β̃
(k+1)
i − γi
β̃
(k+1)
j − γj

=
wiEZ β̃

(k)

i /ci

wjEZ β̃
(k)

j /cj
. (6)

From (5) it becomes evident that we hope for our iterative scheme to converge to β∗ satisfying

β∗i − γi
β∗j − γj

=
wiEZβ

∗

i /ci

wjEZβ
∗

j /cj
.
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We found numerical examples with unique fixed points for which the iteration process of (5) pro-
duces a converging sequence whereas the iteration process of (6) produces an oscillating sequence.
Hence, slowing down the iterative scheme can improve its convergence properties. This is in fact
a well-studied phenomenon in the literature on fixed-point iteration processes, where taking an
(arithmetic) average often produces better results; see, e.g., Mann (1953), Ishikawa (1974) and
the vast body of subsequent work in this area. The geometric average in our case arises from the
assumed functional form given in (2). As quantified in Lemma 1, a further consequence of this
functional form is that the iterates in (5) avoid the boundary of the feasible region, unlike the
iterates of (6).

2.3. Discussion

Our two-phase framework only relies on the capability of evaluating the queue lengths at all stations
comprising the stochastic network under any resource capacity allocation, and thus it holds great
promise to perform well in many stochastic network optimization problems beyond the setting of
generalized Jackson networks and their Brownian analogs. The key approximation in our framework
consists of the separable functional form τ/(β−λ), which constitutes a near universal phenomenon
in stochastic networks under a wide range of queueing dynamics (e.g., processor sharing networks
and multi-class networks under a variety of scheduling policies). As a result, we expect that resource
capacity management optimization through an iterative algorithm based on ratios of observed
queue lengths and slow-down through geometric means is promising for many different settings,
such as several variants of the setting discussed in the previous subsection. For instance, one could
have a discrete decision space in which to allocate a number of servers to each station, and then use
Lemma 1 in conjunction with a local search algorithm over the discrete parameter space to generate
an iterative scheme. In other examples, the feasible region may be less explicit and only described
through a stability condition (since it may not always be possible to determine this region, one
could equip the queue-length evaluation procedure with an explosion check), in which case the
iterative scheme could require new insights to perform an optimization of the approximate objective
function over this space. Another interesting variant is the dual formulation of the problem, as
discussed in the introduction, where the aim is to minimize the total expenditure subject to a
bound on the sum of the weighted expected steady-state queue lengths.

3. Single-class Brownian Tree Networks

We next introduce single-class Brownian tree networks, presenting several of their structural prop-
erties that play a key role in the analysis of our algorithm. The premise of Brownian network models
is that they approximate the queue-length (or waiting-time) dynamics of stochastic networks, rely-
ing on a central limit theorem scaling. Such an approximation is often rigorously justified in heavy
traffic; refer to, e.g., Reiman (1984), Harrison and Williams (1987). The heavy-traffic assumption
is particularly relevant in the context of resource capacity management problems, where it implies
the often realistic assumption that systems are operated close to the system capacity. As in the cen-
tral limit theorem, interarrival and service distributions are approximated in the Brownian model
using only their first two moments. Hence, a Brownian network model can be thought of as a
two-moment approximation of the underlying stochastic network. This idea lies at the heart of the
so-called QNET method proposed in Harrison and Nguyen (1990). Even though the queue-length
process of a generalized Jackson network is typically non-Markovian, the queue-length process of
a Brownian network forms a Markov process known as reflected (or regulated) Brownian motion.
Further background on Brownian tree networks is provided in Appendix A, together with proofs
for the two lemmas presented in this section.

Our specific focus in this section lies on single-class Brownian tree networks, which arise from
an underlying generalized Jackson network (see, e.g., Chen and Yao (2001)) with a tree network
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topology. Within this class of models, we are able to derive several qualitative properties of our
framework. The network topology is represented by a rooted tree G= (V,E) comprised of L= |V |
vertices, at which customers are served by a (Brownian) server. We identify the root as station 1.
For i > 1, we write π(i) to denote the label of the unique station adjacent to i that is closer to
the root. Customers are served at station i at rate βi, meaning that the mean service time there
equals 1/βi; we say βi is the service capacity at station i. After having received their required
service, customers are routed from station i to station j with probability pij. The network topology
imposes the restriction that (i, j) ∈ E if and only if pij > 0. We refer to Appendix A for second
order (variance) parameters of this model, which are not used below.

A path is defined to be a sequence of vertices such that from each of its vertices there is an edge
in E to the next vertex in the sequence. We write Pi = (1, . . . , π(i), i) for the unique path from the
root to station i. Given a vector v ∈ RL, we write vi for the vector obtained by restricting v to
those elements in the path Pi. For instance, βi stands for (β1, . . . , βπ(i), βi). Due to the specific tree
structure studied here, the queue length at station i, Zβi , only depends on β through the upstream
capacity vector βi. We abuse notation slightly and write Zβii instead of Zβi , similarly using Zβij for
j ∈Pi.

For notational convenience, we set pπ(1),1 = 0. For any j ∈Pi, define

qji =
∏

k∈Pi,k 6∈Pj

pπ(k),k,

where an empty product should be interpreted as 1, so that qii = 1. We write γi =
∑

k∈Pi
qkiλk

for the effective arrival rate at station i, where λi denotes the external arrival rate at station i.
Since our interest in this paper is solely on stable networks, we impose throughout that βi >γi for
i= 1, . . . ,L.

The following functions play a key role in the analysis of our algorithm for Brownian tree net-
works. We define hi : (0,∞)|Pi|, for i= 1, . . . ,L, through

hi(xi) =
∑
j∈Pi

qjiEZγi+xij ,

with the convention hπ(1) = 0. This definition implies

EZβi = hi(βi−γi)− pπ(i),ihπ(i)(βπ(i)−γπ(i)), (7)

and thus the original optimization problem (OPT) is readily reformulated in terms of these hi
functions for tree networks as follows.

(OPT−BTN) min
β∈(0,∞)L

L∑
i=1

wi
[
hi(βi−γi)− pπ(i),ihπ(i)(βπ(i)−γπ(i))

]
s.t. 〈c,β〉 ≤C,

βi >γi, i= 1, . . . ,L.

This formulation is advantageous since the functions hi enjoy several useful structural properties,
which are described in the next two lemmas.

Lemma 2. For any i= 1, . . . ,L, the function hi : (0,∞)|Pi|→R+ is:
(i) convex on its domain;
(ii) nonincreasing in each coordinate; and
(iii) strictly decreasing in the last coordinate xi unless the degeneracy condition of deterministic

service times at stations π(i) and i, deterministic routing to station i, and no external arrivals at
station i holds.
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The monotonicity result in (ii) implies that the mean queue length at the i-th station EZβi decreases
in the service capacity βi. A more precise statement of the degeneracy condition in (iii) is given
by Σii, defined in (18) of Appendix A, being equal to 0. The lemma condition of Σii > 0 appearing
in (iii) prevents the capacity allocation problem at the i-th station from being degenerate, i.e.,
additional capacity does not lead to lower (Brownian) queue lengths due to the deterministic setting
stated in the lemma.

In view of Lemma 2, a wide variety of generic techniques are available to study (OPT-BTN).
The convexity property implies that (OPT-BTN) is a so-called difference of convex functions (DC)
programming problem, as studied in for instance An and Tao (2005). It also shows that (OPT-BTN)
becomes a convex program under certain settings of the weights. Notice that the convex function
hi has coefficient (wi−

∑L

j=1wjpij) in the objective function of (OPT-BTN). Thus, if the weights
are constant (w1 = . . .=wL) or more generally the weights are non-increasing (w1 ≥ . . .≥wL), then
the problem (OPT-BTN) is convex.

Another important property is that hi is homogeneous of degree −1, which is a consequence of
the Brownian scaling property and precisely stated in the following lemma.

Lemma 3. For any i= 1, . . . ,L, xi > 0, and δ > 0, we have δhi(δxi) = hi(xi).

4. Analysis of our Approximation Algorithm for Brownian Tree Networks

This section analyzes the algorithm of Section 2 in the context of the Brownian tree networks of
Section 3. In particular, we prove that there is a unique fixed point in this case, and that (a minor
modification of) our algorithm converges to this fixed point. We also establish that the optimality
gap remains bounded in the budget C, further proving a desirable property of the step sizes taken
in our iterative capacity allocation procedure.

4.1. Existence and Uniqueness of a Fixed Point

Our approximation to the optimal capacity allocation is defined as a solution of the fixed-point
equations (3). In this section, we establish the existence and uniqueness of such a fixed point, which
is therefore a feasible solution for (OPT).

Standard techniques for proving uniqueness of a fixed point typically involve bounds on (first-
order) derivatives, or on a spectral radius in the present multivariate setting. Since we were unable
to derive such results for the τi functions, we take a different approach. Our approach is to rewrite
the fixed-point equations in an appropriate form, and then use the structural properties of the hi
functions from the preceding section to show the existence and uniqueness of the fixed point.

Before proceeding, we need some additional notation that is used throughout this section. Abus-
ing notation as before, define

xi(β) = xi(βi) = (βi− γi)/(β1− γ1) (8)

and x(β) = (x1(β), . . . , xL(β)), so that, in particular, x1(β) = 1 for all β. We write xi(βi) for
(x1(β1), . . . , xπ(i)(βπ(i)), xi(βi)). Note the difference between the vector xi(βi) and its i-th element
xi(βi). Lastly, we introduce the set SL−1, via the following lemma, for our main result below.

Lemma 4. Writing SL−1 = {β ∈ (γ1,∞) × · · · × (γL,∞) : 〈c,β〉 = C}, the mapping β ∈ SL−1 7→
x(β)∈ {1}×RL−1+ is one-to-one.

Proof. It suffices to show that there is a unique β ∈ SL−1 corresponding to a given vector
x ∈ RL+ with x1 = 1. By the definition of xi, we have βi = γi + xi(β1 − γ1) and therefore 〈c,β〉=
〈c,γ〉+(β1−γ1)〈c,x〉. Setting the right-hand side equal to C yields β1, which in turn fixes β2, . . . , βL
through xi = (βi− γi)/(β1− γ1) for i= 2, . . . ,L. �
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The first step is to observe that the fixed-point system (3) in terms of β can be written as a
system of equations in terms of xi(βi). For i= 1, . . . ,L, we obtain from (1), (7) and the homogeneity
of h (Lemma 3) that

τi(β) = (βi− γi)EZβi
= xi(βi)(β1− γ1)[hi(βi−γi)− pπ(i),ihπ(i)(βπ(i)−γπ(i))]
= xi(βi)[hi(xi(βi))− pπ(i),ihπ(i)(xπ(i)(βπ(i)))]. (9)

In particular, τi(β) is a function solely of xi(βi) (assuming all network parameters are fixed except
for the service capacities). Namely, the tree structure yields that τi(β) only depends on βi, and the
Brownian nature of the network further reduces the dependency to only xi(βi). Hence, abusing
notation, we can write

τi(xi) = xi[hi(xi)− pπ(i),ihπ(i)(xπ(i))]. (10)

We next rewrite the fixed-point system in terms of xi. If β∗ solves the system of fixed-point
equations (3), we readily obtain

C −〈c,γ〉
ci(β∗i − γi)

√
wiτi(xi(β∗i ))ci =

L∑
k=1

√
wkτk(xk(β∗k))ck,

implying that
√
wiτi(xi(β∗i ))ci/(ci(β

∗
i − γi)) does not depend on i. Thus, we have√
wiτi(xi(β∗i ))ci
ci(β∗i − γi)

=

√
w1τ1c1

c1(β∗1 − γ1)
,

which is equivalent to
τi(xi(β

∗
i ))

xi(β∗i )
= τ1

ci/wi
c1/w1

xi(β
∗
i ).

The next step is to introduce the hi functions by noting that (9) implies

hi(xi(β
∗
i ))− pπ(i),ihπ(i)(xπ(i)(β∗π(i))) =

τi(xi(β
∗
i ))

xi(β∗i )
.

We then conclude that β∗ satisfies (3) if and only if, for i= 1, . . . ,L,

hi(xi(β
∗
i ))− pπ(i),ihπ(i)(xπ(i)(β∗π(i))) = τ1

ci/wi
c1/w1

xi(β
∗
i ). (11)

We now prove that there is exactly one solution x∗ to (11), which immediately shows that there
is exactly one solution β∗ of (3) on the boundary of the feasible set.

Theorem 1. The system of fixed-point equations (3) has exactly one solution on the set SL−1.

Proof. We first show that there is exactly one solution to the fixed-point equations in
(x2, . . . , xL)∈ (0,∞)L−1, i.e., to the equations

hi(xi)− pπ(i),ihπ(i)(xπ(i)) = τ1
ci/wi
c1/w1

xi (12)

for i= 1, . . . ,L. To see this, first consider all equations corresponding to stations at a distance of
1 from the root. These equations are of the form hi(1, xi) = p1iτ1 + τ1

ci/wi
c1/w1

xi. Since the left-hand
side is nonincreasing from +∞ in xi > 0 and the right-hand side is strictly increasing in xi, there
is exactly one xi-value for which equality holds.

Next assume that the x` corresponding to stations at a distance of n− 1 from the root have
been determined from (12), and consider a station i at a distance of n from the root. As before,
the left-hand side of (12) is nonincreasing in xi while the right-hand side is strictly increasing in
xi. Thus, there is a unique xi for which equality holds. �



Dieker, Ghosh, and Squillante: Optimal resource capacity management for stochastic networks
12

4.2. Optimality Gap

We next study the relationship between the solution to (OPT-BTN) and the proposed fixed-point
approximation. Using the homogeneity of hi from Lemma 3 and the definition of xi in (8), one
readily finds that the objective function of (OPT-BTN) becomes

min
β1>γ1,x2>0,...,xL>0

1

β1− γ1

L∑
i=1

wi[hi(xi)− pπ(i),ihπ(i)(xπ(i))]

subject to (β1−γ1)[c1 +
∑L

`=2 c`x`]≤C−〈c,γ〉. Since the objective function is decreasing in β1−γ1,
the constraint will be binding in any optimal solution. After casting the resulting problem back
into the form of (OPT-BTN), we immediately obtain the following lemma.

Lemma 5. Any solution β to (OPT-BTN) satisfies 〈c,β〉=C.

Upon substituting the constraint (β1−γ1)[c1+
∑L

`=2 c`x`] =C−〈c,γ〉 into the objective function,
we see that the solution of (OPT-BTN) is equivalent to

min
x1=1,x2,...,xL

〈c,x〉
C −〈c,γ〉

L∑
i=1

wi[hi(xi)− pπ(i),ihπ(i)(xπ(i))]. (13)

Define the optimality gap as the ratio of the objective function at the allocation given by the fixed-
point approximation and by the solution to (OPT-BTN). Now we can present the main result of
this subsection.

Proposition 1. Our fixed-point approximation has the following properties when applied to Brow-
nian tree networks.

(i) As C→∞, the optimality gap remains bounded. In fact, it has a limit in [1,∞).
(ii) The difference between the fixed-point approximation and the optimizing argument in (OPT-

BTN) is O(C) in each coordinate as C→∞.

Proof. For (i), we use the fact that the solution of (OPT-BTN) is of order 1/C as C→∞, as
shown in (13). The fixed-point solution approximates (13) by evaluating the objective function at
the fixed point x∗ in x-space. Thus, it is also of order 1/C by construction.

For (ii), we note that the one-to-one correspondence from Lemma 4 between points x with x1 = 1
and points β ∈ SL−1 satisfies

βi = γi + (C −〈c,γ〉) xi
〈c,x〉

.

Since neither a true optimal solution for (13) nor the fixed-point approximation depends on C in
x-space, the corresponding quantities in β-space are of order C. �

The argument in the proof shows that part (ii) of this proposition can be further refined by
saying that, unless the fixed-point approximation is exact (as in the product-form case), it is exactly
order C away from the optimal capacity allocation.

4.3. Analysis of the Iterates

This subsection analyzes the iterates of our fixed-point algorithm within the context of Brownian
tree networks. In particular, we show that the relative step size of our algorithm is larger when
the current iterate is further away from the fixed point, which can be a key advantage of our
fixed-point approximation since generic optimization algorithms do not possess this property (as
it would require knowledge of the target point). Based on this result, we also discuss how our
algorithm can be modified slightly to guarantee that it converges to the unique fixed point.
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In order to exploit the structural properties of hi, it is convenient to study the iterates {β(k)}
through {x(k) = x(β(k))} as defined in (8); the two sequences are in one-to-one correspondence in
view of Lemma 4. The system of fixed-point equations (4) then becomes

x
(k+1)
i =

√
wiτi(x

(k)
i )/ci

w1τ1/c1
. (14)

Namely, the fixed-point iterates in (4) can be equivalently described through (14), where the
definition of τi(xi) is as given in (10). Note that x

(k)
1 = 1 for any k≥ 1. We also write x∗ for x(β∗).

4.3.1. Relative Step Sizes. We now show that the iterates move in the direction of the fixed
point, and that the magnitude of the step is larger when the iterate is further away from the fixed
point. First, we consider the iterates corresponding to children of the root.

Lemma 6. Let i be a child of the root. If x
(k)
i <x∗i , then we have

x
(k+1)
i −x(k)

i

x
(k)
i

≥
√

x∗i

x
(k)
i

− 1> 0. (15)

Similarly, if x
(k)
i >x∗i , we have

x
(k)
i −x

(k+1)
i

x
(k)
i

≥ 1−
√

x∗i

x
(k)
i

> 0. (16)

Proof. Write αi = c1wi/(ciw1τ1). If x
(k)
i < x∗i , we have hi(1, x

(k)
i ) − p1iτ1 ≥ hi(1, x∗i ) − p1iτ1 =

α−1i x∗i by Lemma 2. In view of (14) and (10), this leads to

x
(k+1)
i =

√
αix

(k)
i

[
hi(1, x

(k)
i )− p1iτ1

]
≥
√
x∗ix

(k)
i >x

(k)
i .

Similarly, x
(k)
i >x∗i implies x

(k+1)
i ≤

√
x∗ix

(k)
i <x

(k)
i . �

An analogous result holds for an arbitrary station in the network, but the formulation is slightly
more intricate. The formal statement of the result is given in the following proposition, which is
illustrated in Figure 1, and whose proof is provided in Appendix B.

Proposition 2. Let i > 1 be fixed. Suppose that limk→∞x
(k)

π(i) = x∗π(i). Then for any η > 0, there

exists a δ= δ(η)> 0 such that (15) holds for x
(k)
i ∈L

η
i and (16) holds for x

(k)
i ∈ U

η
i , where

Lηi = [x∗1± δ(η)]× · · ·× [x∗π(i)± δ(η)]× (0, x∗i − η),

Uηi = [x∗1± δ(η)]× · · ·× [x∗π(i)± δ(η)]× (x∗i + η,∞).

The convergence assumption on x
(k)

π(i) prevents us from applying this lemma inductively, since
the statement of the proposition does not exclude the possibility that the iterates overshoot the
fixed point indefinitely.

4.3.2. Convergence of the Iterates. Since Lemma 6 and Proposition 2 do not exclude the
possibility of oscillations occurring under our fixed-point iteration algorithm, the iterates may not
converge. Even though we have not encountered any instance in which the iterates do not converge
throughout our many numerical experiments, it is worthwhile to explore how the algorithm can be
slightly modified to ensure that the iterates converge to the fixed point.
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Figure 1 Illustration of Proposition 2 for three queues in series. The arrows indicate that iterates move in the
specified direction.

In our modified algorithm, we additionally maintain an interval I
(k)
i within which x∗i as well as

all modified iterates x
(k+1)
i , x

(k+2)
i , . . . will lie. The idea is easiest to explain when station i is a child

of the root, in which case the argument relies on Lemma 6. If the sequence {x(k)
i } is a monotone

sequence, then it must converge to x∗i in view of Lemma 6 and no modifications are needed; let
us therefore suppose that the sequence is not monotone. The left endpoint of I

(k)
i is defined as

the largest iterate among x
(0)
i , . . . , x

(k)
i that is smaller than x∗i , and the right endpoint is similarly

defined as the smallest iterate exceeding x∗i . Then, if x
(k+1)
i calculated from (14) lies outside of I

(k)
i ,

we overwrite x
(k+1)
i with the center of the interval and continue the algorithm on the subinterval

containing x∗i . By adding this bisection step, the length of the interval I
(k)
i shrinks as k→∞. To

ensure that the interval length shrinks to zero, we add the additional requirement (again enforced
by bisection) that either the left endpoint grows by a factor 1 + ξ or the right endpoint shrinks by
a factor 1− ξ in each iteration, where ξ > 0 is a parameter that is of smaller order than the desired
level of accuracy for the fixed-point approximation. Similarly, if i is not a child of the root, then
Proposition 2 shows that the modified iterates {x(k)

i } must converge.

5. Numerical Experiments

In this section we describe an extensive collection of numerical experiments performed to evaluate
our general two-phase solution framework, introduced in Section 2, under a variety of stochastic
network settings. A primary goal is to gain an understanding of how well the first phase of the
framework, employing our fixed-point iteration algorithm, approximates a locally optimal solution
to various instances of the stochastic optimization problem (OPT). This evaluation is based on
comparing and contrasting against both the second phase of our framework and an approach based
solely on the stochastic approximation (SA) algorithm, each of which identifies local optima. In the
setting of convex optimization problems, we obviously have unique globally optimal solutions and,
from our results in Section 4.1, the fixed point identified in the first phase of our approach is unique
for convex instances of (OPT) in the Brownian tree-network setting. Hence, in convex settings,
we are interested in the quality of the fixed-point approximation vis-à-vis the globally optimal
solution to the problem (OPT) identified by the second phase of our approach. For settings when
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the optimization problem is possibly non-convex and may therefore have multiple local optima,
we also investigate whether the limit point(s) of our first-phase iterates changes under different
starting points for the algorithm.

The key step in our fixed-point approximation method is the estimation of the expected queue
lengths under the capacity values for the current iterate. A simulation-based implementation of
queue-length estimation in the fixed-point iteration under the original stochastic network set-
ting yields a consistent estimation. Our experimental results are therefore generated from such a
simulation-based implementation. We note, however, that a numerical solution for the fixed-point
queue-length estimation under a Brownian approximation of the original stochastic network can
be used as the basis of the first-phase solution within our framework, providing results comparable
to simulation in a much more efficient manner when the Brownian network is a reasonable approx-
imation. The second phase of our framework then searches for a locally optimal solution close to
the limit point, by starting the simulation-based optimization from the limit point identified in
the first phase. We chose to use the SA algorithm because of its rigorous theoretical foundation,
but note that any direct method can be used as the basis of the second-phase solution within our
framework.

The remainder of this section is organized as follows. After providing a brief overview of the SA
algorithm, Section 5.2 details the settings over which the numerical experiments were performed.
A summary of the observations from these experiments is then discussed in Section 5.3.

5.1. Stochastic Approximation (SA)

Denote the objective function of (OPT) by z(β)
4
= minβ∈(0,∞)L

∑L

i=1wiEZ
β
i . We then consider the

following iterative simulation algorithm to solve the optimization problem (OPT):

β(n+1) =β(n)− εnK
(

W(n+1)− 〈W
(n+1),c〉
〈c,c〉

c

)
, (17)

where the variable W(n+1) is an estimator of the gradient of z(β) with respect to β, the scaling
matrix K is taken by common practice to be the identity matrix I, and the term in parenthe-
ses is the projection of the gradient estimate W(n+1) onto the hyperplane {〈c,β〉 = C}. (Recall
from Lemma 5 that the optimal solution satisfies the budget inequality constraint strictly in the
Brownian tree-network setting.) This iterative scheme, known as the SA algorithm, has been well
studied in the literature; refer to Asmussen and Glynn (2007), Kushner and Yin (2003). The SA
algorithm is effectively the “stochasticization” of a Newton-type iterative optimization (or root-
finding) algorithm. Assuming that the estimates W(n+1) are all generated with the same sample
size (i.e., independent of the iteration number n) and that the εn-sequence satisfies εn→ 0 and∑

n εn →∞, it follows from known results (see Kushner and Yin (2003)) that the iterates β(n)

of (17) converge to the set of local minimizers of (OPT). Furthermore, the rate of convergence is
O(n−1/2) when the gradient estimator W(n+1) is consistent, with a slower convergence rate other-
wise. Unbiased methods of gradient estimators can be constructed for special stochastic network
settings, e.g., tandem (Ho et al. (1983)) and Jackson-like (Glasserman (1991)) networks, which
improve the asymptotic rate of convergence over biased methods such as those based on finite dif-
ference. However, finite-difference methods were chosen for our comparisons because of the wider
applicability of finite-difference methods to general stochastic network settings. In addition, the
difficulty in choosing the parameters is unaffected by the choice of the estimator.

We modify the generic finite-difference gradient estimation method for our numerical experi-
ments. In particular, we employ a central-difference gradient estimator:

W
(n+1)
i =

z(β + hn+1 ei)− z(β − hn+1 ei)

2hn+1

, ∀i= 1, . . . ,L,
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where hn+1 is the difference increment sequence and ei the vector of all zeros except for a one in the
i-th element. Such an estimator is known to converge at the best possible rate of O(n−1/3) under
a certain optimal choice for the εn and hn. Observe the much slower optimal order of convergence
for this scheme compared to that of the unbiased gradient-estimator. When such a finite-difference
gradient estimator is used, the resulting SA algorithm is called a Kiefer-Wolfowitz scheme.

This scheme suffers from several significant sources of potential errors and inefficiencies when
employed to solve (OPT). First, the quantities z(β) that need to be evaluated are steady-state
measures, and standard batch-means techniques for estimating such measures suffer from an addi-
tional source of bias due to initial transience. Second, although the SA theory specifies an optimal
order-of-magnitude result for εn and hn, the specific choice for these constants can be problematic.
This is especially true when the gradient estimates are created from a fixed sample size, which
is assumed in the theoretical results on convergence. (Note that, in this context, sample size is
counted in terms of batches needed by the standard steady-state batch-means techniques.) In our
experiments, we use an equivalent simulation termination criterion that tracks the standard con-
fidence interval (CI) for the estimator of the objective function z(β) and checks if the interval
satisfies a desired relative size. This makes the sample size sensitive to the current iterate β(n) via
the variance of the gradient estimator W(n). However, since the variance can be expected to be
well-behaved in the interior of the budget-defined simplex, the sample sizes at each step remain
independent of the iteration count n of the SA algorithm, and thus the asymptotic analysis of
Kushner and Yin (2003) continues to hold. Our experiments demonstrate that if the sample size is
chosen to be too small, then the “noise” in the iterate sequence is high (in the sense that iterates
show little systematic improvement in solution quality with increasing n) and the SA algorithm
needs to execute a large number of iterations n before the decreasing step-size sequence εn can
ensure convergence. On the other hand, if the sample size is chosen to be too large, the algorithm
expends a great deal of computer time in each step and is very slow to converge. Our experience
here suggests that the SA iteration scheme works best in practice when started with a small sam-
ple size which is then slowly increased with the iteration count n. Table 1 describes the tradeoff
observed for one specific experimental setting. This graduated-increase approach however does not
fit any framework of analysis for SA algorithms, and a convergence analysis of such a scheme is
beyond the scope of this paper.

5.2. Stochastic Network Configurations

We present results for two stochastic network configurations, namely a five-station tree network
depicted in Figure 2(a) and a six-station feedforward network with a non-tree structure depicted
in Figure 2(b). Both network structures arise naturally in a variety of computer architectures that
serve Internet traffic, as well as various canonical business processes. In each configuration, there
are three tiers of service for the processing of incoming requests, which we characterize in the
context of a generic data center to clarify the presentation. The servers comprising the first tier
(e.g., web servers) provide initial processing (e.g., access to web pages that may require updating of
timely information such as stock prices). If a request requires additional processing (and the request
is deemed to be legitimate), then the first-tier server either routes the request to a specific server
comprising the second tier (e.g., application servers) or performs a form of load balancing of the
arriving requests among these second-tier servers. The second tier of servers in turn either completes
the processing of the request in its entirety using locally available information or provides another
level of processing before forwarding the request for additional service by the next tier of servers
(e.g., database servers). Probabilistic routing is often used to model the flow of traffic through
these feedforward stochastic networks, and the specific probabilities used in our representative
experiments presented below are given in Figure 2. All interarrival times and service times follow
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(a) The Tree Network (b) The Non-Tree Feedforward Network

Figure 2 Network structures explored by the experiments. The parameters of the probabilistic routing are given.

2-stage Coxian distributions. Each server is assumed to have unit cost. The total capacity budget
is set to 5 units for the tree-network configuration and 10 units for the feedforward configuration.

Three settings are defined for each network configuration by varying the weights assigned to
each server. Recall from the discussion following Lemma 2 that the Brownian tree network version
(OPT-BTN) of the optimization problem (OPT) is convex if the server weights satisfy wπ(i) ≥wi.
We therefore consider three settings that consist of (i) unit weights, (ii) weights satisfying the non-
increasing condition, and (iii) weights arbitrarily assigned to yield a (possibly) non-convex instance
of (OPT-BTN). For each of the resulting six model settings, numerical experiments are conducted
over multiple combinations of coefficients of variation (CoVs) for the arrival and service processes,
none of which satisfy the product-form requirements. The tree network is analyzed in Section 3,
where we establish that the optimization problem (OPT-BTN) is convex when the server-weights wi
satisfy the non-increasing condition, and thus this problem has a unique globally optimal solution.
Experimental results suggest that the iterates (4) of our fixed-point approximation method have
a unique limit point for more general stochastic networks than those satisfying the conditions of
Theorem 1. Under these circumstances, the test then becomes a straightforward comparison of the
quality of the limit point obtained by iterations (4) against the global optimal solution identified
by the SA algorithm in the second phase when started from the identified limit point.

For the same network configuration when the weights wi yield a difference-of-convex functions for
the objective function of (OPT-BTN), the problem may have multiple local optima and our fixed-
point iteration algorithm itself may have multiple limit points. This is a possibility for the final
four model settings. To test the hypothesis that multiple limit points could exist, we execute the
first-phase algorithm from a collection of starting server capacity values sampled uniformly from
the feasible set. In addition, we execute the SA algorithm from each of these same starting points
to investigate if the algorithm identifies multiple local optima for the original problem (OPT).

5.3. Observations

Figure 3 plots the relative optimality gap for the limit points identified by the first phase of our
framework based on the fixed-point iteration (4) in comparison with the locally optimal solution
identified by the second phase of our framework phase based on the SA algorithm starting from
the first-phase limit point. This two-phase framework was applied to each of the six model settings
under multiple CoV combinations for the interarrival and service time distributions. It is evident
from the results for each setting, plotted in Figure 3, that the second-phase SA algorithm is able to
improve upon the solution quality by at most 5% for convex problem instances, with the majority
of such improvements limited to 1.0–1.5%. The relative performance of our fixed-point iteration is
reduced a bit for the non-convex case, where the worst-case improvement provided by the second
phase rises to about 10% with the average-case improvement in the 3–5% range. In contrast, the
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 for Six Network Configurations

Figure 3 Quality of fixed-point iteration. The relative optimality gap is within 5%, typically 1% for settings
where the Brownian network is convex. For settings where the Brownian network is possibly non-convex
(simply referred to as non-convex in this diagram), the relative gap can be as much as 10%, while the
average is around 4–5%.

objective function value for the optimal capacity allocation obtained using a corresponding product-
form approximation (i.e., setting all CoVs to 1) was observed to have a relative optimality gap in
the range of 75% to 350%, clearly indicating the very poor quality of such simplistic assumptions.

Sim Termination Num Converged Average Num Total Sim

Criterion Iterations Time

1 Fixed at 5× 10−2 12 20.42 9.44× 108

2 Geometric Decrease: 15 18.47 2.18× 109

5× 10−2 to 5× 10−3 in 20 iters.

3 Fixed at 5× 10−3 16 19.19 5.90× 109

Table 1 Setting stochastic approximation parameters. Not all 20 trials ran to convergence because the
maximum iteration count, set to 25, was reached.

The simulation experiments for both the fixed-point iteration and the SA algorithm were ter-
minated with the criterion that the relative CI of the estimator of the objective function z(·) falls
below a desired value. (The simulations for the fixed-point iteration were also executed with an
alternative stopping rule for relative CI gaps on the estimation of the average individual queue
lengths, and the algorithm was found to be indifferent to the stopping rule chosen.) An imple-
mentation of the SA algorithm requires the user to select “good” parameter values, and a critical
parameter is the stopping criterion for the simulation runs. Table 1 further underlines the compu-
tational savings from the fixed-point approximation method in the first phase of our framework,
before employing the SA algorithm in the second phase, by illustrating the difficulty faced in
making this stopping criterion choice. Multiple runs of the fixed-point approximation and the
SA algorithm were initialized with 20 uniformly sampled starting points for a particular network
setting from the “Feedforward non-convex weights” set in Figure 3. When the fixed-point approx-
imation of the first phase is executed with a simulation stopping target of 5× 10−3 as the relative
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CI width, the method terminated after an average of 4.75 iterations over the 20 trials, with an
average total simulation-time of 1.25× 108 time-units. The SA algorithm was executed from the
same 20 starting points with three different termination criteria: the first executes all simulations
with relative CI-width to match 5× 10−2, the second gradually strengthens this requirement in a
geometric sequence to 5× 10−3 over the first 20 iterations, and the last executes all simulations to
match 5×10−3. Table 1 shows that the weaker CI bound helps the method converge faster, but the
iterations of the SA algorithm tend to wander and fewer trials complete within the maximum count
criterion. Strengthening the CI bound increases the number of successfully completed trials and
decreases the average number of iterations required, but each trial takes much longer to execute in
the aggregate. A practical parameter choice seem to be the approach that gradually strengthens
the CI requirement and strikes a good balance between the run length and the accuracy.

Algorithm Solution Returned Num. Trials Objective Value Percentage

in β-space Converge Here Estimate Improvement

First phase 1.59 1.61 1.19 1.20 2.26 2.15 20 59.17 –
(Fixed-point)
Second phase 1.51 1.68 1.20 1.25 2.37 2.33 14 53.85 9.88%

(SA) 1.42 1.36 1.13 1.16 2.51 2.46 4 58.34 1.42%

Table 2 Performance of two-phase procedure over a non-convex setting with multiple locally optimal solutions.
Note that the SA algorithm in the second-phase did not converge within reasonable computational budget for two

of the trials.

Finally, in settings that do not satisfy the sufficiency conditions for a convex objective function
in (OPT-BTN), we observe that the iterative approximation (3) always produces a unique limit
point independent of the starting point. These results suggest that the uniqueness of our first-
phase limit point holds more generally than the network conditions of Section 4. This is in stark
contrast to the SA algorithm executed over the same randomly chosen starting points, which in
some instances produces multiple local optima. In these cases, one expects to find locally optimal
solutions spanning a range of solution quality, as illustrated by Table 2 which provides results from
such a problem setting. Here, the fixed-point approximation and the SA algorithm were executed
from 20 uniformly sampled starting points. While the fixed-point approximation always produces
the same limit point, the overall two-phase framework finds two locally optimal solutions due to
the fact that the SA algorithm can find more than one local optima even if it is started close to the
same limit point. The quality improvement between the two local solutions does not exceed 10%,
and thus one expects the locally optimal solution from our two-phase framework to be “close” to
the seemingly unique fixed point identified in the first phase. In comparison, when the SA algorithm
was executed from the same 20 starting points, many additional local optima were obtained that
were of both better and worse quality than the local optima identified by our two-phase framework.

6. Conclusions

In this paper we developed a general framework for determining the optimal resource capacity
allocation at each station comprising a stochastic network, motivated by computer capacity plan-
ning and business process management applications. These problems are well known to be very
difficult from both a mathematical and practical perspective. Our solution framework is based on
an iterative methodology that relies only on the capability to observe the queue lengths at all
network stations under any given resource capacity allocation. We theoretically investigated this
methodology for single-class Brownian tree networks, and further demonstrated the benefits of our
methodology through extensive numerical experiments. The latter show that the first phase of our
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methodology renders approximations to locally optimal solutions that are within 5% of optimality
on average. In addition to these solution-quality benefits, our framework does not require the fine-
tuning of parameters and appears to be insensitive to the chosen simulation stopping criterion. Our
methodology further provides reductions in computation of multiple orders of magnitude over a
purely simulation-optimization approach based on stochastic approximation. In fact, regardless of
the parameter settings considered, all of the stochastic approximation algorithms required orders
of magnitude more iterations than our methodology to converge to an optimal solution.

Appendix A: Properties of Brownian Tree Networks

This appendix briefly reviews elements of the construction of a single-class Brownian tree network
as it arises from a generalized Jackson network with a tree network topology. Further details on
constructing single-class Brownian networks in general can be found, for instance, in Harrison and
Williams (1987). We also establish in this appendix several important properties of the networks
of interest, including proofs of Lemmas 2 and 3 from Section 3. Both queue-length dynamics and
steady-state behavior are considered, and thus we use slightly different notation from the body
of the paper. In particular, we write Zβ(t) for the queue-length vector at time t, and use Zβ(∞)
instead of Zβ for the corresponding steady-state vector.

A Brownian tree network relies on an L-dimensional Brownian motion {X(t)} with zero mean
and covariance structure determined by

Cov(Xi(t),Xj(t)) = Σijt,

where Σij is given by, for i= 1, . . . ,L,

Σii = λic
2
A,i + γic

2
B,i + γπ(i)pπ(i),i(1− pπ(i),i) + γπ(i)p

2
π(i),ic

2
B,π(i), (18)

and, for i 6= j,

Σij =−
[
γic

2
B,ipij + γjc

2
j,Bpji + γπ(i)pπ(i),ipπ(j),j(1− c2B,π(i))1{π(i)=π(j)}

]
.

Here the notation introduced in Section 3 is used, and the parameters c2A,i and c2B,i correspond
to the squared coefficient of variation of the external arrival process at station i and the squared
coefficient of variation of the service times at station i, respectively, in the underlying (pre-limit)
generalized Jackson network.

We write Zβ for the vector-valued process of queue lengths in the Brownian network under the
service-rate vector β. By construction, as in Harrison and Williams (1987), the process Zβ arises
from the solution of a high-dimensional Skorokhod reflection problem with X plus a drift term
(dependent on β) as input. More precisely, following the convention that Iπ(1)(t) = γπ(1) = βπ(1) = 0,
(Zβ, I) is the (unique) process satisfying:
• Zβi (t) =Xi(t) + [(βi − γi)− pπ(i),i(βπ(i) − γπ(i))]t+ Ii(t)− pπ(i),iIπ(i)(t)≥ 0 for any i= 1, . . . ,L,

t≥ 0;
• Ii is continuous and nondecreasing, with Ii(0) = 0, for i= 1, . . . ,L;
•
∫∞
0
Zi(t)dIi(t) = 0 for i= 1, . . . ,L.

Using the explicit solution to this Skorokhod problem, we can establish the following lemma.
Similar results appear in various places, but we provide a proof here for completeness.

Lemma 7. For i= 1, . . . ,L and xi > 0, we have

hi(xi) =E

[
sup

0≤ti≤tπ(i)≤···≤t1<∞

∑
j∈Pi

qji
(
Xj(tj)− [xj − pπ(j),jxπ(j)]tj

)]
.



Dieker, Ghosh, and Squillante: Optimal resource capacity management for stochastic networks
21

Proof. We first note that it is possible to verify the integrability of the random variable on the
right-hand side for any xi ∈ (0,∞)|Pi|, though such details are beyond the scope of this paper. A
key ingredient would be Borell’s inequality, which implies the integrability of the supremum of a
centered Gaussian process with bounded variance (see, e.g., Adler (1990)).

It is well known that the solution to the Skorokhod problem associated with a (Brownian) tree
network can be found by recursively solving one-dimensional Skorokhod problems; see, e.g., Dȩbicki
et al. (2007). Assuming Zβ(0) = 0, this leads to the identity, for t≥ 0,

Ii(t) =− inf
0≤t1≤···≤tπ(i)≤ti≤t

∑
j∈Pi

qji
(
Xj(tj)− [xj − pπ(j),jxπ(j)]tj

)
.

Time reversal shows that∑
j∈Pi

qjiZ
β
j (t)

d
= sup

0≤ti≤tπ(i)≤···≤t1≤t

∑
j∈Pi

qji
(
Xj(tj)− [xj − pπ(j),jxπ(j)]tj

)
,

where
d
= denotes equality in distribution. Upon letting t→∞, we obtain by monotone convergence

lim
t→∞

E

[∑
j∈Pi

qjiZ
β
j (t)

]
= hi(xi),

from which we also conclude that {
∑

j∈Pi
qjiZ

β
j (t)} is uniformly integrable. Combining this with

the ergodic theorem for reflected Brownian motion yields

lim
t→∞

1

t

t∑
k=1

E

[∑
j∈Pi

qjiZ
β
j (k)

]
=E

[∑
j∈Pi

qjiZ
β
j (∞)

]
.

The claim then follows from the preceding two displays. �
Lemma 7 forms the basis for our proof of Lemma 2, which establishes structural properties of

the hi functions. We present this proof next, noting that condition (iii) of the lemma is defined
more precisely below in terms of (18) than in Section 3.

Proof of Lemma 2. Fix i throughout. For given 0≤ ti ≤ tπ(i) ≤ · · · ≤ t1 <∞, the quantity∑
j∈Pi

qji
(
Xj(tj)− [xj − pπ(j),jxπ(j)]tj

)
(19)

appearing in the definition of hi(xi) is convex in xi (in fact, it is an affine function). As (the
expected value of) a pointwise supremum of convex functions, hi is convex in its argument as well.
To see that it is nonincreasing, note that the drift term in (19) equals

−
∑
j∈Pi

qji[xj − pπ(j),jxπ(j)]tj =−
∑
j∈Pi

qjixj(tj − ts(j)),

where s(j) is the successor of j on the path Pi, with ts(i) = 0 by convention.
It remains to show (iii), defined here to be that hi is strictly decreasing in the last coordinate

xi unless the degeneracy condition Σii = 0 holds. We first introduce some notation, writing for
xi ∈ (0,∞)i

Y xii (ti) =
∑
j∈Pi

qji
(
Xj(tj)− [xj − pπ(j),jxπ(j)]tj

)
and

Y
xi
i = sup

0≤ti≤tπ(i)≤···≤t1<∞
Y xii (ti).
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For some arbitrary ε > 0, we also set

Y
ε,xi
i = sup

ε≤ti≤tπ(i)≤···≤t1<∞
Y xii (ti),

Y
xi
ε,i = sup

ti≤ε,0≤ti≤tπ(i)≤···≤t1<∞
Y xii (ti),

so that Y
xi

= max(Y
ε,xi
i , Y

xi
ε,i). Now suppose xi > x′i > 0, and write x′i = (x′1, . . . , x

′
π(i), x

′
i) =

(xπ(i), x
′
i). We first argue that {Y xii > Y

xπ(i)
π(i) } ⊆ {Y

xi
i > Y

x′i
i }. Indeed, let the supremum in the

definition of Y
xi
i be attained at (t∗i , t

∗
π(i), . . . , t

∗
1); it is easy to see that the supremum is attained

almost surely. If Y
xi
i >Y

xπ(i)
π(i) , then t∗i > 0 and thus we have

Y
x′i
i ≥ Y

x′i
i (t∗i ) =

∑
j∈Pi

qjiXj(t
∗
j )−

∑
j∈Pi

qjix
′
j(t
∗
j − t∗s(j))

>
∑
j∈Pi

qjiXj(t
∗
j )−

∑
j∈Pi

qjixj(t
∗
j − t∗s(j)) = Y

xi
i .

Therefore, we obtain

P
[
Y
xi
i >Y

x′i
i

]
≥ P

[
Y
xi
i >Y

xπ(i)
π(i)

]
≥ P

[
sup

0≤ti≤ε≤tπ(i)≤···≤t1<∞

∑
j∈Pi

qji
(
Xj(tj)− [xj − pπ(j),jxπ(j)]tj

)
>Y

xπ(i)
π(i)

]

= P
[

sup
0≤ti≤ε

(
Xi(ti)− [xi− pπ(i),ixπ(i)]ti

)
+Y

ε,xπ(i)
π(i) >Y

xπ(i)
π(i)

]
≥ P

[
Y
ε,xπ(i)
π(i) = Y

xπ(i)
π(i)

]
,

where the last inequality relies on the observation that sup0≤ti≤ε
(
Xi(ti)− [xi− pπ(i),ixπ(i)]ti

)
> 0

almost surely; this uses Σii > 0 and can, for instance, be deduced from the law of the iterated

logarithm. In view of Y
xi
i ≥ Y

x′i
i , we find that EY xii >EY x

′
i

i after proving that Y
ε,xπ(i)
π(i) = Y

xπ(i)
π(i) with

positive probability. To see this, observe that, with Ŷ
xπ(i)
π(i) being an independent copy of Y

xπ(i)
π(i) and

εi = (ε, . . . , ε), we have

P
[
Y
ε,xπ(i)
π(i) = Y

xπ(i)
π(i)

]
= P

[
Y
xπ(i)
ε,π(i) ≤ Y

ε,xπ(i)
π(i)

]
= P

[
Y
xπ(i)
ε,π(i)−Y

xπ(i)
π(i) (εi)≤ Y

ε,xπ(i)
π(i) −Y xπ(i)π(i) (εi)

]
≥ P

[
Y
xπ(i)
ε,π(i)−Y

xπ(i)
π(i) (εi)<M, Ŷ

xπ(i)
π(i) >M

]
= P

[
Y
xπ(i)
ε,π(i)−Y

xπ(i)
π(i) (εi)<M

]
P
[
Y
xπ(i)
π(i) >M

]
≥ P

[
Y
xπ(i)
ε,π(i)−Y

xπ(i)
π(i) (εi)<M

]
× sup

0≤ti≤tπ(i)≤···≤t1<∞
P

[∑
j∈Pi

qji
(
Xj(tj)− [xj − pπ(j),jxπ(j)]tj

)
>M

]
.

The first probability is bounded away from 0 for large M since Y
xπ(i)
ε,π(i) <∞ with probability 1, and

the supremum over Gaussian tails is readily seen to be bounded away from 0 as well. �
Lastly, we now prove the homogeneity property of the hi functions.
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Proof of Lemma 3. Observe that

sup
0≤ti≤tπ(i)≤···≤t1<∞

∑
j∈Pi

qji
(
δXj(tj)− [xj − pπ(j),jxπ(j)]δ2tj

)
= sup

0≤ti≤tπ(i)≤···≤t1<∞

∑
j∈Pi

qji
(
δXj(δ

−2tj)− [xj − pπ(j),jxπ(j)]tj
)
,

and that {δX(δ−2t)} has the same distribution as {X(t)} by the Brownian scaling property. �

Appendix B: Proof of Proposition 2

By assumption, for any ε > 0, x
(k)
` ∈ [x∗` ± ε] for sufficiently large k and all stations ` ∈ Pπ(i). We

write αi = c1wi/(ciw1τ1). The contour Ci = {xi ∈ (0,∞)|Pi| : hi(xi)− pπ(i),ihπ(i)(xπ(i)) = α−1i x∗i } is
continuous in any neighborhood of x∗i , since each h` is a continuous function on (0,∞)` by convexity
(refer to Lemma 2); see (Rockafellar 1970, Theorem 10.1). Moreover, since hi(xi)−pπ(i),ihπ(i)(xπ(i))
is strictly increasing in xi by Lemma 2, a suitable version of the implicit function theorem (see,
e.g., Kumagai (1980)) shows that there exists a continuous function gi : (0,∞)|Pi|−1→ (0,∞) such
that Ci coincides with the graph {(xπ(i), gi(xπ(i))) :xπ(i) ∈ (0,∞)|Pi|−1}, where gi is defined through

gi(xπ(i)) = inf{xi > 0 : hi(xi)− pπ(i),ihπ(i)(xπ(i)) = α−1i x∗i }
= sup{xi > 0 : hi(xi)− pπ(i),ihπ(i)(xπ(i)) = α−1i x∗i }.

For arbitrary η > 0, by continuity of gi, we can find some δ(η) such that the range of gi on
[x∗1 ± δ(η)]× · · · × [x∗π(i) ± δ(η)] is included in [x∗i ± η]; refer to Figure 1. We may assume without
loss of generality that δ(η) is strictly increasing in η.

Next we prove that, for an iterate in the shaded areas of Figure 1, the subsequent iterate moves
in the direction indicated by the arrows. If xi > gi(xπ(i)), we have hi(xi)−pπ(i),ihπ(i)(xπ(i))<α−1i x∗i
by construction. In view of the identity

x
(k+1)
i =

√
αix

(k)
i

[
hi(x

(k)
i )− pπ(i),ihπ(i)(x(k)

π(i))
]
,

the inequality x
(k)
i > gi(x

(k)

π(i)) is equivalent to

x
(k+1)
i <

√
x∗ix

(k)
i .

Thus, we obtain x
(k+1)
i <

√
x∗ix

(k)
i for x(k) ∈ Uηi . Similarly, the inequality x

(k+1)
i >

√
x∗ix

(k)
i holds on

the set Lηi . The claims readily follow from these observations.
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