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Abstract

Consider a centered separable Gaussian process Y with a variance function that is
regularly varying at infinity with index 2H ∈ (0, 2). Let φ be a ‘drift’ function that
is strictly increasing, regularly varying at infinity with index β > H, and vanishing at
the origin. Motivated by queueing and risk models, we investigate the asymptotics for
u→∞ of the probability P (sup

t≥0
Yt − φ(t) > u) as u→∞.

To obtain the asymptotics, we tailor the celebrated double sum method to our general
framework. Two different families of correlation structures are studied, leading to four
qualitatively different types of asymptotic behavior. A generalized Pickands’ constant
appears in one of these cases.

Our results cover both processes with stationary increments (including Gaussian in-
tegrated processes) and self-similar processes.

1 Introduction

Let Y be a centered separable Gaussian process, and let φ be a strictly increasing ‘drift’
function with φ(0) = 0. Motivated by applications in telecommunications engineering and
insurance mathematics, the probability

P

(

sup
t≥0

Yt − φ(t) > u

)

(1)

has been analyzed under different levels of generality as u→∞. In these applications, Y0 is
supposed to be degenerate, i.e., Y0 = 0. Letting u tend to infinity is known as investigating
the large buffer regime, since u can be interpreted as a buffer level of a queue. Notice that
(1) can be rewritten as

P

(

sup
t≥0

Yµ(ut)

1 + t
> u

)

, (2)

where µ is the inverse of φ. Special attention has been paid to the case that Y has stationary
increments (e.g., [5, 6, 9, 10, 11, 13, 16, 18, 20, 24, 25, 29, 30]), and to the case that Y is
self-similar or ‘almost’ self-similar [23].

∗The research was supported by the Netherlands Organization for Scientific Research (NWO) under grant
631.000.002.
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From a practical point of view, Gaussian processes lead to parsimonious yet flexible
models, since a broad range of correlation structures can be described by few parameters.
The study of Gaussian processes can also be justified by an approximation argument; they
can appear as stochastic process limits, often as a result of a second-order scaling as in the
central limit theorem. However, a warning is in place here: Wischik [40] argues that it is
extremely important to check the appropriateness of this scaling before resorting to Gaussian
models.

The main contribution of the present paper is that we extend the known results on the
asymptotics of (1). For this, we introduce a wide class of local correlation structures, covering
both processes with stationary increments and ‘almost’ self-similar processes. A motivation
for studying the problem in this generality is to gain insight into the case that Y is the sum
of a number of independent Gaussian processes, e.g., of a Gaussian integrated process and a
number of fractional Brownian motions with different Hurst parameters. We study this case
in somewhat more detail in forthcoming work.

Some words for the technical aspects of this paper. We use the double sum method to find
the asymptotics of (2), see Piterbarg [34] or Piterbarg and Fatalov [35]. This method has
been applied sucessfully to find the asymptotics of P (supt∈[0,T ] X(t) > u), where X is either
a stationary Gaussian process [33, 37] or a Gaussian process with a unique point of maximum
variance [36]. These results are also available for fields, see [34, Section 8]. However, they
cannot be applied to find the asymptotics of (1).

In this paper, we approach the double sum method differently. The idea in [36] is to first
establish the asymptotics of a certain stationary Gaussian process on a subinterval of [0, T ].
Then a comparison inequality is applied to see that the asymptotics of P (supt∈[0,T ] X(t) >
u) equal the asymptotics of this stationary field. Here, we do not make a comparison to
stationary processes, but we apply the ideas underlying the double sum method directly
to the processes Yµ(ut)/(1 + t). Given our results, it can be seen immediately that the
comparison approach cannot work in the generality of this paper: a so-called generalized
Pickands’ constant appears, which is not present in the stationary case. It is also obtained in
the analysis of suprema of Gaussian integrated processes, see Dȩbicki [11]. The appearance
of this constant in the present study is not surprising, since our results also cover Gaussian
integrated processes.

Several related problems appear in the vast body of literature on asymptotics for Gaus-
sian processes. For instance, Dȩbicki and Rolski [17] study the asymptotics of (1) over a
finite horizon, i.e., the supremum is taken over [0, T ] for some T > 0. We remark that the
asymptotics found in [17] differ qualitatively from the asymptotics established in the present
paper. Another problem closely related to the present setting is where Y has the form Z/

√
n

for some Gaussian process Z independent of n. One then fixes u and studies the probabil-
ity (1) as n → ∞. The resulting asymptotics were studied by Dȩbicki and Mandjes [12];
these asymptotics are often called many sources asymptotics, since convolution of identical
Gaussian measures amounts to scaling a single measure.

It is worthwhile to compare our results with those of Berman [2] on extremes of Gaussian
processes with stationary increments. Berman studies the probability P (supt∈B Y t > u) for
u→∞, where Y is constructed from Y by standardization (so that its variance is constant)
and B is some fixed compact interval. The problem of finding the asymptotics of (2) does
not fit into Berman’s framework: our assumptions will imply that Yµ(ut)/(1 + t) has a point
of maximum variance, which is asymptotically unique. Another difference is that this point
depends (asymptotically) linearly on u, so that it cannot belong to B for large u.

The paper is organized as follows. The main result and its assumptions are described in
Section 2. In Section 3, we work out two cases of special interest: processes with stationary
increments and self-similar processes. Furthermore, we relate our formulas with the literature
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by giving some examples.

Sections 4–7 are devoted to proofs. In Section 4, the classical Pickands’ lemma is general-
ized into an appropriate direction. Section 5 distinguishes four instances of this lemma. The
resulting observations are key to the derivation of the upper bounds, which is the topic of
Section 6. Lower bounds are given in Section 7, where we use a double sum-type argument
to see that the upper and lower bounds coincide asymptotically.

To slightly reduce the length of the proofs and make them more readable, details are
often omitted when a similar argument has already been given, or when the argument is
standard. We then use curly brackets (e.g., {T1}) to indicate which assumptions are needed
to make the claim precise.

We frequently apply standard results for regularly varying functions, for which the main
reference is Bingham, Goldie and Teugels [4]. Recall that a positive function f is regularly
varying at infinity with index ρ if for all t > 0,

lim
α→∞

f(αt)

f(α)
= tρ.

Implicitly, this convergence is uniform on intervals of the form [a, b] with b > a > 0 by the
Uniform Convergence Theorem (Theorem 1.5.2 in [4]). Often one can obtain uniformity on a
wider class of intervals, although additional conditions may be required (see Theorem 1.5.2
and Theorem 1.5.3 in [4]). The Uniform Convergence Theorem is used extensively, and
therefore abbreviated as UCT. It is applied without reference to the specific version that is
used.

2 Description of the results and assumptions

This section presents our main theorem. Since many (yet natural and weak) assumptions
underly our result, we defer a detailed description of these assumptions to Section 2.2.

2.1 Main theorem

The supremum in (2) is asymptotically ‘most likely’ attained at a point where the variance is
close to its maximum value. Let t∗u denote a point that maximizes the variance σ2(µ(ut))/(1+
t)2 (existence will be ensured by continuity conditions). Our main assumptions are that σ2

(defined by σ2(t) := VarYt) and µ (defined as the inverse of φ in (1)) are regularly varying
at infinity with indices 2H ∈ (0, 2) and 1/β < 1/H respectively. Note that the UCT implies
that t∗u converges to t∗ := H/(β −H). In that sense, t∗u is asymptotically unique.

For an appropriately chosen δ with δ(u)/u → 0 and σ(µ(u))/δ(u) → 0, (1) and (2) are
asymptotically equivalent to

P

(

sup
t∈[t∗u±δ(u)/u]

Yµ(ut)

1 + t
> u

)

,

see Lemma 7. Hence, in some sense, the variance σ2(µ(ut)) of Yµ(ut) determines the length
of the ‘most probable’ hitting interval by the requirement that σ(µ(u))/δ(u)→ 0.

Not only the length of this interval plays a role in the asymptotics of (2). There is
one other important element: the local correlation structure of the process on [t∗u ± δ(u)/u].
Traditionally, it was assumed that Var

(

Yµ(us)/σ(µ(us))− Yµ(ut)/σ(µ(ut))
)

behaves locally
like |s− t|α for some α ∈ (0, 2] [32]. It was soon realized that |s− t|α can be replaced by a
regularly varying function (at zero) with minimal additional effort [37]; see also [3, 11, 23],
to mention a few recent contributions.
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However, by imposing such a correlation structure, it is impossible to find the asymptotics
of (1) for a general Gaussian process with stationary increments, for instance. We solve this
problem by introducing two wide classes of correlation structures, resulting in qualitatively
different asymptotics in four cases. These specific structures must be imposed to be able to
perform explicit calculations. The main novelty of this paper is that the local behavior may
depend on u. Our framework is specific enough to derive generalities, yet general enough
to include many interesting processes as special cases (to our best knowledge, all processes
are covered for which the asymptotics of (1) appear in the literature; see the examples in
Section 3.3).

Often there is a third element playing a role in the asymptotics: the local variance
structure of Yµ(ut)/(1+t) near t = t∗u. By the structure of the problem and the differentiability
assumptions that we will impose on σ and µ, this third element is only implicitly present in
our analysis. However, if one is interested in the asymptotics of some probability different
from (1), it may play a role. In that case, the reasoning of the present paper is readily
adapted.

We now introduce the first family of correlation structures, leading to three different
types of asymptotics. Suppose that the following holds:

sup
s,t∈[t∗u±δ(u)/u]

s6=t

∣

∣

∣

∣

∣

∣

Var
(

Yµ(us)

σ(µ(us)) −
Yµ(ut)

σ(µ(ut))

)

Dτ2(|ν(us)− ν(ut)|)/τ 2(ν(u))
− 1

∣

∣

∣

∣

∣

∣

→ 0, (3)

as u→∞, where D is some constant and τ and ν are suitable functions. It is assumed that
τ and ν are regularly varying at infinity with indices ιτ ∈ (0, 1) and ιν > 0 respectively. To
gain some intuition, suppose that ν is the identity, and write τ(t) = `(t)tιτ for some slowly
varying function at infinity `. The denominator in (3) then equals D|s−t|2ιτ `2(u|s−t|)/`2(u).
From the analysis of the problem it follows that one must consider |s− t| ≤ ∆(u)/u, where
∆ is some function satisfying ∆(u) = o(δ(u)). As a result, the denominator is of the order
[∆(u)/u]2ιτ `2(∆(u))/`2(u); due to the term `2(∆(u)), three cases can now be distinguished:
∆ tends to infinity, to a constant, or to zero. Interestingly, the Pickands’ constant appearing
in the asymptotics is determined by the behavior of τ at infinity in the first case, and at
zero in the last case (one needs an additional assumption on the behavior of τ at zero). The
second ‘intermediate’ case is special, resulting in the appearance of a so-called generalized
Pickands’ constant.

The second family of correlation structures, resulting in the fourth type of asymptotics,
is given by

sup
s,t∈[t∗u±δ(u)/u]

s6=t

∣

∣

∣

∣

∣

∣

Var
(

Yµ(us)

σ(µ(us)) −
Yµ(ut)

σ(µ(ut))

)

τ2(|ν(us)− ν(ut)|/ν(u))
− 1

∣

∣

∣

∣

∣

∣

→ 0, (4)

where ν is regularly varying at infinity with index ιν > 0 and τ is regularly varying at zero
with index ι̃τ ∈ (0, 1) (the tilde emphasizes that we consider regular variation at zero). A
detailed description of the assumptions on each of the functions are given in Section 2.2.
Here, if ν is the identity, the denominator equals `2(|s− t|)|s− t|2ι̃τ for some slowly varying
function at zero `. Therefore, it cannot be written in the form (3) unless ` is constant.

Having introduced the four cases intuitively, we now present them in somewhat more
detail. The cases are referred to as case A, B, C, and D. We set

G := lim
u→∞

σ(µ(u))τ(ν(u))

u
, (5)

assuming the limit exists.
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A. Case A applies when (3) holds and G =∞.

B. Case B applies when (3) holds and G ∈ (0,∞).

C. Case C applies when (3) holds and G = 0. We then also suppose that τ be regularly
varying at zero with index ι̃τ ∈ (0, 1).

D. Case D applies when (4) holds.

In order to state the main result, we first introduce some further notation. For a centered
separable Gaussian process η with stationary increments and variance function σ2

η, we define

Hη := lim
T→∞

1

T
Hη(T ) := lim

T→∞
1

T
E exp

(

sup
t∈[0,T ]

[√
2ηt − σ2

η(t)
]

)

, (6)

provided both the expectation and the limit exist. Depending on the context, we also
write Hσ2

η
for Hη. If η is a fractional Brownian motion with Hurst parameter H ∈ (0, 1),

it is denoted as BH throughout this paper. Recall that a fractional Brownian motion is
defined by setting σ2

η(t) = t2H , and that these constants are strictly positive (in particular,
they exist). These constants appear in Pickands’ classical analysis of stationary Gaussian
processes [32, 33]. In the present generality, they have been introduced by Dȩbicki [11], and
the field analogue shows up in the study of Gaussian fields; see Piterbarg [34].

Given a stochastic process Y , we use both Y (t) and Yt for the value of Y at time epoch
t. Moreover, we write

Ψ(x) =
1√
2π

∫ ∞

x
e−

1
2
w2

dw,

and it is standard that, for x→∞,

√
2πxΨ(x) ∼ e−x2/2, (7)

where asymptotic equivalence f ∼ g as x → X ∈ [−∞,∞] means f(x) = g(x)(1 + o(1)) as
x→ X.

Provided it exists, we denote an asymptotic inverse of τ by ←−τ ; recall that it is (asymp-
totically uniquely) defined by

←−τ (τ(t)) ∼ τ(←−τ (t)) ∼ t. (8)

It depends on the context whether ←−τ is an asymptotic inverse near zero or infinity, i.e.,
whether (8) holds for t → 0 or t → ∞ respectively. Unless stated otherwise, regular varia-
tion should always be understood as regular variation at infinity, and measurability of such
functions is implicit (it is often ensured by continuity assumptions).

It is convenient to introduce the notation

CH,β,ιν ,ιτ :=
√

21−1/ιτ πιν

(

β

H

)1/ιτ ( H

β −H

)ιν+H
β
− 1

2
+ 1

ιτ

“

1−H
β

”

and, for case B,

M :=
β2

2G2H2H/β(β −H)2−2H/β
,

where G ∈ (0,∞) is defined as in (5). Here is our main result. The assumptions are detailed
in Section 2.2.
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Theorem 1 Let µ and σ satisfy assumptions M1–M4 and S1–S4 below for some β > H.
In case A, i.e., when A1, A2, T1, T2, N1, N2 below hold, we have

P

(

sup
t≥0

Yµ(t) − t > u

)

∼ HBιτ
CH,β,ιν ,ιτ

√

D1/ιτ
σ(µ(u))ν(u)

u←−τ
(

σ(µ(u))τ(ν(u))
u

)Ψ

(

inf
t≥0

u(1 + t)

σ(µ(ut))

)

.

In case B, i.e., when B1, B2, T1, T2, N1, N2 below hold, then HDMτ2 exists and we
have

P

(

sup
t≥0

Yµ(t) − t > u

)

∼ HDMτ2

√
2πιν

(

H

β −H

)ιν+H
β
− 1

2 σ(µ(u))ν(u)

u
Ψ

(

inf
t≥0

u(1 + t)

σ(µ(ut))

)

.

In case C, i.e., when C1–C3, T1, N1, N2 below hold, we have

P

(

sup
t≥0

Yµ(t) − t > u

)

∼ HBι̃τ
CH,β,ιν ,ι̃τ

√

D1/ι̃τ
σ(µ(u))ν(u)

u←−τ
(

σ(µ(u))τ(ν(u))
u

)Ψ

(

inf
t≥0

u(1 + t)

σ(µ(ut))

)

.

In case D, i.e., when D1, D2, N1, N2 below hold, we have

P

(

sup
t≥0

Yµ(t) − t > u

)

∼ HBι̃τ
CH,β,ιν ,ι̃τ

σ(µ(u))

u←−τ
(

σ(µ(u))
u

)Ψ

(

inf
t≥0

u(1 + t)

σ(µ(ut))

)

.

Observe that ←−τ is an asymptotic inverse of τ at infinity in case A, and at zero in case
C and D. Hence, the factors preceding the function Ψ are regularly varying with index
(H/β + ινιτ − 1)(1− 1/ιτ ) + (1− ιτ )ιν in case A, with index H/β + ιν − 1 in case B, with
index H/β + ιν − 1− (H/β + ιτ ιν − 1)/ι̃τ in case C, and with index (H/β − 1)(1− 1/ι̃τ ) in
case D. Note that case B is special in a number of ways: a non-classical Pickands’ constant
is present and no inverse appears in the formula.

We now formally state the underlying assumptions.

2.2 Assumptions

Two types of assumptions are distinguished: general assumptions and case-specific assump-
tions. The general assumptions involve the variance σ2 of Y , the time change µ, and the
functions ν and τ appearing in (3) and (4). The case-specific assumptions formalize the four
regimes introduced in the previous subsection.

2.2.1 General assumptions

We start by stating the assumptions on µ.

M1 µ is regularly varying at infinity with index 1/β,

M2 µ is strictly increasing, µ(0) = 0,

M3 µ is ultimately continuously differentiable and its derivative µ̇ is ultimately mono-
tone.

M4 µ is twice continuously differentiable and its second derivative µ̈ is ultimately
monotone.

Assumption M2 is needed to ensure that the probabilities (1) and (2) be equal. The
remaining conditions imply that βuµ̇(u) ∼ µ(u) and β2u2µ̈(u) ∼ (1 − β)µ(u), see Exer-
cise 1.11.13 of [4]. In particular, µ̇ and µ̈ are regularly varying with index 1/β − 1 and
1/β − 2 respectively.

Now we formulate the assumptions on σ and one assumption on both µ and σ.
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S1 σ is continuous and regularly varying at infinity with index H for some H ∈ (0, 1),

S2 σ2 is ultimately continuously differentiable and its first derivative σ̇2 is ultimately
monotone,

S3 σ2 is ultimately twice continuously differentiable and its second derivative σ̈2 is
ultimately monotone,

S4 There exist some T, ε > 0, γ ∈ (0, 2] such that

1. lim supu→∞ sups,t∈(0,(1+ε)T 1/β] Var(Yus − Yut)σ
−2(u)|s− t|−γ <∞, and

2. lim supu→∞
σ2(µ(u))

u2 log P
(

supt≥T
Yµ(ut)

1+t > u
)

< −1
2

(1+t∗)2

(t∗)H/β .

We emphasize that σ̇2 denotes the derivative of σ2, and not the square derivative of
σ. As earlier, conditions S1–S3 imply that uσ̇2(u) ∼ 2Hσ2(u) and u2σ̈2(u) ∼ 2H(2H −
1)σ2(u). The first point of S4, which is Kolmogorov’s weak convergence criterion, ensures the
existence of a modification with continuous sample paths; we always assume to work with this
modification. The second point of S4 ensures that the probability P (supt≥uT Yµ(t) − t > u)
cannot dominate the asymptotics. We choose to formulate this as an assumption, although
it is possible to give sharp conditions for S4.2 to hold. However, these conditions look
relatively complicated, while the second point is in general easier to verify on a case by case
basis. In the next section, we show that it holds for processes with stationary increments
and self-similar processes.

Note that if M1–M4 and S1–S4 hold, the first and second derivative of σ2(µ(·)) are
also regularly varying, with indices 2H/β − 1 and 2H/β − 2 respectively. It is this fact
that guarantees the existence of the limits that are implicitly present in the notation ‘∼’ in
Theorem 1.

The function ν appearing in (3) and (4) also has to satisfy certain assumptions, which
are similar to the assumptions imposed on µ:

N1 ν is regularly varying at infinity with index ιν > 0,

N2 ν is ultimately continuously differentiable and its derivative ν̇ is ultimately mono-
tone.

Finally, we formulate the assumptions on τ in (3) or (4).

T1 τ is continuous and regularly varying at infinity with index ιτ for some ιτ ∈ (0, 1),

T2 τ(t) ≤ Ctγ
′
on a neighborhood of zero for some C, γ ′ > 0.

Assumption T2 is essential to prove uniform tightness at some point in the proof, which
yields the existence of the Pickands’ constants.

2.2.2 Case-specific assumptions

We now formulate the case-specific assumptions in each of the cases A, B, C, and D. These
assumptions are also mentioned in the Introduction, but it is convenient to label them for
reference purposes. If we write that the correlation structure is determined by (3) or (4),
the function δ is supposed to satisfy δ(u) = o(u) and σ(µ(u)) = o(δ(u)) as u→∞.

After recalling the definition of G in (5), we start with case A.

A1 the correlation structure is determined by (3),
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A2 G =∞.

Similar conditions are imposed in case B.

B1 the correlation structure is determined by (3),

B2 G ∈ (0,∞).

In case C, we need an additional condition (C3). Note that the index of variation in C3

appears at several places in the asymptotics, cf. Theorem 1. It also implies the existence of
an asymptotic inverse ←−τ at zero, cf. Theorem 1.5.12 of [4].

C1 the correlation structure is determined by (3),

C2 G = 0,

C3 τ is regularly varying at zero with index ι̃τ ∈ (0, 1).

Case D is slightly different from the previous three cases, although here the regular
variation of τ at zero also plays a role. In fact, the index of variation appears in exactly the
same way in the asymptotics as in case C.

D1 the correlation structure is determined by (4),

D2 τ is regularly varying at zero with index ι̃τ ∈ (0, 1).

3 Special cases: stationary increments and self-similarity

In this section, we apply Theorem 1 to calculate the asymptotics of (2) for two specific cases:
(i) Y has stationary increments and (ii) Y is self-similar. In both examples, the imposed
assumptions imply that σ2(0) = 0, so that Y0 = 0 almost surely.

In case Y has stationary increments, the finite-dimensional distributions are completely
determined by the variance function σ2. For self-similar processes, (2) has been studied
by Hüsler and Piterbarg [23]. We show that their results are reproduced and even slightly
generalized by Theorem 1.

We conclude this section with some examples that have been studied in the literature.

3.1 Stationary increments

Since σ determines the finite-dimensional distributions of Y , it also fixes the local correlation
structure; we record this in the next proposition. To get some feeling for the result, observe
that for s, t ∈ [t∗u ± δ(u)/u],

Var

(

Yµ(us)

σ(µ(us))
−

Yµ(ut)

σ(µ(ut))

)

≈
Var

(

Yµ(us) − Yµ(ut)

)

σ2(µ(ut∗))
=

σ2(|µ(us)− µ(ut)|)
σ2(µ(ut∗))

.

This intuitive reasoning is now made precise. Note the proposition also entails that case D
does not occur in this setting.

Proposition 1 Let S1–S2, M1–M3 hold for some β > H. Let δ be regularly varying with
index ιδ ∈ (1− 1/β, 1). Then (3) holds with τ = σ, ν = µ and D = (t∗)−2H/β.
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Proof. Since s, t ∈ [t∗u ± δ(u)/u], we have by the UCT {S1, M1},

lim
u→∞

sup
s,t∈[t∗u±δ(u)/u]

s6=t

∣

∣

∣

∣

σ2(µ(u))

Dσ(µ(us))σ(µ(ut))
− 1

∣

∣

∣

∣

= 0.

Moreover, the stationarity of the increments implies that

2
[

σ(µ(us))σ(µ(ut))− Cov
(

Yµ(us), Yµ(ut)

)]

= σ2(|µ(us)− µ(ut)|)− [σ(µ(us))− σ(µ(ut))]2.

Hence, it suffices to prove that

lim
u→∞

sup
s,t∈[t∗u±δ(u)/u]

s6=t

[σ(µ(us))− σ(µ(ut))]2

σ2(|µ(us)− µ(ut)|) = 0. (9)

For this, observe that the left hand side of (9) is majorized by t1(u)t2(u), where

t1(u) := sup
s,t∈[t∗u±δ(u)/u]

s6=t

[σ(µ(us))− σ(µ(ut))]2

[µ(us)− µ(ut)]2
; t2(u) := sup

s,t∈[t∗u±δ(u)/u]

s6=t

[µ(us)− µ(ut)]2

σ2(|µ(us)− µ(ut)|) .

As for t1(u), by the Mean Value Theorem {S2, M3} there exist t∧(u, s, t), t∨(u, s, t) such
that, for u large enough,

t1(u) = sup
s,t∈[t∗u±δ(u)/u]

s6=t

[σ̃µ(ut∧(u, s, t))]2

[µ̇(ut∨(u, s, t))]2
≤
(

supt∈[t∗u±δ(u)/u] σ̃µ(ut)

inft∈[t∗u±δ(u)/u] µ̇(ut)

)2

,

where σ̃µ(·) denotes the derivative of σ(µ(·)). As a consequence of the UCT {M1, M3, S1,
S2}, t1(u) can therefore be upper bounded by C ′σ2(µ(u))/µ2(u) for some constant C ′ <∞.

We now turn to t2(u). A substitution {M2} shows that

t2(u) = sup
s,t∈[µ(ut∗u−δ(u)),µ(ut∗u+δ(u))]

s>t

(s− t)2

σ2(s− t)
= sup

0<t≤µ(ut∗u+δ(u))−µ(ut∗u−δ(u))

t2

σ2(t)
.

Observe that, again by the Mean Value Theorem and the UCT {M1, M3},

µ(ut∗u + δ(u))− µ(ut∗u − δ(u)) ≤ 2 sup
t∈[t∗u±δ(u)/u]

µ̇(ut)δ(u) ∼ 2

β
(t∗)1/β−1µ(u)δ(u)/u,

which tends to infinity by the assumption on ιδ.
Suppose for the moment that the map x 7→ x2/σ2(x) is bounded on sets of the form

(0, ·]. Since it is regularly varying with index 2 − 2H > 0 {S1}, we have by the UCT and
the assumption that ιδ > 1− 1/β, for u large enough,

t2(u) ≤ sup
0<t≤3/β(t∗)1/β−1

[µ(u)δ(u)/u]2t2

σ2(µ(u)δ(u)/ut)
∼
(

3

β
(t∗)1/β−1

)2−2H [µ(u)δ(u)/u]2

σ2(µ(u)δ(u)/u)
.

In conclusion, there exists a constant K <∞ such that

sup
s,t∈[t∗u±δ(u)/u]

s6=t

[σ(µ(us))− σ(µ(ut))]2

σ2(|µ(us)− µ(ut)|) ≤ Kσ2(µ(u))δ2(u)/u2

σ2(µ(u)δ(u)/u)
,
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which is regularly varying with index 2(1−H)(ιδ − 1) < 0, so that (9) follows.

It remains to show that x 7→ x2/σ2(x) is locally bounded. To see this, we use an argument
introduced by Dȩbicki [11, Lemma 2.1]. By S2, one can select some (large) s ≥ 0 such that
σ2 is continuously differentiable at s. Then, for some small x > 0,

σ2(s)− σ2(s− x) ≤ σ2(s) + σ2(x)− σ2(s− x) = 2Cov(Ys, Yx) ≤ 2σ(s)σ(x),

and by the Mean Value Theorem there exists some ρx ∈ [s−x, s] such that σ2(s)−σ2(s−x) =
σ̇2(ρx)x. By continuity of σ̇2 at s,

lim sup
x↓0

x

σ(x)
≤ lim sup

x↓0
2

σ(s)

σ̇2(ρx)
= 2

σ(s)

σ̇2(s)
<∞.

The claim follows upon combining this observation with S1. �

Lemma 1 Let Y have stationary increments, and suppose that S1 and M1 hold. If σ2(t) ≤
Ctγ on a neighborhood of zero for some C, γ > 0, then S4 holds.

Proof. By the stationarity of the increments, the first point of S4 follows immediately from
the UCT for t 7→ σ2(t)t−γ (this map is locally bounded by the condition in the lemma). In
fact, it holds for all T, ε > 0.

To check the second requirement of S4, select some ω such that H/β < ω < 1. By the
UCT {M1}

lim
T→∞

lim
u→∞

sup
t≥T

utω

←−µ (µ(u)t1/β)
= lim

T→∞
Tω−1 = 0.

Hence, we may suppose without loss of generality that T is such that ←−µ (µ(u)t1/β)/u ≥ tω

for every t ≥ T and large u. This implies that

P

(

sup
t≥T

Yµ(ut)

1 + t
> u

)

≤ P

(

sup
t≥[µ(uT )/µ(u)]β

Yµ(u)t1/β

1 + tω
> u

)

≤ P

(

sup
t≥T/2

Yµ(u)t1/β

1 + tω
> u

)

.

We now apply some results from earlier work [18]. By Corollary 3 and the arguments in the
proof of Proposition 1 of [18], we have

lim sup
u→∞

σ2(µ(u))

u2
log P

(

sup
t≥T

Yµ(ut)

1 + t
> u

)

≤ −1

2
inf

t≥T/2

(1 + tω)2

t2H/β
.

Note that we have used the continuity of the functional x 7→ supt≥(T/2)1/β x(t)/(1 + tωβ) in
a certain topology, cf. Lemma 2 of [18]. The claim is obtained by choosing T large enough,
which is possible since t2ω/t2H/β →∞ as t→∞. �

With Proposition 1 and Lemma 1 at our disposal, we readily find the asymptotics of (1)
when Y has stationary increments.

Proposition 2 Let Y have stationary increments. Suppose that S1–S3 hold, and that
σ2(t) ≤ Ctγ on a neighborhood of zero for some C, γ > 0. Moreover, suppose that M1–

M4 hold for some β > H.

If σ2(µ(u))/u→∞, then

P

(

sup
t≥0

Yµ(t) − t > u

)

∼ HBH
CH,β,1/β,H

(

β −H

H

)1/β σ(µ(u))µ(u)

u←−σ
(

σ2(µ(u))
u

)Ψ

(

inf
t≥0

u(1 + t)

σ(µ(ut))

)

.
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If σ2(µ(u))/u→ G ∈ (0,∞), then

P

(

sup
t≥0

Yµ(t) − t > u

)

∼ H(2/G2)σ2

√

π/2

H

σ(µ(u))µ(u)

u
Ψ

(

inf
t≥0

u(1 + t)

σ(µ(ut))

)

.

If σ2(µ(u))/u→ 0 and σ is regularly varying at zero with index λ ∈ (0, 1), then

P

(

sup
t≥0

Yµ(t) − t > u

)

∼ HBλ
CH,β,1/β,λ

(

β −H

H

)H/(βλ) σ(µ(u))µ(u)

u←−σ
(

σ2(µ(u))
u

)Ψ

(

inf
t≥0

u(1 + t)

σ(µ(ut))

)

.

Proof. Directly from Theorem 1. For the case σ2(µ(u))/u → G ∈ (0,∞), observe that
necessarily 2H = β. �

3.2 Self-similar processes

We now suppose that Y is a self-similar process with Hurst parameter H, i.e., Var(Yt) = t2H

and for any α > 0 and s, t ≥ 0,

Cov (Yαt, Yαs) = α2H
Cov (Yt, Ys) . (10)

The self-similarity property has been observed statistically in several types of data traffic,
see, e.g., [31]. Two examples of self-similar Gaussian processes are the fractional Brownian
motion and the Riemann-Liouville process.

Another (undoubtedly related) reason why self-similar processes are interesting is that
the weak limit obtained by scaling a process both in time and space must be self-similar (if it
exists); see Lamperti [27]. In the setting of Gaussian processes with stationary increments, a
strong type of weak convergence is studied in [18]. We also mention the interesting fact that
self-similar processes are closely related to stationary processes by the so-called Lamperti-
transformation; see [1] for more details.

We make the following assumption about the behavior of the (standardized) variance of
Y near t = t∗: for some function τ which is regularly varying at zero with index ι̃τ ∈ (0, 1),

lim
s,t→t∗

Var
(

Y
s1/β

sH/β −
Y

t1/β

tH/β

)

τ2(|s− t|) = 1. (11)

By the self-similarity, one may equivalently require that a similar condition holds for s, t
tending to an arbitrary strictly positive number; see [23]. In the proof of Proposition 3
below we show that (11) implies that self-similar processes are covered by case D.

We also need the following assumption on the variance structure of Y : for some γ > 0,

sup
s,t∈(0,1]

Var(Ys − Yt)|s− t|−γ <∞. (12)

This Kolmogorov criterion ensures that there exists a continuous modification of Y . Notice
that without loss of generality it suffices to take the supremum over any interval (0, ·] by the
self-similarity.

The following proposition generalizes Theorem 1 of Hüsler and Piterbarg [23]; it is left
to the reader to check that the formulas indeed coincide when φ(t) = ctβ for some c > 0.
Although no condition of the type (12) appears in [23], it is implicitly present; the process
Z̃ in [23] is claimed to satisfy condition (E3) on page 19 of [34].
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Proposition 3 Let Y be self-similar with Hurst parameter H, and let µ satisfy M1–M4

for some β > H. If (11) and (12) hold, then,

P

(

sup
t≥0

Yµ(t) − t > u

)

∼ HBι̃τ
CH,β,1,ι̃τ

µ(u)H

u←−τ
(

µ(u)H

u

)Ψ

(

inf
t≥0

u(1 + t)

µ(ut)H

)

Proof. Note that by (11), for δ with δ(u) = o(u),

lim
u→∞

sup
s,t∈[t∗u±δ(u)/u]

∣

∣

∣

∣

∣

∣

Var
(

Yµ(us)/µ(u)

(µ(us)/µ(u))H −
Yµ(ut)/µ(u)

(µ(ut)/µ(u))H

)

τ2(|µ(us)β − µ(ut)β|/µ(u)β)
− 1

∣

∣

∣

∣

∣

∣

= 0.

The self-similarity implies

Var

(

Yµ(us)/µ(u)

(µ(us)/µ(u))H
−

Yµ(ut)/µ(u)

(µ(ut)/µ(u))H

)

= Var

(

Yµ(us)

µ(us)H
−

Yµ(ut)

µ(ut)H

)

,

so that (4) holds for ν(t) = µ(t)β and the τ of (11); then we have N1 and N2 as a consequence
of the assumption that M1–M3 hold. Moreover, it is trivial that σ2(t) = t2H satisfies S1–

S3. We now show that S4 holds. By the self-similarity, for any T > 0,

sup
s,t∈(0,T ]

Var(Yus − Yut)

u2H |s− t|γ = T 2H−γ sup
s,t∈(0,1]

Var(Ys − Yt)

|s− t|γ ,

so that the first condition of S4 is satisfied due to (12). As for the second point, by the
self-similarity and the reasoning in the proof of Lemma 1, it suffices to show that for large T

lim sup
u→∞

µ(u)2H

u2
log P

(

sup
t≥T/2

Yt1/β

1 + tω
>

u

µ(u)H

)

< −1

2

(1 + t∗)2

(t∗)H/β
,

for some ω satisfying H/β < ω < 1. This follows from Borell’s inequality (e.g., Theorem D.1
of [34]) once it has been shown that Yt/tωβ → 0 as t → ∞. We use a reasoning as in
Lemma 3 of [18] to see that this is the case. First, one can exploit the fact that ωβ > H
to establish limk→∞ Y2k/2kωβ = 0 by the Borel-Cantelli lemma. It then suffices to show
that also Zk/2kωβ → 0, where Zk := sups∈[2k,2k+1] |Ys − Y2k |. Note that Zk has the same

distribution as 2kHZ0 by the self-similarity of Y . The almost sure convergence follows again
from the Borel-Cantelli lemma: for α, ε > 0,

∑

k

P (Zk/2kωβ > ε) ≤
∑

k

P (Z0 > ε2k(ωβ−H)) ≤
∑

k

exp
(

−αε222k(ωβ−H)
)

E exp
(

αZ2
0

)

.

If one chooses α > 0 appropriately small, E exp
(

αZ2
0

)

is finite as a consequence of Borell’s
inequality (which can be applied since Y is continuous).

In conclusion, case D applies and the asymptotics are given by Theorem 1. �

Hüsler and Piterbarg [23, Section 3] also consider a class of Gaussian processes that
behave somewhat like a self-similar processes. Although we do not work this out, this class
is also covered by (case D of) Theorem 1; note that their condition (18) is a special case of
(4), for ν(t) = t.

3.3 Examples

We now work out some examples that appear in the literature. In all examples, we obtain
(modest) extensions of what is known already. For Gaussian integrated processes (Sec-
tion 3.3.2), we also remove some technical conditions.
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3.3.1 Fractional Brownian motion

In some sense, fractional Brownian motion (fBm) is the easiest instance of a process Y that
fits into the framework of Proposition 2. Indeed, the variance function σ2 of fBm is the
canonical regularly varying function, σ2(t) = t2H for some H ∈ (0, 1).

A fractional Brownian motion BH is self-similar in the sense of (10). Therefore, it can
appear as a weak limit of a time- and space-scaled process; for examples, see [18, 39]. The
increments of a fractional Brownian motion are long-range dependent if and only if H > 1/2,
i.e., the covariance function of the increments on an equispaced grid is then nonsummable.
For more details on long-range dependence and an extensive list of references, see Doukhan
et al. [19].

As fBm is both self-similar and has stationary increments, the asymptotics can be ob-
tained by applying either Proposition 2 or Proposition 3. Interestingly, this implies that
it should be possible to write the formulas in the three cases of Proposition 2 as a single
formula for fBm. The proof given below is based on Proposition 2, but the reader easily
verifies that Proposition 3 yields the same formula; one then uses

(

β −H

β

)1/β

CH,β,1/β,H =
β −H

βH
CH,β,1,H .

Note that fBm is the only process for which both Proposition 2 and 3 can be applied: it is
the only Gaussian self-similar process with stationary increments.

Corollary 1 Let BH be a fractional Brownian motion with Hurst parameter H ∈ (0, 1). If
µ satisfies conditions M1–M4 for some β > H, then

P

(

sup
t≥0

BH(µ(t))− t > u

)

∼ HBH
CH,β,1/β,H

(

β −H

H

)1/β u1/H−1

µ(u)1−H
Ψ

(

inf
t≥0

u(1 + t)

µ(ut)H

)

.

Proof. First note that µ(u)2H/u has a limit in [0,∞] as a consequence of M2. If µ(u)2H/u
tends to either zero or infinity, the formula follows readily from Proposition 2 by setting
σ2(t) = t2H (so that λ = H in case C). In case µ(u)2H/u → G ∈ (0,∞), the generalized
Pickands’ constant can be expressed in a classical one by exploiting the self-similarity of BH ;
one easily checks that H(

√
2/G)BH

= (
√

2/G)1/HHBH
. The above formula is then found by

noting that β = 2H and

µ(u)H+1

u
∼ G1/H u1/H−1

µ(u)1−H
.

�

For a standard Brownian motion (H = 1/2), Pickands’ constant equals HB1/2
= 1, so

that the formula reduces to

P

(

sup
t≥0

Bµ(t) − t > u

)

∼ 2
√

2πβ(2β − 1)
1
2
(1/β−3) u

√

µ(u)
Ψ

(

inf
t≥0

u(1 + t)
√

µ(ut)

)

. (13)

This probability has been extensively studied in the literature; the whole distribution of
supt≥0 Bµ(t) − t is known in a number of cases. We refer to some recent contributions
[7, 21, 22] for background and references.

The tail asymptotics of supt≥0 Bµ(t) − t are studied in Dȩbicki [10], but we believe that
formula (13) does not appear elsewhere in the literature.
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3.3.2 Gaussian integrated process

A Gaussian integrated process Y has the form

Yt =

∫ t

0
Z(s)ds, (14)

where Z is a centered stationary Gaussian process with covariance function R. We suppose
that R be ultimately continuous and that R(0) > 0. It is easy to see that

σ2(t) = 2

∫ t

0

∫ s

0
R(v)dvds.

In the literature, µ is assumed to be of the form µ(t) = t/c for some c > 0, so that M1–M4

obviously hold. For an easy comparison, we also adopt this particular choice for µ here
(simple scaling arguments show that we may have assumed c = 1 without loss of generality).
Evidently, the results of this paper allow for much more general drift functions, and the
reader has no difficulties to write out the corresponding formula.

The structure of the problem ensures that S2 and S3 hold, and that σ(t) ≤ Ctγ for some
C, γ > 0 since σ2(t)/t2 = 2

∫ 1
0

∫ s
0 R(tv)dvds tends to R(0) as t ↓ 0.

Short-range dependent case

A number of important Gaussian integrated processes have short-range dependent char-
acteristics. Perhaps the most well-known example is an Ornstein-Uhlenbeck process, for
which R(t) = exp(−αt), where α > 0 is a constant. Dȩbicki and Rolski [16] study the more
general case where Z = r′X for some k-vector r and X is the stationary solution of the
stochastic differential equation

dX(t) = AX(t)dt + σdW (t),

for k×k matrices A, σ (satisfying certain conditions) and a standard k-dimensional Brownian
motion W . Then R(t) = r′ΣetA′

r for some covariance Σ.
By stating that a Gaussian integrated process is short-range dependent, we mean that

R := limt→∞
∫ t
0 R(s)ds exists as a strictly positive real number and that R is integrable, i.e.,

∫∞
0 |R(s)|ds <∞. We can now specialize Proposition 2 to this case.

Corollary 2 Let Y be a Gaussian integrated process with short-range dependence. Then

P

(

sup
t≥0

Yt − ct > u

)

∼ H c√
2RY

√
π

2
√
R

c3/2

√
uΨ



inf
t≥0

u(1 + ct)
√

2
∫ ut
0

∫ s
0 R(v)dvds



 . (15)

Proof. By the existence of R, continuity of t 7→
∫ t
0 R(s)ds, and bounded convergence, we

have

lim
t→∞

σ2(t/c)

t
=

2

c
lim
t→∞

∫ 1

0

∫ st

0
R(v)dvds =

2R
c

<∞,

so that S1 holds with H = 1/2 and we are in the second case Proposition 2 with G = 2R/c.
�

Notice that Corollary 2 is a modest generalization of the results of Dȩbicki [11]. To see
this, note that (15) is asymptotically equivalent with

H c√
2RY
R
c2

exp

(

−1

4
inf
t≥0

u2(1 + ct)2
∫ ut
0

∫ s
0 R(v)dvds

)

,
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since t∗ = H/(β − H) = 1 and
√

uσ(u) ∼
√

2Ru. Proposition 6.1 of [11] shows that this
expression is in agreement with the findings of [11].

Long-range dependent case

Consider a Gaussian integrated process as in (14), but now with a covariance function
R that is regularly varying at infinity with index 2H − 2 for some H ∈ (1/2, 1) (in addition
to the regularity assumptions above). Since there is so much long term correlation that
∫∞
0 |R(t)|dt = ∞, the process is long-range dependent. The motivation for studying this

long-range dependent case stems from the fact that it arises as a limit in heavy traffic of
on-off fluid models [15].

By the direct half of Karamata’s theorem (Theorem 1.5.11 of [4]), we have for t→∞,

σ2(t) = 2

∫ t

0

∫ s

0
R(v)dvds ∼ t

∫ t
0 R(v)dv

H
∼ t2R(t)

H(2H − 1)
.

Therefore, since H > 1/2, σ2(t)/t→∞ and we are in the first case of Proposition 2.

Corollary 3 Let Y be a Gaussian integrated process with long-range dependence. Then
P
(

supt≥0 Yt − ct > u
)

is asymptotically equivalent to

HBH
CH,1,1,Hc1−H 1−H

H
[H(2H − 1)]

1
2H

− 1
2

u
√

R(u)
←−τ (uR(u))

Ψ



inf
t≥0

u(1 + ct)
√

2
∫ ut
0

∫ s
0 R(v)dvds



 ,

where ←−τ denotes an asymptotic inverse of t 7→ t
√

R(t) (at infinity).

The case of a Gaussian integrated process with long-range dependence is also studied
by Hüsler and Piterbarg [24]. The reasoning following Equation (7) of [24] shows that the
formulas are the same (up to the constants; we leave it to the reader to check that these
coincide).

4 A variant of Pickands’ lemma

In this section, we present a generalization of a classical lemma by J. Pickands III. As we
need a field version of this lemma, we let time be indexed by R

n for some n ≥ 1, and we
write t = (t1, . . . , tn).

Given an even functional ξη : R
n → R (i.e., ξη(t) = ξη(−t) for t ∈ R

n), we define the
centered Gaussian field η by its covariance

Cov(ηs, ηt) = ξη(s) + ξη(t)− ξη(s− t), (16)

provided it is a proper covariance in the sense that the field η exists.
A central role in the lemma is played by functions gk, ξη, and θk. These functions are

in principle arbitrary, but they are assumed to satisfy certain conditions, which we now
formulate. To get some feeling for these conditions, the reader may want to look in the proof
of Lemma 3, for instance, to see how the functions are chosen in a particular situation.

Throughout, {Ku} denotes a nondecreasing family of countable sets (say Ku ⊂ Z), and

{X(u,k)
t

: t ∈ [0, T ]n}, u ∈ N, k ∈ Ku denotes a collection of centered continuous separable
Gaussian fields on [0, T ]n for some fixed T > 0. We suppose that X(u,k) has unit variance.
It is important to notice that we do not assume stationarity of the X (u,k).

P1 infk∈Ku gk(u)→∞ as u→∞,
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P2 for some even functional ξη, supk∈Ku
|θk(u, s, t) − 2ξη(s − t)| → 0 for any s, t ∈

[0, T ]n,

P3 for some γ1, . . . , γn > 0,

lim sup
u→∞

sup
k∈Ku

sup
s,t∈[0,T ]n

θk(u, s, t)
∑n

i=1 |si − ti|γi
<∞,

P4 t 7→ g2
k(u)Cov

(

X
(u,k)
t

,X
(u,k)
0

)

is uniformly continuous in the sense that

lim
ε→0

lim sup
u→∞

sup
k∈Ku

sup
|s−t|<ε

s,t∈[0,T ]n

g2
k(u)Cov

(

X
(u,k)
s −X

(u,k)
t

,X
(u,k)
0

)

= 0.

We use the following lemma in Section 6 for n = 1 to establish the upper bound, and in
Section 7 for n = 2 to establish the lower bound. The main assumption of the lemma is that

Cov
(

X
(u,k)
s ,X

(u,k)
t

)

tends uniformly to unity at rate 2θk(u, s, t)/g2
k(u) as u→∞.

Lemma 2 Suppose there exist functions gk, ξη, and θk satisfying P1–P4. If

lim
u→∞

sup
k∈Ku

sup
s,t∈[0,T ]n

s6=t

∣

∣

∣

∣

∣

∣

g2
k(u)

Var
(

X
(u,k)
s −X

(u,k)
t

)

θk(u, s, t)
− 1

∣

∣

∣

∣

∣

∣

= 0, (17)

then for any k ∈
⋃

u Ku, as u→∞,

P

(

sup
t∈[0,T ]n

X
(u,k)
t

> gk(u)

)

∼ Hη([0, T ]n)Ψ(gk(u)), (18)

where

Hη([0, T ]n) = E exp

(

sup
t∈[0,T ]n

√
2ηt − ξη(t)

)

.

Moreover, we have

lim sup
u→∞

sup
k∈Ku

P
(

supt∈[0,T ]n X
(u,k)
t

> gk(u)
)

Ψ(gk(u))
<∞. (19)

Proof. The proof is based on a standard approach in the theory of Gaussian processes; see
for instance (the proof of) Lemma D.1 of Piterbarg [34].

First note that

P

(

sup
t∈[0,T ]n

X
(u,k)
t

> gk(u)

)

=
1√

2πgk(u)
exp

(

−1

2
g2
k(u)

)∫

R

exp(w) exp

(

−1

2

w2

g2
k(u)

)

×

P

(

sup
t∈[0,T ]n

X
(u,k)
t

> gk(u)

∣

∣

∣

∣

X
(u,k)
0

= gk(u)− w

gk(u)

)

dw. (20)

For fixed w, we set χu,k(t) := gk(u)[X
(u,k)
t

− gk(u)] + w, so that the conditional probability
that appears in the integrand equals P (supt∈[0,T ]n χu,k(t) > w|χu,k(0) = 0).
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We first study the field χu,k|χu,k(0) = 0 as u → ∞, starting with the finite-dimensional
(cylinder) distributions. These converge uniformly in k ∈ Ku to the corresponding distribu-

tions of
√

2η − ξη. To see this, we set vu,k(s, t) := Var(X
(u,k)
s −X

(u,k)
t

), so that by P1, P2,
and (17), uniformly in k ∈ Ku,

E[χu,k(t)|χu,k(0) = 0] = −1

2
g2
k(u)vu,k(0, t) +

1

2
wvu,k(0, t)

= −1

2
θk(u,0, t)(1 + o(1)) + o(1)→ −ξη(t),

and similarly, also uniformly in k ∈ Ku,

Var(χu,k(s)− χu,k(t)|χu,k(0) = 0)

= g2
k(u)vu,k(s, t)−

1

4
g2
k(u) [vu,k(0, t)− vu,k(0, s)]2

= θk(u, s, t)(1 + o(1)) + o(1)→ 2ξη(s− t).

Denoting the law of a field X by L(X), we next show that the family {L(χu,k|χu,k(0) =
0) : u ∈ N, k ∈ Ku} is uniformly tight. Since t 7→ E(χu,k(t)|χu,k(0) = 0) is uniformly contin-
uous in the sense that P4 holds, it suffices to show that the family of centered distributions
is tight. We denote the centered χu,k by χ̃u,k, i.e., χ̃u,k(t) := χu,k(t)−E[χu,k(t)|χu,k(0) = 0].
It is important to notice that L(χ̃u,k|χ̃u,k(0) = 0) does not depend on w.

To see that {L(χ̃u,k|χ̃u,k(0) = 0) : u ∈ N, k ∈ Ku} is tight, observe that for u large
enough, uniformly in s, t ∈ [0, T ]n and k ∈ Ku, we have

Var(χ̃u,k(s)− χ̃u,k(t)|χ̃u,k(0) = 0) ≤ g2
k(u)vu,k(s, t) ≤ 2θk(u, s, t).

By P3, there exist constants γ1, . . . , γn, C ′ > 0 such that, uniformly for s, t ∈ [0, T ]n and
k ∈ Ku,

Var(χ̃u,k(s)− χ̃u,k(t)|χ̃u,k(0) = 0) ≤ C ′
n
∑

i=1

|si − ti|γi ,

provided u is large enough. As a corollary of Theorem 1.4.7 in Kunita [26], we have the
claimed tightness.

Since the functional x ∈ C([0, T ]n) 7→ supt∈[0,T ]n x(t) is continuous in the topology of
uniform convergence, the Continuous Mapping Theorem yields for w ∈ R,

lim
u→∞

P

(

sup
t∈[0,T ]n

χu,k(t) > w

∣

∣

∣

∣

∣

χu,k(0) = 0

)

= P

(

sup
t∈[0,T ]n

[
√

2ηt − ξη(t)] > w

)

.

Using
∫

R
ewP (supt∈[0,T ]n [

√
2ηt − ξη(t)] > w)dw = Hη([0, T ]n) and (7), this proves (18) once

it has been shown that the integral and limit can be interchanged.
The dominated convergence theorem and Borell’s inequality are used to see that this can

indeed be done. For arbitrary δ > 0 and u large enough,

sup
k∈Ku

sup
t∈[0,T ]n

E[χu,k(t)|χu,k(0) = 0] ≤ δ|w|,

sup
k∈Ku

sup
t∈[0,T ]n

Var[χu,k(t)|χu,k(0) = 0] ≤ 2 sup
k∈Ku

sup
t∈[0,T ]n

θk(u, t,0),

and the latter quantity remains bounded as u→∞ as a consequence of P3; let ξη denote an
upper bound. Observe that for a ∈ R, again by the Continuous Mapping Theorem, we have

lim
u→∞

sup
k∈Ku

P

(

sup
t∈[0,T ]n

χ̃u,k(t) > a

∣

∣

∣

∣

∣

χu,k(0) = 0

)

= P

(

sup
t∈[0,T ]n

√
2ηt > a

)

.

17

Since η is continuous (as remarked below), one can select an a independent of w, u, k such
that the conditions for applying Borell’s inequality (e.g., Theorem D.1 of [34]) are fulfilled.
Hence, for every u, k, w,

P

(

sup
t∈[0,T ]n

χu,k(t) > w

∣

∣

∣

∣

∣

χu,k(0) = 0

)

≤ 2Ψ

(

w − δ|w| − a

3ξη

)

.

When multiplied by exp(w) exp(− 1
2w2/g2

k(u)), this upper bound is integrable with respect to
w for large u. This not only shows that the dominated convergence theorem can be applied,
it also implies (19). Indeed, using P1, we have

lim
u→∞

sup
k∈Ku

e−
1
2
g2

k(u)

gk(u)Ψ(gk(u))
=
√

2π

by standard bounds on Ψ. �

One observation in the proof deserves to be emphasized, namely the existence and conti-
nuity of η. If θk satisfies (17) and converges uniformly in k to some 2ξη as in P2, the analysis
of the finite-dimensional distributions shows that there automatically exists a field η with
covariance (16). Moreover, η has continuous sample paths as a consequence of P3 and P4

(i.e., the tightness).
A number of special cases of Lemma 2 appear elsewhere in the literature. Perhaps the

best known example is the case where X is a stationary process with covariance function
satisfying r(t) = 1−|t|α+o(|t|α) for some α ∈ (0, 2] as t ↓ 0, see Lemma D.1 of Piterbarg [34].
This lemma is obtained by letting Ku consist of only a single element for every u, and by

setting g(u) = u, X
(u)
t = Xu−2/αt, η = Bα/2 and ξη(t) = |t|α.

A generalization of Lemma D.1 in [34] to a stationary field {X(t) : t ∈ R
n} is given in

Lemma 6.1 of Piterbarg [34], and we now compare this generalization to Lemma 2. We use
the notation of [34]. Lemma 2 deals with the case A = 0 and T (in the notation of [34])
equal to [0, T ]n (in our notation). Again, let Ku consist of only a single element for every u,

and set g(u) = u, X
(u)
t

= Xg−1
u t

, and ξη(t) = |t|E,α. As the ideas of the proof are the same,
Lemma 2 can readily be extended to also generalize Lemma 6.1 of [34]. However, we do not
need this to derive the results of the present paper.

Theorem 2.1 of Dȩbicki [11] can also be considered to be a special case of Lemma 2. There,

again, Ku consists of a single element, and X
(u)
(t1,...,tn) = 1√

n

∑n
i=1 X

(u)
i (ti) for independent

processes X
(u)
i satisfying a condition of the type (17), but where θ does not depend on u.

Lemma 2 has some interesting consequences for the properties of Pickands’ constant. For
instance, Pickands’ constant is readily seen to be subadditive, i.e., for T1, T2 > 0 and n = 1,

Hη([0, T1 + T2]) ≤ Hη([0, T1]) +Hη([0, T2]),

with appropriate generalizations to the multidimensional case. This property guarantees
that the limit in (6) exists.

The value of Pickands’ constant is only known in two cases: HB1/2
= 1 (Brownian motion)

and HB1 = 1/
√

π (‘degenerate’ case). Further properties of Pickands’ constants are explored
both theoretically and numerically by Shao [38], Dȩbicki [8], and Dȩbicki et al. [14].

5 Four cases

We now specialize Lemma 2 according to the four types of correlation structures introduced
in Section 2. Throughout this section, we suppose that S1 and M1 hold.

Let T > 0 be fixed, and write IT
k (u) for the intervals [t∗u+kT∆(u)/u, t∗u+(k+1)T∆(u)/u],

where ∆ is some function that depends on the correlation structure, and ∆(u) = o(δ(u)).
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5.1 Case A

We say that case A applies if A1, A2, T1, T2, N1, and N2 hold and ∆ is given by

∆(u) :=
1

ν̇(ut∗)
←−τ
(√

2τ(ν(u))√
D

σ(µ(ut∗))
u(1 + t∗)

)

, (21)

where ←−τ denotes an asymptotic inverse of τ at infinity (this exists when T1 holds, see
Theorem 1.5.12 of [4]). Note that the argument of ←−τ tends to infinity as a consequence of
A2, and that therefore ν(u)∆(u)/u → ∞. It is easy to check that ∆ is regularly varying
with index (H/β − 1)/ιτ + 1 < 1.

The next lemma shows that this particular choice of ∆ ‘balances’ the correlation structure
on the intervals IT

k (u) (note that the interval IT
k (u) depends on ∆).

Lemma 3 Let S1 and M1 hold and suppose that case A applies. Let δ be such that δ(u) =

o(u) and ∆(u) = o(δ(u)). For any u and − δ(u)
T∆(u) ≤ k ≤ δ(u)

T∆(u) , pick some t◦k(u) ∈ IT
k (u).

Then we have for u→∞,

P

(

sup
t∈IT

k (u)

Yµ(ut)

σ(µ(ut))
>

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)

∼ HBιτ
(T )Ψ

(

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)

,

where HBιτ
(T ) is defined as in (6). Moreover,

lim sup
u→∞

sup
− δ(u)

T∆(u)
≤k≤ δ(u)

T∆(u)

P
(

supt∈IT
k (u)

Yµ(ut)

σ(µ(ut)) >
u(1+t◦k(u))

σ(µ(ut◦k(u)))

)

Ψ
(

u(1+t◦k(u))

σ(µ(ut◦k(u)))

) <∞. (22)

Proof. The main argument in the proof is, of course, Lemma 2. Set

κk(u) :=

√

D
2

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

τ(ν̇(ut∗)∆(u))

τ(ν(u))
(23)

and note that by the UCT and (21),

sup
− δ(u)

T∆(u)
≤k≤ δ(u)

T∆(u)

sup
s,t∈IT

k (u)

∣

∣κ2
k(u)− 1

∣

∣→ 0.

Equation (3) implies that {A1}

sup
s,t∈[t∗u±δ(u)/u]

|s−t|≤T∆(u)/u

∣

∣

∣

∣

∣

∣

2κ2
k(u)τ2(ν(u))

Dτ2(ν̇(ut∗)∆(u))

Var
(

Yµ(us)

σ(µ(us)) −
Yµ(ut)

σ(µ(ut))

)

2τ2(|ν(us)− ν(ut)|)/τ 2(ν̇(ut∗)∆(u))
− 1

∣

∣

∣

∣

∣

∣

→ 0. (24)

The preceding display suggests certain choices for the functions gk and θk of Lemma 2, cf.
(17); we now show that P1–P4 are indeed satisfied.

As for P1, one readily checks that

gk(u) :=

√

2

D
κk(u)τ(ν(u))

τ(ν̇(ut∗)∆(u))
=

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

tends to infinity uniformly in k. We set for s, t ∈ [0, T ] and − δ(u)
T∆(u) ≤ k ≤ δ(u)

T∆(u)

θk(u, s, t) := 2
τ2(|ν(ut∗u + (kT + s)∆(u))− ν(ut∗u + (kT + t)∆(u))|)

τ2(ν̇(ut∗)∆(u))
. (25)
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To check that θk(u, s, t) converges uniformly in k as u→∞, we note that by the Mean Value
Theorem {N2} there exists some t∧k (u, s, t) ∈ [0, T ] such that

ν(ut∗u + (kT + s)∆(u))− ν(ut∗u + (kT + t)∆(u)) = ∆(u)ν̇(ut∗u + [kT + t∧k (u, s, t)])(s− t).

Now note that we have for s, t ∈ [0, T ],

sup
k
|θk(u, s, t)− 2|s− t|2ιτ |

≤ sup
k

∣

∣

∣

∣

∣

θk(u, s, t)− 2

(

ν̇(ut∗u + [kT + t∧k (u, s, t)])

ν̇(ut∗)

)2ιτ

|s− t|2ιτ

∣

∣

∣

∣

∣

+ 2 sup
k

∣

∣

∣

∣

∣

(

ν̇(ut∗u + [kT + t∧k (u, s, t)])

ν̇(ut∗)

)2ιτ

− 1

∣

∣

∣

∣

∣

|s− t|2ιτ

=: I(u) + II(u).

As a consequence of the UCT {N1, N2}, we have

lim
u→∞

sup
s,t∈[0,T ]

sup
− δ(u)

T∆(u)
≤k≤ δ(u)

T∆(u)

ν̇(ut∗u + [kT + t∧k (u, s, t)])

ν̇(ut∗)
(s− t) = T. (26)

Since ν̇(u)∆(u) tends to infinity {A2}, this shows that I(u) is majorized by

sup
t∈[0,2T ]

∣

∣

∣

∣

τ2(ν̇(ut∗)∆(u)t)

τ2(ν̇(ut∗)∆(u))
− t2ιτ

∣

∣

∣

∣

→ 0.

II(u) also tends to zero by the UCT. Hence, P2 holds with ξη(t) = |t|2ιτ , so that η is a
fractional Brownian motion with Hurst parameter ιτ .

A similar reasoning is used to check P3. Notice that τ 2(t)t−2γ′
is bounded on intervals

of the form (0, ·] {T2}, and that we may suppose that γ ′ < ιτ without loss of generality.
Again using (26) and the UCT, we observe that for large u,

sup
k

sup
s,t∈(0,T ]

s>t

θk(u, s, t)(s− t)−2γ′

= sup
k

sup
s,t∈(0,T ]

s>t

2
τ2 (∆(u)ν̇(ut∗u + [kT + t∧k (u, s, t)])(s− t))

τ2(ν̇(ut∗)∆(u))
(s− t)−2γ′

≤ 2 sup

t∈
»

0,( 3
2)

1/(2ιτ−2γ′)
T

–

τ2(ν̇(ut∗)∆(u)t)

τ2(ν̇(ut∗)∆(u))
t−2γ′

≤ 4T 2ιτ−2γ′
,

which is clearly finite (the factor 4 turns up again in the proof of Lemma 9 below).
It remains to check P4. For this, observe that it suffices to show that

lim
ε→0

lim sup
u→∞

sup
s,s′,t∈[t∗u±δ(u)/u]

sup
|s−t|<εT∆(u)/u

|s′−t|<εT∆(u)/u

g2
k(u)Cov

(

Yµ(us)

σ(µ(us))
−

Yµ(us′)

σ(µ(us′))
,

Yµ(ut)

σ(µ(ut))

)

= 0,

and hence that

lim
ε→0

lim sup
u→∞

sup
s,t∈[t∗u±δ(u)/u]

sup
|s−t|<ε∆(u)/u

g2
k(u)Var

(

Yµ(us)

σ(µ(us))
−

Yµ(ut)

σ(µ(ut))

)

= 0. (27)
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Observe that for large u, by (24) and the Mean Value Theorem, uniformly for s, t ∈ [t∗u ±
δ(u)/u],

sup
|s−t|<ε∆(u)/u

g2
k(u)Var

(

Yµ(us)

σ(µ(us))
−

Yµ(ut)

σ(µ(ut))

)

≤ 4 sup
|s−t|<ε∆(u)/u

τ2(|ν(us)− ν(ut)|)
τ2(ν̇(ut∗)∆(u))

≤ 4 sup
t<2ε∆(u)/u

τ2(uν̇(ut∗)t)
τ2(ν̇(ut∗)∆(u))

≤ 8(2ε)2ιτ → 0,

as ε→ 0.
Having checked that Lemma 2 can be applied, we use the definition of ∆(u) to see that

P

(

sup
t∈IT

k (u)

Yµ(ut)

σ(µ(ut))
>

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)

= P

(

sup
t∈IT

k (u)

Yµ(ut)

σ(µ(ut))
>

√

2

D
κk(u)τ(ν(u))

τ(ν̇(ut∗)∆(u))

)

∼ HBιτ
(T )Ψ

(

√

2

D
κk(u)τ(ν(u))

τ(ν̇(ut∗)∆(u))

)

= HBιτ
(T )Ψ

(

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)

,

as claimed. �

5.2 Case B

Case B is different from the other cases in the sense that no (asymptotic) inverse is involved
in the definition of ∆. As a consequence, a non-classical Pickands’ constant appears in the
asymptotics.

We say that case B applies when B1, B2, T1, T2, N1, and N2 hold and ∆ is given by

∆(u) :=
1

ν̇(ut∗)
. (28)

Moreover, we set

F :=
D(1 + t∗)2

2G2(t∗)2H/β
.

Under these assumptions, limu→∞ ν(u)∆(u)/u exists in (0,∞).

Lemma 4 Let S1 and M1 hold and suppose that case B applies. Let δ be such that δ(u) =

o(u) and ∆(u) = o(δ(u)). For any u and − δ(u)
T∆(u) ≤ k ≤ δ(u)

T∆(u) , pick some t◦k(u) ∈ IT
k (u).

For T large enough, we have for u→∞,

P

(

sup
t∈IT

k (u)

Yµ(ut)

σ(µ(ut))
>

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)

∼ HFτ2(T )Ψ

(

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)

,

where HFτ2(T ) is defined as in (6). Moreover, (22) holds.

Proof. Define

κk(u) :=

√

D
2F

u(1 + t◦k(u))

τ(ν(u))σ(µ(ut◦k(u)))

which converges uniformly in k to unity as a consequence of the fact that by B2,

2Fτ2(ν(u))

D =
(1 + t∗)2

G2(t∗)2H/β
τ2(ν(u)) ∼ u2(1 + t∗)2

σ2(µ(ut∗))
.

21

Therefore, as in Lemma 3, we have by (3),

sup
− δ(u)

T∆(u)
≤k≤ δ(u)

T∆(u)

k∈Z

sup
s,t∈IT

k (u)

∣

∣

∣

∣

∣

∣

2Fκ2
k(u)τ2(ν(u))

D
Var

(

Yµ(us)

σ(µ(us)) −
Yµ(ut)

σ(µ(ut))

)

2Fτ2(|ν(us)− ν(ut)|) − 1

∣

∣

∣

∣

∣

∣

→ 0.

Again, this should be compared to (17). Set gk(u) :=
√

2F/Dκk(u)τ(ν(u)), and

θk(u, s, t) := 2Fτ 2(|ν(ut∗u + (kT + s)∆(u))− ν(ut∗u + (kT + t)∆(u))|). (29)

Obviously, we have P1. We now check that P2 holds with ξη(t) = Fτ 2(|t|). Let s, t ∈ [0, T ],
and observe that by the Mean Value Theorem there exist t∧k (u, s, t) ∈ [0, T ] such that for
every ε > 0,

sup
k
|θk(u, s, t)− 2Fτ 2(s− t)|

= 2 sup
k
|Fτ 2(∆(u)ν̇(ut∗u + [kT + t∧k (u, s, t)])|s− t|)− Fτ 2(|s− t|)|

≤ 2F sup
s∈[1−ε,1+ε]

sup
t∈[0,T ]

|τ2(st)− τ 2(t)|

≤ 2F sup
s,t∈[0,2T ]

|s−t|≤εT

|τ2(s)− τ 2(t)|,

where we used the definition of ∆ and the UCT. By continuity of τ {T1}, this upper bound
(which is a modulus of continuity) tends to zero as ε → 0. As for P3, the same arguments
show that for large T (by the UCT) {T1, T2}

sup
k

sup
s,t∈[0,T ]

θk(u, s, t)

|s− t|2γ′ ≤ 2F sup

t∈
»

0,( 3
2)

1/(2ιτ−2γ′)
T

–

τ2(t)

t2γ′ ≤ 4FT 2(ιτ−γ′).

It remains to verify P4. As in the proof of Lemma 3, it suffices to show that (27) holds. By
again applying the UCT, one can check that for s, t ∈ [t∗u ± δ(u)/u],

sup
k

sup
|s−t|<ε∆(u)/u

g2
k(u)Var

(

Yµ(us)

σ(µ(us))
−

Yµ(ut)

σ(µ(ut))

)

≤ 2F sup
t∈[0,2ε]

τ2(t),

showing P4 since τ 2 is continuous at zero.

In conclusion, Lemma 2 can be applied and thus

P

(

sup
t∈IT

k (u)

Yµ(ut)

σ(µ(ut))
>

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)

= P

(

sup
t∈IT

k (u)

Yµ(ut)

σ(µ(ut))
>

√

2F
D κk(u)τ(ν(u))

)

∼ HFτ2(T )Ψ

(
√

2F
D κk(u)τ(ν(u))

)

= HFτ2(T )Ψ

(

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)

,

as claimed. �
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5.3 Case C

We say that case C applies when C1–C3, T1, N1, and N2 hold and ∆ is given by

∆(u) :=
1

ν̇(ut∗)
←−τ
(√

2τ(ν(u))√
D

σ(µ(ut∗))
u(1 + t∗)

)

, (30)

where ←−τ denotes an asymptotic inverse of τ at zero (which exists due to T1, see Theo-
rem 1.5.12 of [4]). Here, the argument of ←−τ tends to zero as a consequence of C2, and
therefore ν(u)∆(u)/u→ 0. Note that we do not impose T2, since i is automatically satisfied
once C3 holds.

The following lemma is the analog of Lemma 3 and Lemma 4 for case C.

Lemma 5 Let S1 and M1 hold and suppose that case C applies. Let δ be such that δ(u) =

o(u) and ∆(u) = o(δ(u)). For any u and − δ(u)
T∆(u) ≤ k ≤ δ(u)

T∆(u) , pick some t◦k(u) ∈ IT
k (u).

Then we have for u→∞,

P

(

sup
t∈IT

k (u)

Yµ(ut)

σ(µ(ut))
>

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)

∼ HBι̃τ
(T )Ψ

(

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)

,

where HBι̃τ
(T ) is defined as in (6). Moreover, (22) holds.

Proof. The proof is exactly the same as the proof of Lemma 3, except that now ιτ is replaced
by ι̃τ . �

5.4 Case D

We say that case D applies when D1, D2, N1, N2 hold and ∆ is given by

∆(u) :=
u

ιν(t∗)ιν−1
←−τ
(√

2σ(µ(ut∗))
u(1 + t∗)

)

. (31)

The local behavior is described by the following lemma.

Lemma 6 Let S1 and M1 hold and suppose that case D applies. Let δ be such that δ(u) =

o(u) and ∆(u) = o(δ(u)). For any u and − δ(u)
T∆(u) ≤ k ≤ δ(u)

T∆(u) , pick some t◦k(u) ∈ IT
k (u).

Then we have for u→∞,

P

(

sup
t∈IT

k (u)

Yµ(ut)

σ(µ(ut))
>

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)

∼ HBι̃τ
(T )Ψ

(

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)

,

where HBι̃τ
(T ) is defined as in (6). Moreover, (22) holds.

Proof. The arguments are similar to those in the proof of Lemma 3. Therefore, we only
show how the functions in Lemma 2 should be chosen in order to match (4) with (17).

Define for − δ(u)
T∆(u) ≤ k ≤ δ(u)

T∆(u)

κk(u) :=
uτ(ιν(t∗)ιν−1∆(u)/u)(1 + t◦k(u))√

2σ(µ(ut◦k))
, gk(u) :=

√
2κk(u)

τ(ιν(t∗)ιν−1∆(u)/u)
,

and

θk(u, s, t) := 2
τ2(ν(|ut∗u + (kT + s)∆(u))− ν(ut∗u + (kT + t)∆(u))|/ν(u))

τ2(ιν(t∗)ιν−1∆(u)/u)
.

23

It follows from Lemma 2 with η = Bι̃τ that

P

(

sup
t∈IT

k (u)

Yµ(ut)

σ(µ(ut))
>

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)

= P

(

sup
t∈IT

k (u)

Yµ(ut)

σ(µ(ut))
>

√
2κk(u)

τ(ιν(t∗)ιν−1∆(u)/u)

)

∼ HBι̃τ
(T )Ψ

( √
2κk(u)

τ(ιν(t∗)ιν−1∆(u)/u)

)

= HBι̃τ
(T )Ψ

(

u(1 + t◦k(u))

σ(µ(ut◦k(u)))

)

,

as claimed. �

6 Upper bounds

In this section, we prove the upper bound part of Theorem 1 in each of the four cases. Since
the proof is almost exactly the same for each of the regimes, we only give it once by using
the following notation in both the present and the next section.

We denote the Pickands’ constants HBιτ
(T ), HDMτ2(T ), and HBι̃τ

(T ) by H(T ). The
abbreviation H := limT→∞H(T )/T is used for the corresponding limits. The definition of
∆ also depends on the regime; it is defined in (21), (28), (30), and (31) for the cases A,
B, C, and D, respectively. Notice that the dependence on ∆ is suppressed in the notation
IT
k (u) = [t∗u + kT∆(u)/u, t∗u + (k + 1)T∆(u)/u]. It is convenient to define tTk (u) and t

T
k (u)

as the left and right end of IT
k (u) respectively. In the proofs of the upper and lower bounds,

we write

C :=
1

2

d2

dt2
(1 + t)2

t2H/β

∣

∣

∣

∣

t=t∗
= (t∗)−2H/β−1. (32)

We start with an auxiliary lemma, which shows that it suffices to focus on local behavior
near t∗u. This observation is important since the lemmas of the previous section only yield
local uniformity (note that IT

k (u) ⊂ [t∗u ± δ(u)/u] and δ(u) = o(u)).

Lemma 7 Suppose that S1–S4, and M1–M4 hold for some β > H. Let δ be such that
δ(u) = o(u) and σ(µ(u)) = o(δ(u)). Then we have

P

(

sup
t 6∈[t∗u±δ(u)/u]

Yµ(ut)

1 + t
> u

)

= o

(

σ(µ(u))

∆(u)
Ψ

(

inf
t≥0

u(1 + t)

σ(µ(ut))

))

. (33)

Proof. The proof consists of three parts: we show that the intervals [0, ω], [ω, T ]\[t∗u±δ(u)/u]
and [T,∞] play no role in the asymptotics, where ω, T > 0 are chosen appropriately.

We start with the interval [T,∞). If T is chosen as in S4, this interval is asymptotically
negligible by assumption.

As for the remaining intervals, by S4 we can find some ε, C ∈ (0,∞), γ ∈ (0, 2] such that
for each s, t ∈ [0, (1 + ε)T 1/β]

Var (Yus − Yut) ≤ Cσ2(u)|s− t|γ, (34)

where u is large. Starting with [0, ω], we select ω so that for large u,

sup
t∈[0,ω]

σ(µ(ut))

1 + t
≤ 1

2

σ(µ(ut∗u))

1 + t∗u
. (35)
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The main argument is Borell’s inequality, but we first have to make sure that it can be
applied. For a > 0, there exists constants cγ, C independent of u and a such that for large
u, {M2}

P

(

sup
t∈[0,ω]

Yµ(ut)

σ(µ(u))(1 + t)
> a

)

≤ P









sup

t∈
»

0,
“

µ(uω)
µ(u)

”β
–

Yµ(u)t1/β

σ(µ(u))
> a









≤ P

(

sup
t∈[0,2ω]

Yµ(u)t1/β

σ(µ(u))
> a

)

≤ 4 exp

(

−cγa2

C

)

,

where the last inequality follows from (34) and Fernique’s lemma [28, p. 219] as γ ∈ (0, 2].
By choosing a sufficiently large, we have by Borell’s inequality (e.g., Theorem D.1 of [34])

P

(

sup
t∈[0,ω]

Yµ(ut)

1 + t
> u

)

≤ 2Ψ





1− aσ(µ(u))/u

supt∈[0,ω]
σ(µ(ut))
u(1+t)



 .

Since (35) holds, there exist constants K1,K2 <∞ such that

P

(

sup
t∈[0,ω]

Yµ(ut)

1 + t
> u

)

≤ K1 exp

(

−2
u2(1 + t∗u)2

σ2(µ(ut∗u))
+K2

u(1 + t∗u)

σ(µ(ut∗u))

)

.

This shows that the interval [0, ω] is asymptotically negligible in the sense of (33).
We next consider the contribution of the set [ω, T ]\[t∗u ± δ(u)/u] to the asymptotics.

Define

σ(u) = sup
t∈[ω,T ]\[t∗u±δ(u)/u]

σ(µ(ut))

1 + t
= max

(

σ(µ(ut∗u − δ(u)))

1 + t∗u − δ(u)/u
,
σ(µ(ut∗u + δ(u)))

1 + t∗u + δ(u)/u

)

,

where the last equality holds for large u. Now observe that by the UCT {M1}, for large u,

P

(

sup
t∈[ω,T ]\[t∗u±δ(u)/u]

Yµ(ut)

1 + t
> u

)

≤ P

(

sup
t∈[ω,T ]\[t∗u±δ(u)/u]

Yµ(ut)

σ(µ(ut))
>

u

σ(u)

)

≤ P



 sup
t∈[ω1/β/2,2T 1/β]

Yµ(u)t

σ(µ(u)t)
>

u

σ(u)



 .

In order to bound this quantity further, we use (34) and the inequality 2ab ≤ a2 + b2: for
s, t ∈

[

ω1/β/2, 2T 1/β
]

, {M2}

Var

(

Yµ(u)s

σ(µ(u)s)
−

Yµ(u)t

σ(µ(u)t)

)

≤
Var

(

Yµ(u)s − Yµ(u)t

)

σ(µ(u)s)σ(µ(u)t)

≤ sup
v∈[ω1/β/2,2T 1/β]

Var
(

Yµ(u)s − Yµ(u)t

)

σ2(µ(u)v)

≤ 21+2Hω−2H/β

σ2(µ(u))
Var

(

Yµ(u)s − Yµ(u)t

)

≤ K′|s− t|γ,
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where K′ < ∞ is some constant (depending on ω and T ). Hence, by Theorem D.4 of
Piterbarg [34] there exists a constant K′′ depending only on K′ and γ such that

P

(

sup
t∈[ω,T ]\[t∗u±δ(u)/u]

Yµ(ut)

1 + t
> u

)

≤ TK′′
(

u

σ(u)

)2/γ

Ψ

(

u

σ(u)

)

.

Consider the expression

u2

(

(1 + t∗u + δ(u)/u)2

σ2(µ(ut∗u + δ(u)))
− (1 + t∗u)2

σ2(µ(ut∗u))

)/

C
[

δ(u)

σ(µ(u))

]2

, (36)

where C is given by (32). By Taylor’s Mean Value Theorem {S3, M4}, there exists some
t# = t#(u) ∈ [t∗u, t∗u + δ(u)/u] such that this expression equals

1

2
δ2(u)

d2

dt2
(1 + t)2

σ2(µ(ut))

∣

∣

∣

∣

t=t#

/

C
[

δ(u)

σ(µ(u))

]2

.

Recall that σ2(µ(·)) is regularly varying with index 2H/β > 0, and that (under the present
conditions) both its first and second derivative are regularly varying with respective indices
2H/β − 1 and 2H/β − 2. The UCT now yields

lim
u→∞

σ2(µ(u))

2

d2

dt2
(1 + t)2

σ2(µ(ut))

∣

∣

∣

∣

t=t#

= C.

Since σ(µ(u)) = o(δ(u)), the expression in (36) converges to one as u→∞. Hence, we have

Ψ
(

u
σ(u)

)

Ψ
(

u(1+t∗u)
σ(µ(ut∗u))

) = exp

(

−1

2
C δ2(u)

σ2(µ(u))
(1 + o(1))

)

(1 + o(1)),

showing that the interval [ω, T ]\[t∗u ± δ(u)/u] plays no role in the asymptotics. �

We can now prove the upper bounds. In the proof, it is essential that σ(µ(u))/∆(u)→∞
in all four cases. To see that this holds, note that this function is regularly varying with
index (1 −H/β)(1/ιτ − 1) > 0 in case A and B (use ιν = (1 −H/β)/ιτ in the latter case).
In case C, the index of variation is

H

β
+ ιν − 1 +

1− ιτ ιν −H/β

ι̃τ
>

(

1− ιτ ιν −
H

β

)(

1

ι̃τ
− 1

)

> 0.

Finally, it is regularly varying with index (1−H/β)(1/ι̃τ − 1) > 0 in case D.
The upper bounds are formulated in the following proposition.

Proposition 4 Let µ and σ satisfy assumptions M1–M4 and S1–S4 for some β > H.
Moreover, let case A, B, C, or D apply. We then have

lim sup
u→∞

P
(

supt≥0 Yµ(t) − t > u
)

σ(µ(u))
∆(u) Ψ

(

inft≥0
u(1+t)

σ(µ(ut))

) ≤ H
√

2π

C .

Proof. Select some δ such that δ(u) = o(u), σ(µ(u)) = o(δ(u)), ∆(u) = o(δ(u)), and
u = o(δ(u)ν(u)). While the specific choice is irrelevant, it is left to the reader that such δ
exists in each of the four cases. In view of Lemma 7, we need to show that

lim sup
u→∞

P
(

supt∈[t∗u±δ(u)/u]
Yµ(ut)

1+t > u
)

σ(µ(u))
∆(u) Ψ

(

u(1+t∗u)
σ(µ(ut∗u))

) ≤ H
√

2π

C . (37)
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For this, notice that by definition of t∗u and continuity of σ and µ, for large u,

P

(

sup
t∈[t∗u±δ(u)/u]

Yµ(ut)

1 + t
> u

)

≤
∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

P

(

sup
t∈IT

k (u)

Yµ(ut)

1 + t
> u

)

≤
∑

0≤k≤ δ(u)
T∆(u)

P

(

sup
t∈IT

k (u)

Yµ(ut)

σ(µ(ut))
>

u(1 + tTk (u))

σ(µ(utTk (u)))

)

+
∑

− δ(u)
T∆(u)

≤k<0

P

(

sup
t∈IT

k (u)

Yµ(ut)

σ(µ(ut))
>

u(1 + t
T
k (u))

σ(µ(ut
T
k (u)))

)

. (38)

By Lemmas 3–6, the UCT, and (7), as u→∞,

∆(u)

σ(µ(u))

∑

0≤k≤ δ(u)
T∆(u)

P

(

supt∈IT
k (u)

Yµ(ut)

σ(µ(ut)) > u(1+t
T
k (u))

σ(µ(ut
T
k (u)))

)

Ψ
(

u(1+t∗u)
σ(µ(ut∗u))

)

= H(T )
∆(u)

σ(µ(u))

∑

0≤k≤ δ(u)
T∆(u)









Ψ

(

u(1+t
T
k (u))

σ(µ(ut
T
k (u)))

)

Ψ
(

u(1+t∗u)
σ(µ(ut∗u))

) (1 + o(1))









= H(T )
∆(u)

σ(µ(u))

∑

0≤k≤ δ(u)
T∆(u)









exp

(

−1
2

u2(1+t
T
k (u))2

σ2(µ(ut
T
k (u)))

)

exp
(

−1
2

u2(1+t∗u)2

σ2(µ(ut∗u))

) (1 + o(1))









. (39)

As in the proof of Lemma 7, one can show that, uniformly in k by the UCT,

u2

(

(1 + t
T
k (u))2

σ2(µ(ut
T
k (u)))

− (1 + t∗u)2

σ2(µ(ut∗u))

)/

C
[

(k + 1)T∆(u)

σ(µ(u))

]2

→ 0,

where C is given in (32). Hence, (39) can be written as

H(T )

T

T∆(u)

σ(µ(u))

∑

0≤k≤ δ(u)
T∆(u)

[

exp

(

−1

2
C [(k + 1)T∆(u)]2

σ2(µ(u))
(1 + o(1))

)

(1 + o(1))

]

.

By Lemmas 3–6, the fact that σ(µ(u)) = o(u), and the dominated convergence theorem, this
tends to

H(T )

T

∫ ∞

0
exp

(

−1

2
Cx2

)

dx =
H(T )

T

√

π/2

C .

The second term in (38) is bounded from above similarly. Hence, we have shown that
for any T > 0,

lim sup
u→∞

∆(u)

σ(µ(u))

P
(

supt∈[t∗u+δ(u)/u]
Yµ(ut)

1+t > u
)

Ψ
(

u(1+t∗u)
σ(µ(ut∗u))

) ≤ H(T )

T

√

2π

C .

The claim is obtained by letting T →∞. �
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7 Lower bounds

In this section, we prove the lower bound part of Theorem 1 using an appropriate modification
of the corresponding argument in the double sum method. For notational conventions, see
Section 6.

Proposition 5 Let µ and σ satisfy assumptions M1–M4 and S1–S4 for some β > H.
Moreover, let case A, B, C, or D apply. We then have

lim inf
u→∞

P
(

supt≥0 Yµ(t) − t > u
)

σ(µ(u))
∆(u) Ψ

(

inft≥0
u(1+t)

σ(µ(ut))

) ≥ H
√

2π

C .

The proof of this proposition requires some auxiliary observations, resulting in a bound
on probabilities involving the supremum on a two-dimensional field. The first step in es-
tablishing those bounds is to study the variances; it is therefore convenient to introduce the
notation

σ2
k,`(u) := inf

(s,t)∈IT
k (u)×IT

` (u)
Var

(

Yµ(us)

σ(µ(us))
−

Yµ(ut)

σ(µ(ut))

)

and

σ2
k,`(u) := sup

(s,t)∈IT
k (u)×IT

` (u)

Var

(

Yµ(us)

σ(µ(us))
−

Yµ(ut)

σ(µ(ut))

)

.

Lemma 8 Suppose that one of the cases A, B, C, or D applies, and that both δ(u) = o(u)
and ∆(u) = o(δ(u)). Then there exist constants ζ ∈ (0, 2) and K ∈ (0,∞), independent of
T , such that for large T the following holds. Given ε > 0, there exists some u0 such that for
all u ≥ u0 and all − δ(u)

T∆(u) ≤ k, ` ≤ δ(u)
T∆(u) with |`− k| > 1,

σ2
k,`(u) ≥ (1− ε)3K

[

(

T (|k − `| − 1)

2

)ζ

− ε

]

σ2(µ(u))

u2
.

Moreover,
sup

− δ(u)
T∆(u)

≤k,`≤ δ(u)
T∆(u)

|k−`|>1

σ2
k,`(u)→ 0.

Proof. Let ε > 0 be given. By (3), the first claim is proven for case A, B, and C once it has

been shown that for large u, uniformly in α ∈
[

1, δ(u)
T∆(u)

]

,

inf
s,t∈[t∗u±δ(u)/u]

|s−t|≥αT∆(u)/u

τ2(|ν(us)− ν(ut)|)
τ2(ν(u))

≥ (1− ε)2
K
D

[

(

αT

2

)ζ

− ε

]

σ2(µ(u))

u2
,

since one can then set α = |k − `| − 1. By the Mean Value Theorem {N2} we have, for
certain t∧(u, s, t) ∈ [t∗u ± δ(u)/u],

inf
s,t∈[t∗u±δ(u)/u]

|s−t|≥αT∆(u)/u

τ2(|ν(us)− ν(ut)|)
τ2(ν(u))

= inf
s,t∈[t∗u±δ(u)/u]

|s−t|≥αT∆(u)/u

τ2(uν̇(ut∧(u, s, t))|s− t|)
τ2(ν(u))

≥ inf
s,t∈[t∗u±δ(u)/u]

|s−t|≥ 1
2
αT∆(u)/u

τ2(uν̇(ut∗)|s− t|)
τ2(ν(u))

≥ inf
t≥αT/2

τ2(ν̇(ut∗)∆(u)t)

τ2(ν(u))
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where the first inequality follows from the UCT {N1}; the details are left to the reader.
We investigate the lower bound in each of the three cases. In case A, ν̇(ut∗)∆(u) tends

to infinity. By the UCT and the definition of ∆, we have for any α ≥ 1

inf
t≥αT/2

τ2(ν̇(ut∗)∆(u)t)

τ2(ν(u))
≥ (1− ε)

τ2(ν̇(ut∗)∆(u))

τ2(ν(u))

[

(

αT

2

)2ιτ

− ε

]

≥ (1− ε)2
2

D(1 + t∗)2
σ2(µ(ut∗))

u2

[

(

αT

2

)2ιτ

− ε

]

.

Case C is similar, except that now ν̇(ut∗)∆(u) tends to zero (so that one can apply the UCT
as τ is continuous and regularly varying at zero):

inf
t≥αT/2

τ2(ν̇(ut∗)∆(u)t)

τ2(ν(u))
≥ (1− ε)2

2

D(1 + t∗)2
σ2(µ(ut∗))

u2

[

(

αT

2

)2ι̃τ

− ε

]

.

In case B, we note that σ(µ(u))τ(ν(u)) ∼ Gu implies that for small ζ > 0, there exists some
t0 such that for t ≥ t0, τ2(t) ≥ tζ . Therefore, for T large enough, since ν̇(ut∗)∆(u) = 1,
uniformly in α ≥ 1,

inf
t≥αT/2

τ2(ν̇(ut∗)∆(u)t)

τ2(ν(u))
≥ inf

t≥αT/2

tζ

τ2(ν(u))
=

(αT/2)ζ

τ2(ν(u))
≥ (1− ε)2

(

αT

2

)ζ 1

G2

σ2(µ(u))

u2
,

implying the stated.
We leave the proof of the assertion for case D to the reader; one then exploits the regular

variation of τ at zero and uses the definition of ∆.
To prove the second claim of the lemma in case A, B, and C, we use the Mean Value

Theorem and the UCT: {N1, N2}

sup
s,t∈[t∗u±δ(u)/u]

Var

(

Yµ(us)

σ(µ(us))
−

Yµ(ut)

σ(µ(ut))

)

∼ sup
s,t∈[t∗u±δ(u)/u]

Dτ2(|ν(us)− ν(ut)|)
τ2(ν(u))

≤ sup
s,t∈[t∗u±2δ(u)/u]

Dτ2(uν̇(ut∗)|s− t|)
τ2(ν(u))

= sup
t∈[0,2]

Dτ2(δ(u)ν̇(ut∗)t)
τ2(ν(u))

.

Since δ(u)ν̇(ut∗) tends to infinity by assumption, T1 implies that the latter expression is of
order τ 2(δ(u)ν̇(u))/τ 2(ν(u)). In particular, it tends to zero as u→∞.

We do not prove the claim for case D, since the same arguments apply. �

The two statements of Lemma 8 on the correlation structure are exploited in the next
lemma. Let κk,` be arbitrary functions of u which converge uniformly for − δ(u)

T∆(u) ≤ k, ` ≤
δ(u)

T∆(u) to 2(1 + t∗).

Lemma 9 Suppose that one of the cases A, B, C, or D applies, and that δ(u) = o(u). There
exist constants α,K′ <∞, independent of k, `, such that for large u, uniformly for k, ` with
|k − `| > 1,

P

(

sup
(s,t)∈IT

k (u)×IT
` (u)

Yµ(us)

σ(µ(us))
+

Yµ(ut)

σ(µ(ut))
>

uκk,`(u)

σ(µ(ut∗))

)

≤ K′TαΨ





uκk,`(u)
σ(µ(ut∗))

√

4− σ2
k,`(u)



 . (40)
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Proof. Define

Y ∗
(s,t)(u) :=

Yµ(us)

σ(µ(us)) +
Yµ(ut)

σ(µ(ut))
√

Var
(

Yµ(us)

σ(µ(us)) +
Yµ(ut)

σ(µ(ut))

)

, u∗
k,` =

uκk,`(u)
σ(µ(ut∗))

√

4− σ2
k,`(u)

so that the left hand side of (40) is majorized by

P

(

sup
(s,t)∈IT

k (u)×IT
` (u)

Y ∗
(s,t)(u) > u∗

k,`

)

. (41)

As a consequence of (the second claim in) Lemma 8, we have for large u

inf
k,`

inf
(s,t)∈IT

k (u)×IT
` (u)

Var

(

Yµ(us)

σ(µ(us))
+

Yµ(ut)

σ(µ(ut))

)

≥ 2.

The proof closely follows the reasoning on page 102 of Piterbarg [34]. In particular, for
(s, t), (s′, t′) ∈ IT

k (u)× IT
` (u), we have

Var
(

Y ∗
(s,t)(u)− Y ∗

(s′,t′)(u)
)

≤ 4Var

(

Yµ(us)

σ(µ(us))
−

Yµ(us′)

σ(µ(us′))

)

+ 4Var

(

Yµ(ut)

σ(µ(ut))
−

Yµ(ut′)

σ(µ(ut′))

)

. (42)

Define

υ(u) :=

{ √
2τ(ν(u))σ(µ(ut∗))

u(1+t∗) in case A, C and D;
1
2

√
2D in case B.

Now we have to distinguish between case D and the other cases. First we focus on the cases
A, B, and C; then one can use (3) to see that (42) is asymptotically at most

4
Dτ2(|ν(us)− ν(us′)|)

τ2(ν(u))
+ 4
Dτ2(|ν(ut)− ν(ut′)|)

τ2(ν(u))
. (43)

As shown in the proof Lemmas 3–5,

lim sup
u→∞

sup
− δ(u)

T∆(u)
≤k≤ δ(u)

T∆(u)

sup
(s,t)∈IT

k (u)

Dτ2(|ν(us)− ν(ut)|)
υ2(u)

(

u

∆(u)
(s− t)

)−2γ′

≤ 2Tα′
,

where α′ = 2(ιτ − γ′) in case A and B, and α′ = 2(ι̃τ − γ′) in case C. Therefore, we find the
following asymptotic upper bound for (43) and hence for (42):

8Tα′ υ2(u)

τ2(ν(u))

[

(

u

∆(u)
(s− s′)

)2γ′

+

(

u

∆(u)
(t− t′)

)2γ′]

. (44)

We now show that (44) is also an asymptotic upper bound in case D. For this, we note that
in this case (42) is asymptotically at most

4τ2

( |ν(us)− ν(us′)|
ν(u)

)

+ 4τ2

( |ν(ut)− ν(ut′)|
ν(u)

)

,

and the reader can check with the Mean Value Theorem and the UCT that (44) holds for
γ′ = ι̃τ/2 and α′ = ι̃τ (say).
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For any u, we now introduce two independent centered Gaussian stationary processes

ϑ
(u)
1 and ϑ

(u)
2 . These processes have unit variance and covariance function equal to

r
(u)
ϑ (t) := Cov

(

ϑ
(u)
i (t), ϑ

(u)
i (0)

)

= exp

(

−32
υ2(u)

τ2(ν(u))
t2γ′
)

.

Observe that υ2(u)/τ 2(ν(u))→ 0 in each of the four cases, so that for s, t, s′, t′ ∈ [0, T ] and
u large enough,

Var

(

1√
2

[

ϑ
(u)
1 (s) + ϑ

(u)
2 (t)− ϑ

(u)
1 (s′)− ϑ

(u)
2 (t′)

]

)

= 2− exp

(

−32
υ2(u)

τ2(ν(u))
|s− s′|2γ′

)

− exp

(

−32
υ2(u)

τ2(ν(u))
|t− t′|2γ′

)

≥ 16
υ2(u)

τ2(ν(u))
|s− s′|2γ′

+ 16
υ2(u)

τ2(ν(u))
|t− t′|2γ′

.

We now apply Slepian’s inequality (e.g., Theorem C.1 of [34]) to compare the suprema of

the two fields Y ∗ and 2−1/2
[

ϑ
(u)
1 + ϑ

(u)
2

]

: (41) is majorized for − δ(u)
T∆(u) ≤ k, ` ≤ δ(u)

T∆(u) by

P

(

sup
(s,t)∈[0,T ]2

1√
2

[

ϑ
(u)
1 (Tα′/(2γ′)s) + ϑ

(u)
2 (Tα′/(2γ′)t)

]

> u∗
k,`

)

= P

(

sup
(s,t)∈[0,T α′/(2γ′)+1]2

1√
2

[

ϑ
(u)
1 (s) + ϑ

(u)
2 (t)

]

> u∗
k,`

)

. (45)

Lemma 2 is used to investigate the asymptotics of this probability, yielding the desired
bound. For notational convenience, we set T ′ = Tα′/(2γ′)+1. Observe that the map

(α1, α2) 7→ [2− exp(−α1)− exp(−α2)]/[α1 + α2]− 1

is nonpositive and that the minimum over the set [0, θ]2 is achieved at (α1, α2) = (θ, θ).
Therefore,

sup
(s,t),(s′,t′)∈[0,T ′]2

∣

∣

∣

∣

∣

∣

2− r
(u)
ϑ (|s− s′|)− r

(u)
ϑ (|t− t′|)

32 υ2(u)
τ2(ν(u))

[|s− s′|2γ′ + |t− t′|2γ′]
− 1

∣

∣

∣

∣

∣

∣

= 1− 2− r
(u)
ϑ (T ′)− r

(u)
ϑ (T ′)

64 υ2(u)
τ2(ν(u))

(T ′)2γ′
,

which tends to zero if u→∞. Moreover, we have

sup
− δ(u)

T∆(u)
≤k,`≤ δ(u)

T∆(u)

∣

∣

∣

∣

∣

σ2(µ(ut∗))(u∗
k,`)

2

u2(1 + t∗)2
− 1

∣

∣

∣

∣

∣

→ 0.

To see that Lemma 2 can be applied, set gk,`(u) = u∗
k,`, and

θk,`(u, s, s′, t, t′) := 32(1 + t∗)2
u2υ2(u)

σ2(µ(ut∗))τ2(ν(u))

[

|s− s′|2γ′
+ |t− t′|2γ′

]

.

P1 obviously holds, and θk,`(u, s, s′, t, t′) tends to

2ξη(s, s
′, t, t′) :=







64
[

|s− s′|2γ′
+ |t− t′|2γ′

]

in case A, C, and D;

16(1+t∗)2

(t∗)2H/βG2

[

|s− s′|2γ′
+ |t− t′|2γ′

]

in case B,
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showing that P2 holds. As P3 is immediate, it remains to investigate whether P4 holds.
The reasoning in the proof of Lemma 3 shows that it suffices to show that

lim
ε→0

lim sup
u→∞

sup
k,`

sup
|s−s′|2γ′

+|t−t′|2γ′
<ε

θk,`(u, s, s′, t, t′) <∞,

which is trivial. Define for s, t ∈ [0, T ′],

η(s, t) := B1
γ′(s) + B2

γ′(t),

where B1
γ′ and B2

γ′ are independent fractional Brownian motions with Hurst parameter γ ′.
Then, the probability in (45) is asymptotically equivalent to






E exp
(

sup(s,t)∈[0,T ′]2 8η(s, t)− 32s2γ′ − 32t2γ′
)

Ψ(u∗
k,`) in case A, C, D;

E exp
(

sup(s,t)∈[0,T ′]2
4(1+t∗)
(t∗)H/βG η(s, t)− 8(1+t∗)2

(t∗)2H/βG2

[

s2γ′
+ t2γ′

])

Ψ(u∗
k,`) in case B.

By exploiting the self-similarity of fractional Brownian motion one can see that the expec-
tation equals (T ′)2K′ for some constant K′ <∞. �

Proof of Proposition 5. Note that

P

(

sup
t∈[t∗u±δ(u)/u]

Yµ(ut)

1 + t
> u

)

≥
∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

P

(

sup
t∈IT

k (u)

Yµ(ut)

1 + t
> u; sup

t∈[t∗u±δ(u)/u]\IT
k (u)

Yµ(ut)

1 + t
≤ u

)

=
∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

P

(

sup
t∈IT

k (u)

Yµ(ut)

1 + t
> u

)

−
∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

P

(

sup
t∈IT

k (u)

Yµ(ut)

1 + t
> u; sup

t∈[t∗u±δ(u)/u]\IT
k (u)

Yµ(ut)

1 + t
> u

)

. (46)

A similar reasoning as in the proof of Proposition 4 can be used to see that

lim
T→∞

lim inf
u→∞

∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

P
(

supt∈IT
k (u)

Yµ(ut)

1+t > u
)

σ(µ(u))
∆(u) Ψ

(

u(1+t∗u)
σ(µ(ut∗u))

) ≥ H
√

2π

C .

It remains to find an appropriate upper bound for the second term in (46). For this, observe
that

P

(

sup
t∈IT

k (u)

Yµ(ut)

1 + t
> u; sup

t∈[t∗u±δ(u)/u]\IT
k (u)

Yµ(ut)

1 + t
> u

)

≤ P






sup

t∈IT
k (u)

Yµ(ut)

1 + t
> u; sup

t∈
h

t∗u−
δ(u)

u
,tTk (u)−

√
T

∆(u)
u

”

∪
“

t
T
k (u)+

√
T

∆(u)
u

,t∗u+
δ(u)

u

i

Yµ(ut)

1 + t
> u







+P






sup

t∈
h

tTk (u)−
√

T
∆(u)

u
,tTk (u)

”

Yµ(ut)

1 + t
> u






+ P






sup

t∈
“

t
T
k (u),t

T
k (u)+

√
T

∆(u)
u

i

Yµ(ut)

1 + t
> u







=: p1(u, k, T ) + p2(u, k, T ) + p3(u, k, T ).
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One can apply the arguments that are detailed in the proof of Proposition 4 to infer that

lim sup
u→∞

∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

p2(u, k, T )

σ(µ(u))
∆(u) Ψ

(

u(1+t∗u)
σ(µ(ut∗u))

) ≤
H
(√

T
)

T

√

2π

C ,

which converges to zero as T →∞. The term p3(u, k, T ) is bounded from above similarly.
We now study

∑

k p1(u, k, T ) in more detail; for this we need the technical lemmas that
were established earlier. Observe that it is majorized by

∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

∑

− δ(u)
T∆(u)

≤`≤ δ(u)
T∆(u)

|k−`|>1

P

(

sup
t∈IT

k (u)

Yµ(ut)

1 + t
> u; sup

t∈IT
` (u)

Yµ(ut)

1 + t
> u

)

+
∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

P



 sup
t∈IT

k (u)

Yµ(ut)

1 + t
> u; sup

t∈[t
k
u+

√
T

∆(u)
u

,t
k
u+(T+

√
T )

∆(u)
u

]

Yµ(ut)

1 + t
> u





+
∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

P



 sup
t∈IT

k (u)

Yµ(ut)

1 + t
> u; sup

t∈[tku−(T+
√

T )
∆(u)

u
,tku−

√
T

∆(u)
u

]

Yµ(ut)

1 + t
> u





=: I(u, T ) + II(u, T ) + III(u, T ).

By symmetry, I(u, T ) is bounded from above by

2
∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

∑

− δ(u)
T∆(u)

≤`≤ δ(u)
T∆(u)

|k−`|>1,sup
t∈IT

k
(u)

σ(µ(ut))
1+t

≤sup
t∈IT

`
(u)

σ(µ(ut))
1+t

P

(

sup
t∈IT

k (u)

Yµ(ut)

1 + t
> u; sup

t∈IT
` (u)

Yµ(ut)

1 + t
> u

)

.

Each of the summands cannot exceed

P

(

sup
(s,t)∈IT

k (u)×IT
` (u)

Yµ(us)

σ(µ(us))
+

Yµ(ut)

σ(µ(ut))
> inf

t∈IT
k (u)

2u(1 + t)

σ(µ(ut))

)

,

and we are in the setting of Lemma 9. Hence, there exist constants K′, α such that I(u, T )
is majorized by

2K′Tα
∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

∑

− δ(u)
T∆(u)

≤`≤ δ(u)
T∆(u)

|k−`|>1

Ψ





inft∈IT
k (u)

2u(1+t)
σ(µ(ut))

√

4− σ2
k,`(u)



 , (47)

which is the ‘double sum’ in the double sum method. Since

−
inft∈IT

k (u)
u2(1+t)2

σ2(µ(ut))

1− 1
4σ2

k,`(u)
≤ −1

4
inf

t∈IT
k (u)

u2(1 + t)2

σ2(µ(ut))
σ2

k,`(u)− inf
t∈IT

k (u)

u2(1 + t)2

σ2(µ(ut))
,

the summand in (47) is bounded from above by

exp

(

−1

8
inf

t∈IT
k (u)

u2(1 + t)2

σ2(µ(ut))
σ2

k,`(u)

)

Ψ

(

inf
t∈IT

k (u)

u(1 + t)

σ(µ(ut))

)

(1 + o(1)),
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where the o(1) term is uniformly in k, ` as a consequence of the second claim of Lemma 8,
cf. Equation (7). By the first claim of Lemma 8 for ε = 1/2, say, and the UCT, there exist
constants K′′, ζ such that

∑

− δ(u)
T∆(u)

≤`≤ δ(u)
T∆(u)

|k−`|>1

exp

(

−1

8
inf

t∈IT
k (u)

u2(1 + t)2

σ2(µ(ut))
σ2

k,`(u)

)

≤
∑

− δ(u)
T∆(u)

≤`≤ δ(u)
T∆(u)

|k−`|>1

exp
(

−K′′
[

T ζ(|k − `| − 1)ζ − 2ζ−1
])

≤ 2eK
′′2ζ−1

∞
∑

j=1

exp
(

−K′′T ζjζ
)

≤ K′′′ exp
(

−T ζ
)

,

where K′′′ <∞ is some constant.
Therefore, (47) cannot be not larger than

2K′K′′′Tα exp
(

−T ζ
)

∑

− δ(u)
T∆(u)

≤k≤ δ(u)
T∆(u)

Ψ

(

inf
t∈IT

k (u)

u(1 + t)

σ(µ(ut))

)

(1 + o(1))

= 2

√

2π

C H(T )K′K′′′Tα exp
(

−T ζ
) σ(µ(u))

∆(u)
Ψ

(

u(1 + t∗u)

σ(µ(ut∗u))

)

(1 + o(1)),

where the last equality was shown in the proof of Proposition 4. Now first send u → ∞,
and then T →∞ to see that I(u, T ) plays no role in the asymptotics. One can also see that
II(u, T ) and III(u, T ) can be neglected, but one needs suitable analogs of Lemma 8 and
Lemma 9 to see this. Except that there is no summation over `, the arguments are exactly
the same as for I(u, T ). Since it is notationally more involved, we leave this to the reader.
�
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