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Abstract

We give three applications of the Pecherskii-Rogozin-Spitzer identity for Lévy processes:

• Phase-type upward jumps: we find the joint distribution of the supremum and the
epoch at which it is ‘attained’ if a Lévy process has phase-type upward jumps. We
also find the characteristics of the ladder process.

• Perturbed risk models: we establish general properties, and obtain explicit fluctuation
identities in case the Lévy process is spectrally positive.

• Asymptotics for Lévy processes: we study the tail distribution of the supremum under
different assumptions on the tail of the Lévy measure.

Key words: first factorization identity, Lévy processes, perturbed risk model, phase-type
jumps, ruin probability.

1 Introduction

Fluctuation theory analyzes quantities related to the extrema of a stochastic process. Examples
include the distribution of the supremum or infimum, the last (or first) time that the process
attains its extremum, first passage times, overshoots, and undershoots. The study of these
distributions is often motivated by applications in queueing theory, mathematical finance, or
insurance mathematics.

Of particular interest are the fluctuations of a Lévy process Z. Such a process has stationary
and independent increments, and is defined on the probability space of càdlàg functions with
the Borel σ-field generated by the usual Skorokhod topology. The characteristic function of Zt
has necessarily the form EeiβZt = e−tΨZ (β), β ∈ R, where

ΨZ(β) =
1

2
σ2
Zβ

2 + icZβ +

∫

R

(

1 − eiβz + iβz11(|z| ≤ 1)
)

ΠZ(dz),

for some σZ ≥ 0, cZ ∈ R and a so-called Lévy measure ΠZ on R\{0} satisfying
∫

(1 ∧
|z|2)ΠZ(dz) <∞. In particular, Z0 = 0. Z is called a compound Poisson process if cZ = σZ = 0
and ΠZ(R) <∞.

It is the objective of this paper to show how one specific technique, the so-called factor-
ization embedding, can be successfully used in a variety of applied probability models related
to the fluctuations of a Lévy process Z. We consider three applications of this embedding
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approach in the present work. All three applications have been studied in the literature with
other techniques; in order to illustrate the power of the method, we show that factorization
embeddings provide a simple way to extend the known results.

Factorization embeddings

The central object of this paper is a Lévy process Z. A factorization embedding is a process that
is determined by considering Z at (countably many) specific epochs. Before the embedding can
be defined, Z has to be written as the sum of an arbitrary one-dimensional Lévy processX and a
compound Poisson process Y with intensity λ, independent of X. Note that any discontinuous
Lévy process Z can be written in this form; this paper does not focus on continuous Lévy
processes (i.e., Brownian motions with drift), since their fluctuation theory is well-established.
The representation Z = X + Y need not be unique; for instance, there is a continuum of such
representations if the Lévy measure has a nonvanishing absolutely continuous part.

Before explaining the idea behind the embedding that we study, we first introduce some
notation. Write T1, T2, . . . for the jump epochs of Y , and set T0 = 0. Define the quantities Gi
and Si for i ≥ 1 as follows. ZTi−1

+ Si stands for the value of the supremum within [Ti−1, Ti),
and Ti−1 + Gi is the last epoch in this interval such that the value of Z at Ti−1 + Gi or
(Ti−1 + Gi)− is ZTi−1

+ Si. Although formally incorrect, we say in the remainder that the
supremum of Z over [Ti−1, Ti) is attained at Ti−1 +Gi, with value ZTi−1

+ Si.

In the first plot of Figure 1, a realization of Z is given. The jumps of Y are dotted
and those of X are dashed. The process Z is killed at an exponentially distributed random
time k independent of Z, say with parameter q ≥ 0 (q = 0 corresponds to no killing). The
second plot in Figure 1 is obtained from the first by replacing the trajectory of Z between
Ti−1 and Ti by a piecewise straight line consisting of two pieces: one from (Ti−1, ZTi−1

) to
(Ti−1 +Gi, ZTi−1

+ Si), and one from the latter point to (Ti, ZTi−). These two pieces together
have the shape of a ‘hat’. The crucial observation is that the embedded piecewise-linear process
still contains all information on key fluctuation quantities like the global supremum of Z and
the epoch at which it is attained for the last time.

The piecewise-linear process, however, has several useful properties. First, by the Markov
property, the ‘hats’ are mutually independent given their starting point. Moreover, obviously,
the jumps of Y are independent of the ‘hats’. More strikingly, the increasing and decreasing
pieces of each ‘hat’ are also independent; indeed, (Ti − Ti−1, ZTi− − ZTi−1

) = (Gi, Si) + (Ti −
Ti−1 −Gi, ZTi− −ZTi−1

− Si), where the two latter vectors are independent, cf. the Pecherskii-
Rogozin-Spitzer factorization for Lévy processes (Proposition 1 below). This explains the name
factorization embedding.

The second plot in Figure 1 can be generated without knowledge of the trajectory of Z.
Indeed, since {Ti : i ≥ 1} is a Poisson point process with intensity λ and killing at rate q,
it is equivalent (in law) to the first N points of a Poisson point process with intensity λ + q,
where N is geometrically distributed on Z+ with parameter λ/(λ+q) (independent of the point
process).

It is not a new idea to consider an embedded process for studying fluctuations of Lévy
processes. A classical example with q = 0 is when X is a negative drift (X(t) = ct for some
c < 0) and Y only has positive jumps. We then have that Gi = Si = 0 for every i and (Gi, Si)+
(Ti−Ti−1−Gi, ZTi−−ZTi−1

−Si) is distributed as (eλ, ceλ), where eλ denotes an exponentially
distributed random variable with parameter λ. Therefore, a random walk can be studied in
order to analyze the fluctuations of Z. To the author’s knowledge, nontrivial factorization
embeddings have only been used to obtain results in the space domain. We mention the work
of Kennedy [23] and Asmussen [2], who study certain Markov additive processes, and the work
of Mordecki [28], who studies supremum of a Lévy process with phase-type upward jumps

2



T1 T2 k

S1

S2

ZT1
+ S2

ZT2
+ S3

G1

T1 T2 k

Figure 1: A realization of the killed Lévy process Z = X+Y and the corresponding embedded
(piecewise-linear) process. Jumps of Y are dotted and jumps of X are dashed.
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and general downward jumps. Recently, a slightly different form of this embedding has been
used by Doney [16] to derive stochastic bounds on the Lévy processes Z. He defines X and Y
such that the supports of ΠX and ΠY are disjoint, and notices that {ZTi−1

+ Si} is a random
walk with a random starting point, so that it suffices to establish stochastic bounds on the
starting point. Doney then uses these to analyze the asymptotic behavior of Lévy processes
that converge to +∞ in probability. As an aside, we remark that the factorization embedding
is different from the embedding that has been used in [5, 30], where jumps are absorbed by
some random environment.

Outline and contribution of the paper; three applications

We now describe how this paper is organized, thereby introducing three problems that are
studied using factorization embeddings. All the results in this paper are new, with the only
exception of Proposition 1, Theorem 5 and the first claim in Theorem 7.

Section 2 is a preliminary section, in which background is given and the above idea is used
to express fluctuation quantities of Z in those of X.

Section 3 uses the above embedding idea to study the case where Z has phase-type upward
jumps and general downward jumps. Then, the Laplace exponent of the bivariate ladder
process κZ can be given; this is a quantity that lies at the heart of fluctuation theory for Lévy
processes, see Ch. VI of Bertoin [7]. In particular, we give the joint law of the supremum and
the epoch at which it is ‘attained’, generalizing Mordecki’s [28] results.

Section 4 studies perturbed risk models, a generalization of classical risk models that has
drawn much attention in the literature. We prove a general Pollaczek-Khinchine formula in this
framework, but explicit results can only be obtained under further assumptions. Therefore, we
impose spectral positivity of the Lévy process underlying the risk model, and extend the recent
results of Huzak et al. [20] in the following sense. While [20] focuses on quantities related to
so-called modified ladder heights, we obtain joint distributions related to both modified ladder
epochs and modified ladder heights. In particular, we obtain the (transform of the) distribution
of the first modified ladder epoch.

Section 5 studies the tail of the supremum of Z under three different assumptions on the
Lévy measure. We reproduce known results in the Cramér case and the subexponential case,
but also give a local variant in the latter case, which is new. Our results for the intermediate
case are also new, and complement recent work of Klüppelberg et al. [24].

The above collection of three applications may seem fairly random. This is indeed the case
in the sense that the use of factorization embeddings is not limited to the aforementioned three
applications. For instance, Dȩbicki et al. [14] apply similar ideas to investigate Lévy-driven
fluid-queue networks.

After finishing this paper, we learned about the work of Pistorius [30], and there is some
overlap between his work and Section 3 in the special case K = 1. In [30], the Laplace exponent
κZ of the ladder process is characterized in terms of the solutions of the equation ΨZ(β) = q.
Our approach is different, since we express κZ(q, β) in terms of a vector α

q
+, for which we give

an efficient algorithm.

2 On factorization identities

In this section, we consider the process Z = X+Y , where Y is a compound Poisson process and
X is a general Lévy process, independent of Y . After giving some background in Section 2.1,
we study the supremum and infimum of Z and the epoch at which they are attained for the
first (last) time in Section 2.2. We express their joint distribution in terms of the correspond-
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ing distribution of X. Moreover, the characteristics of the bivariate ladder process of Z are
expressed in those of X.

2.1 Background

We start with some notation. Given a Lévy process X, we define

X t = sup{Xs : 0 ≤ s ≤ t}, Xt = inf{Xs : 0 ≤ s ≤ t}

F
X
t = inf{s < t : Xs = Xt orXs− = Xt}, G

X
t = sup{s < t : Xs = Xt orXs− = Xt}

FXt = inf{s < t : Xs = Xt orXs− = Xt}, GXt = sup{s < t : Xs = Xt orXs− = Xt}.

The following identity, referred to as the Pecherskii-Rogozin-Spitzer (PRS) identity in the
remainder, is key to the results in this paper. Here and throughout, eq denotes an exponentially
distributed random variable with parameter q, independent of X and Y . For an account of the
history of this identity, we refer to Bertoin [7].

Proposition 1 (Pecherskii-Rogozin-Spitzer) We have for α ≥ 0, β ∈ R, and q > 0,

Ee−αeq+iβXeq = Ee−αG
X
eq

+iβXeq Ee
−αFX

eq
+iβXeq = Ee−αF

X
eq

+iβXeq Ee
−αGX

eq
+iβXeq .

The second equality follows from the first by considering the dual process X̂ = −X. The
PRS identity is sometimes referred to as the first factorization identity. It can be viewed as a
decomposition of (eq,Xeq) as as sum of two independent vectors, since (FXeq

,Xeq
) is distributed

as (eq −G
X
eq
,Xeq −Xeq).

In order to relate the PRS factors of Z and X, we need an auxiliary random walk. We write
λ ∈ (0,∞) for the intensity of Y , and ξ for its generic jump. For fixed q > 0, let {Sqn} be a
random walk with step-size distribution ξ+Xeλ+q

, where the two summands are independent.
For this random walk, we define the first strict ascending (descending) ladder epoch τ qs± as

τ qs+ = inf {n ≥ 1 : Sqn > 0} , τ qs− = inf {n ≥ 1 : Sqn < 0} ,

and τ qw± is defined similarly with a weak inequality. We write Hq
w± (Hq

s±) for the ladder height
Sq
τq
w±

(Sq
τq
s±

).

When integrating with respect to defective distributions, we only carry out the integration
over the set where the random variables are both finite and well-defined. For instance, we

write Ee−βH
q
s+ρτ

q
s+ for E

[

e−βH
q
s+ρτ

q
s+ ; τ qs+ <∞

]

in the remainder of this paper, unless indicated

otherwise.

2.2 The PRS factorization and ladder characteristics

The main result of this section, which we now formulate, relates the PRS factors of Z and X.
When a specific structure is imposed on X and Y , both factors can be computed; see Section 3.
Intuitively, a PRS factor of Z is the product of a PRS factor of X and a random-walk PRS
factor. The main complication is that the random walk is converted to a continuous-time
process by ‘stretching’ time, but that this stretching is not done independently of the step size.
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Theorem 1 Suppose that Z can be written as Z = X + Y for independent X and Y , where
Y is a compound Poisson process. For every α, β ≥ 0, q > 0, we have

Ee−αG
Z
eq

−βZeq = Ee
−αG

X
eλ+q

−βXeλ+q

1 − E

(

λ
λ+q

)τq
w+

1 − Ee−βH
q+α
w+

(

λ
λ+q+α

)τq+α
w+

,

Ee−αF
Z
eq

−βZeq = Ee
−αF

X
eλ+q

−βXeλ+q

1 − E

(

λ
λ+q

)τq
s+

1 − Ee−βH
q+α
s+

(

λ
λ+q+α

)τq+α
s+

,

and Ee
−αFZ

eq
+iβZeq , Ee

−αGZ
eq

+iβZeq follow by duality.

Proof. We only prove the first equality; the argument is easily adapted to obtain the second.
The first factor is a direct consequence of the independence of the first straight line in the

second plot of Figure 1 and the other pieces; see the remarks accompanying Figure 1. Writing
for i ≥ 1, wi = Ti−1 + Gi − G1 and Wi = ZTi−1+Gi

− S1, these arguments also yield that

{Wi : i ≥ 1} is a random walk with the same distribution as {Sqn : n ≥ 0}, except for the killing
in every step with probability λ/(λ + q). Therefore, if we define the first (weak) ascending
ladder epoch of this random walk

N = inf{i ≥ 1 : Wi ≥ 0},

we have

P(N <∞) = E

(

λ

λ+ q

)τq
w+

.

Observe that (G
Z
eq

− G1, Zeq − S1) has the same distribution as
∑K

j=1(w
j
N ,W

j
N ), where K is

geometrically distributed on Z+ with parameter P(N < ∞), and (wjN ,W
j
N ) are independent

copies of (wN ,WN ), also independent of K. Note that we consider the weak ladder epoch in

the definition of N , since we are interested in G
Z
eq

(as opposed to F
Z
eq

). This shows that

Ee
−α

“

G
Z
eq

−G1

”

+iβ(Zeq−S1) =
1 − E

(

λ
λ+q

)τq
w+

1 − E

(

λ
λ+q

)N
e−αwN+iβWN

,

and it remains to study the denominator in more detail.
For this, we rely on Section I.1.12 of Prabhu [31]. The key observation is that {(wi,Wi)}

is a random walk in the half-plane R+ × R, with step-size distribution characterized by

Ee−αw1+iβW1 = Ee−αeλ+q+iβXeλ+q Eeiβξ.

Theorem 27 of [31], which is a Wiener-Hopf factorization for random walks on the half-plane,
shows that we may write for |z| < 1 and α ≥ 0, β ∈ R,

1 − zEe−αeλ+q+iβXeλ+q Eeiβξ =
[

1 − EzNe−αwN+iβWN

] [

1 − EzN̄e−αwN̄+iβWN̄

]

,

where the bars refer to (strict) descending ladder variables. The actual definitions of these
quantities are of minor importance to us; the crucial point is that this factorization is unique.
Indeed, an alternative characterization is obtained by conditioning on the value of eλ+q:

1 − zEe−αeλ+q+iβXeλ+q Eeiβξ = 1 −
(λ+ q)z

λ+ q + α
EeiβXeλ+q+α Eeiβξ,
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and the Wiener-Hopf factorization for random walks shows that this can be written as

[

1 − E

(

(λ+ q)z

λ+ q + α

)τq+α
s+

eiβH
q+α
s+

][

1 − E

(

(λ+ q)z

λ+ q + α

)τq+α
w−

eiβH
q+α
w−

]

. (1)

This decomposition is again unique, so that the claim follows by substituting z = λ/(λ+ q). �

If α = 0, we must have Ee−αG
Z
eq

−βZeq = Ee−αF
Z
eq

−βZeq , but the formulas in Theorem 1
differ in the sense of weak and strict ladder variables. This is not a contradiction, as Spitzer’s
identity shows that the fractions are equal for both τ qw+ and τ qs+.

Let us now verify that the formulas of Theorem 1 are in accordance with the PRS factor-
ization of Proposition 1. Indeed, with the Wiener-Hopf factorization for random walks (1) and

Theorem 1 (the transform Ee
−αFZ

eq
+iβZeq is obtained by duality), we have

Ee−αG
Z
eq

+iβZeq Ee
−αFZ

eq
+iβZeq = Ee

−αeλ+q+iβXeλ+q

1 − λ
λ+q

1 − λ
λ+q+αEeiβXeλ+q+α Eeiβξ

.

By conditioning on the value of eλ+q in the first factor, it is readily seen that this equals

q
λ+q+α

Ee
iβXeλ+q+α

− λEeiβξ
=

q

λ+ q + α+ ΨX(β) − λEeiβξ
= Ee−αeq+iβZeq ,

as desired.

Given Theorem 1, one can easily deduce the characteristics of the ladder height process of
Z in terms of those of X; as the notions are standard, we refer to p. 157 of Bertoin [7] for
definitions. The importance of this two-dimensional subordinator has recently been illustrated
by Doney and Kyprianou [17].

The dual processes of Z and X are defined by Ẑ = −Z and X̂ = −X respectively.

Corollary 1 Under the assumptions of Theorem 1, we have for α, β ≥ 0,

κZ(α, β) = κX(λ+ α, β)

(

1 − Ee−βH
α
s+

(

λ

λ+ α

)τα
s+

)

,

and

κ̂Z(α, β) = kκ̂X(λ+ α, β)

(

1 − EeβH
α
w−

(

λ

λ+ α

)τα
w−

)

= k
α+ ΨZ(−iβ)

κX(λ+ α,−β)

[

1 − EeβH
α
s+

(

λ
λ+α

)τα
s+

] ,

where k is some meaningless constant.

Proof. It suffices to note that κZ(α,−iβ)κ̂Z (α, iβ) = k(α + ΨZ(β)) by the Wiener-Hopf
factorization for random walks, and to continue κ̂Z analytically. �
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3 Fluctuation theory with phase-type upward jumps

In this section, we use the results of the previous section to study Lévy processes with so-called

phase-type upward jumps and general downward jumps. According to these results, (G
Z
eq
, Zeq)

can be written as the sum of (G
X
eλ+q

,Xeλ+q
) and an (independent) random walk term. In

this section, we choose X and Y appropriately, so that the transforms of both vectors can be
computed explicitly. For this, we let X be an arbitrary spectrally negative Lévy process, and
we let Y be a compound Poisson process (not necessarily a subordinator), independent of X,
for which the upward jumps have a phase-type distribution. Recall that Z = X + Y .

Several applications motivate the investigation of fluctuations for Lévy processes with two-
sided jumps, e.g., with phase-type jumps in one direction. Focussing on its applications
to options pricing, these processes have recently been studied by Asmussen et al. [5] and
Mordecki [28]; see also Kou and Wang [26]. The results are also relevant in the context of
queues and risk processes; see Boucherie et al. [10] for a detailed discussion.

The exact form of the Lévy measure of Y , which facilitates the analysis, is specified in
(2) below. Importantly, the upward jumps of Y have a phase-type distribution. Recall that
a phase-type distribution is the absorption time of a Markov process on a finite state space
E. Its intensity matrix is determined by the |E| × |E|-matrix T , and its initial distribution
is denoted by α. For more details on phase-type distributions, we refer to Asmussen [4]. We
write t = −T1, where 1 is the vector with ones. Apart from their computational convenience,
the most important property of phase-type distributions is that they are dense, in the sense
of weak convergence, within the class of probability measures (although many phases may be
needed to approximate a stable distribution, for instance).

As a consequence of this fact, an arbitrary Lévy process can be written as the limit of
a sequence of Lévy processes with phase-type jumps (in the Skorokhod topology on D(R+);
see, e.g., [22, Ch. VI] for definitions). Both Asmussen et al. [5] and Mordecki [28] obtain
expressions for the Laplace transform of Zeq if Y is a compound Poisson process with only
positive (phase-type) jumps.

While the class of processes that we analyze here is slightly more general, the main difference

is that we calculate the Laplace transform of the joint distribution (G
Z
eq
, Zeq); see Section 3. In

particular, if a Lévy process Z has phase-type upward jumps, one can characterize the distri-
bution of the epoch at which the supremum is attained; the latter is perhaps more surprising
than that one can find the distribution of Zeq . This illustrates why Theorem 1 is interesting.

To the author’s knowledge, the results in this section cover any Lévy process for which this
joint distribution is known. The only case for which results are available but not covered here
is when Z is a stable Lévy process, for which the Laplace transform of the (marginal) law of
Zeq has been derived by C. C. Heyde, extending earlier work of D. A. Darling; see Doney [15]
for references and further details.

The PRS factorization

We begin with a detailed description of the process Y . Given K ∈ N, suppose that we have
nonnegative random variables {Aj : j = 1, . . . ,K} and {Bj : j = 1, . . . ,K}, where the distri-
bution PBj

of Bj is phase-type with representation (Ej ,αj ,Tj). The distribution P−Aj
of −Aj

is general; the only restriction we impose is that P−Aj
∗ PBj

({0}) = 0 for all j, i.e., Aj and Bj
do not both have an atom at zero. Here ∗ denotes convolution. We assume that the process Y
is a compound Poisson process with Lévy measure given by

ΠY = λ

K
∑

j=1

πjPBj
∗ P−Aj

, (2)
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where λ ∈ (0,∞), 0 ≤ πj ≤ 1 with
∑

πj = 1. In queueing theory (see, e.g., [4]), processes
of this form arise naturally, and the B can be interpreted as the service times and the A as
interarrival times. Notice that Y is a subordinator if and only if ΠY can be written as (2) with
K = 1 and A1 ≡ 0.

Without loss of generality, we may assume that Ej and Tj do not depend on j. Indeed, if

Ej has mj elements, one can construct an E with
∑K

j=1mj elements and T can then be chosen
as a block diagonal matrix with the matrices T1, . . . ,TK on its diagonal. The vectors αj are
then padded with zeros, so that they consist of K parts of lengths m1, . . . ,mK , and only the
j-th part is nonzero.

Fix some q > 0; our first aim is to study the random walk {Sqn} introduced in Section 2.1,
with generic step-size distribution (by the PRS factorization)

PSq
1

= PXeλ+q
∗ PXeλ+q

∗ Pξ,

where Pξ = ΠY /λ. We exclude the case where Z is monotonic, so that PSq
1

always assigns
strictly positive probability to R+. In that case, there is no distinction between weak and
strict ascending ladder heights, and we therefore write τ q+ for τ qw+ = τ qs+ throughout this
section.

Since Xeλ+q
is either degenerate or exponentially distributed, the law of Sq1 can be written

as
∑

πjPB′
j(q)

∗PA′
j(q)

, where B′
j(q) has again a phase-type distribution, say with representation

(E′
q,α

′
j(q),T

′
q). It is not hard to express this triple in terms of the original triple (E,αj ,T ):

(E′
q,α

′
j(q),T

′
q) = (E,αj ,T ) if X is a negative subordinator, and otherwise E′

q can be chosen
such that |E′

q| = |E| + 1, and the dynamics of the underlying Markov chain are unchanged,
except for the fact that an additional state is visited before absorption. We set t

′
q = −T

′
q1.

Motivated by Theorem 1, the following lemma calculates the transform of the ladder vari-
ables (Hq

+, τ
q
+); recall that the random variables are only integrated over the subset {τ q+ <∞}

of the probability space.

Lemma 1 Let ρ ∈ (0, 1) and β ≥ 0. Then there exists some vector α
ρ,q
+ such that

Eρτ
q
+e−βH

q
+ = α

ρ,q
+ (βI − T

′
q)

−1
t
′
q.

Proof. The proof is similar to the proofs of Lemma VIII.5.1 and Proposition VIII.5.11 of
Asmussen [4]; the details are left to the reader. �

The above lemma shows that it is of interest to be able to calculate α
ρ,q
+ . Therefore,

we generalize Theorem VIII.5.12 in [4] to the present setting. We omit a proof, as similar
arguments apply; the only difference is that we allow for K > 1 and that the random walk can
be killed in every step with probability ρ.

Proposition 2 α
ρ,q
+ satisfies α

ρ,q
+ = ξ(αρ,q

+ ), where

ξ(αρ,q
+ ) = ρ

K
∑

j=1

πjα
′
j(q)

∫ ∞

0
e(T

′
q+t

′
qα

ρ,q
+

)yA′
j(q)(dy).

It can be computed as limn→∞ α
ρ,q
+ (n), where α

ρ,q
+ (0) = 0 and α

ρ,q
+ (n) = ξ(αρ,q

+ (n − 1)) for
n ≥ 1.

The main result of this section follows by combining Theorem 1 with Lemma 1 and standard
fluctuation identities, see for instance [7, Thm. VII.4]. If ΦX(0) is the largest root of the
equation ψX(β) = 0, where ψX(β) = −ΨX(−iβ), then we write ΦX : R+ → [ΦX(0),∞) for the
inverse of the increasing function ψ : [ΦX(0),∞) → R+.

Since Theorem 1 directly applies if X is monotonic, this scenario is excluded to focus on

the most interesting case. For notational convenience, we write α
q
+ for α

q/(λ+q),q
+ .
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Theorem 2 Suppose that neither X nor Z are monotonic. Then we have for α, β ≥ 0,

Ee−αG
Z
eq

−βZeq =
ΦX(λ+ q)

[

1 − α
q
+1
]

[ΦX(λ+ q + α) + β]
[

1 − α
q+α
+ (βI − T

′
q+α)

−1t′q+α

]

and

Ee
−αF

Z
eq

+βZeq =
q [ΦX(λ+ q + α) − β]

[

1 + α
q+α
+ (βI + T

′
q+α)

−1
t
′
q+α

]

[q + α+ ΨZ(−iβ)] ΦX(λ+ q)
[

1 − α
q
+1
] .

While Theorem 2 is an immediate consequence of Theorem 1, we now formulate the corre-
sponding analog of Corollary 1. Note that the expression for κZ(0, β) is already visible in the
work of Mordecki [28]; here, we obtain a full description of κZ .

Corollary 2 Under the assumptions of Theorem 2, we have for α, β ≥ 0,

κZ(α, β) = [ΦX(λ+ α) + β]
[

1 − α
α
+(βI − T

′
α)

−1
t
′
α

]

,

and

κ̂Z(α, β) = k
α+ ΨZ(−iβ)

[ΦX(λ+ α) − β]
[

1 + αα
+(βI + T ′

α)
−1t′α

] ,

where k is a meaningless constant.

4 Perturbed risk models

Let X be an arbitrary Lévy process and Y be a compound Poisson process with intensity λ and
generic (say, integrable) positive jump ξ. In this section, we investigate the sum Z = X + Y ,
where the Lévy process Z drifts to −∞. Classical risk theory studies the supremum of Z in
case X is a negative drift, i.e., Xt = −ct for some c > λEξ. Then, its distribution is given by
the Pollaczek-Khinchine formula. In this analysis, a key role is played by ladder epochs and
heights, i.e., quantities related to the event that Z reaches a new record.

This section investigates the more general case where X is an arbitrary Lévy process. In
the literature, Z is then known as a perturbed risk process; see [19, 20, 32, 33] and references
therein. To analyze this model, the classical ladder epochs and heights are replaced by so-called
modified ladder epochs and heights; these are related to the event that Z reaches a new record
as a result of a jump of Y .

More precisely, we define the modified ladder epoch χ as the first time when a new supremum
is reached by a jump of Y , i.e.,

χ = inf{t > 0 : ∆Yt > Zt− − Zt−}.

To give an example, we have χ = T2 in Figure 1. As a convention, we define (G
Z
χ−, Zχ−) as

(G
Z
∞, Z∞) on the event {χ = ∞}.
The main difference between the present investigation of perturbed risk models and earlier

work is that we are not only interested in Laplace transform for space-related variables such
as Zχ, but in the joint transform of time-space variables such as (χ,Zχ). This has not been
studied before.

In Section 4.1, we derive some elementary time-space results for modified ladder variables,
culminating in a Pollaczek-Khinchine formula for perturbed risk models. However, explicit
formulas for Laplace transforms cannot be derived. For this, we must impose the assumption
that Z is spectrally positive; this was also done in the above-cited articles on perturbed risk
models. Section 4.2 investigates the spectrally positive case in detail. This results in a set
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of fluctuation identities that can be regarded as the perturbed-risk analogues of the standard
fluctuation identities (as given, for instance, by Bertoin [7, Thm. VII.4]). Interestingly, as a
special case, we characterize the distribution of the modified ladder epoch χ; this is one of the
most natural quantities in the perturbed-risk context, yet our results are new.

4.1 Generalities

In this subsection, we study the structure of a general perturbed risk model, i.e., we consider a
general Lévy perturbation X. All results in this subsection are new in this general framework.

The following proposition is crucial for the analysis.

Proposition 3 Let X be a general Lévy process (but not a subordinator), and let Y be a
compound-Poisson subordinator. We then have, for Z = X + Y ,

1. (G
Z
χ−, Zχ−) is independent of {χ <∞};

2. (G
Z
χ−, Zχ−) is distributed as (G

Z
∞, Z∞) given {χ = ∞};

3. (Zχ−Zχ−, Zχ− −Zχ−, χ−G
Z
χ−) is conditionally independent of (G

Z
χ−, Zχ−) given {χ <

∞}.

Proof. We need some definitions related to the piecewise linear (jump) process of Figure 1,
in particular to its excursions. Let P̃ denote the law of the piecewise linear process that
is constructed by discarding the first increasing piece (which may not be present if X is a
negative subordinator), and let Ẽ denote the corresponding expectation. Under P̃, there are
two possibilities for the process to (strictly) cross the axis: it either crosses continuously or it
jumps over it. The event that the first happens is denoted by X , as it is caused by fluctuations
in X. We write Y for the second event. The probability of no crossing (i.e., no new record) is
then given by 1 − P̃(X ) − P̃(Y). Moreover, by the strong Markov property, we have

P(χ <∞) =
P̃(Y)

1 − P̃(X )
. (3)

On Y, we define the ‘excursion lengths’ Le, the ‘excursion heights’ He, and the Ue ‘excursion
undershoot’ as indicated in Figure 2. We define Le and He on X by considering the process
formed by the maxima of the ‘hats’ as defined on page 2. Let He be the first ascending ladder
height of this process; note that this quantity is strictly positive (under P̃!) if X is not a
negative subordinator. We let Le be the epoch where the piecewise-linear process reaches He.

For α, β ≥ 0, by the strong Markov property,

E

[

e−αG
Z
χ−−βZχ− ;χ <∞

]

= Ee−αG
X
eλ

−βXeλ P̃(Y) + Ẽ

[

e−αLe−βHe ;X
]

E

[

e−αG
Z
χ−−βZχ− ;χ <∞

]

,

from which we obtain

E

[

e−αG
Z
χ−−βZχ− ;χ <∞

]

= Ee−αG
X
eλ

−βXeλ
P̃(Y)

1 − Ẽ [e−αLe−βHe ;X ]
.

Along the same lines, one can deduce that

E

[

e−αG
Z
∞−βZ∞ ;χ = ∞

]

= Ee−αG
X
eλ

−βXeλ
1 − P̃(X ) − P̃(Y)

1 − Ẽ [e−αLe−βHe ;X ]
,

11



He

Le

Ue

Figure 2: The excursion quantities in the proof of Proposition 3. The dotted line is the piece
that is discarded under P̃.

so that

E

[

e−αG
Z
χ−−βZχ− ;χ <∞

]

P(χ <∞)
= E

[

e−αG
Z
χ−−βZχ− ;χ <∞

]

+ E

[

e−αG
Z
∞−βZ∞ ;χ = ∞

]

,

which is Ee−αG
Z
χ−−βZχ− ; this is the first claim. These calculations also show that

E

[

e−αG
Z
∞−βZ∞ ;χ = ∞

]

P(χ = ∞)
= E

[

e−αG
Z
χ−−βZχ− ;χ <∞

]

+ E

[

e−αG
Z
∞−βZ∞ ;χ = ∞

]

,

which is the second claim.
For the third claim, a variant of the above argument can be used to see that for α, β, γ, δ, ε ≥

0,

E

[

e−αG
Z
χ−−βZχ−e−γ[Zχ−Zχ−]e−δ[Zχ−−Zχ−]e

−ε
h

χ−G
Z
χ−

i
∣

∣

∣

∣

χ <∞

]

= Ee−αG
X
eλ

−βXeλ
1 − P̃(X )

1 − Ẽ [e−αLe−βHe ;X ]

Ẽ
[

e−γHee−δUee−εLe ;Y
]

P̃(Y)
.

�

The formula in the following theorem can be viewed as a generalized Pollaczek-Khinchine
formula for perturbed risk models. It is a consequence of the preceding proposition and the
observation that by the strong Markov property,

Ee−αG
Z
∞−βZ∞ =

E

[

e−αG
Z
∞−βZ∞ ;χ = ∞

]

1 − E

[

e−αG
Z
χ−−βZχ− ;χ <∞

]

E

[

e
−α

h

χ−G
Z
χ−

i

−β[Zχ−Zχ−]
∣

∣

∣

∣

χ <∞

] .

Theorem 3 Under the assumptions of Proposition 3, we have for α, β ≥ 0, provided Z drifts
to −∞,

Ee−αG
Z
∞−βZ∞ =

P(χ = ∞)Ee−αG
Z
χ−−βZχ−

1 − P(χ <∞)Ee−αG
Z
χ−−βZχ−E

[

e
−α

h

χ−G
Z
χ−

i

−β[Zχ−Zχ−]
∣

∣

∣

∣

χ <∞

] .
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4.2 Spectrally positive Z

In this subsection, we analyze the case where Z has only positive jumps. We work under
the assumptions of Proposition 3, but additionally assume that EZ1 < 0 (in particular, Z is
integrable) and that the Lévy measure of Z vanishes on the negative halfline. It turns out
that the transforms of the previous section can then be computed. As an aside, we remark
that perturbed risk models with positive jumps are related to M/G/1 queueing systems with
a second service; see [13].

Throughout, we exclude the case where X is a negative subordinator, i.e., that X is a
negative drift; the analysis is then classical. By doing so, the standard fluctuation identities
(Theorem VII.4 of Bertoin [7]) apply to both X and Z. We use these identities without further
reference.

Perturbed risk models under spectral positivity have been recently examined by Huzak et
al. [20]. The main difference between this subsection and [20] is the fact that we are interested
in examining the time-space domain (e.g., the transform of (χ,Zχ)), as opposed to only the
space domain. Consequently, our results generalize those of Huzak et al. [20], modulo the
following remark. Huzak et al. allow Y to be a general subordinator, not necessarily of
the compound Poisson type. Therefore, the perturbed risk models studied here are slightly
less general. However, since any subordinator can be approximated by compound Poisson
subordinators and the modified ladder epochs form a discrete set (see [20]), our results must
also hold in the general case. Since the approximation argument required for a rigorous proof
is not in the spirit of this paper, we do not address this issue here. Instead, we shall content
ourselves with writing the main result (Theorem 4) in a form that does not rely on Y being
compound Poisson, although this assumption is essential for the proof.

Our analysis is based on Wiener-Hopf theory for Markov additive processes. Indeed, the
piecewise-linear embedded process is closely related to a discrete-time Markov additive process
(see, e.g., [4, Ch. XI] for the definition) with defective step-size distributions. To see this, note
that each ‘hat’ (see page 2) contains three important points: its starting point (labeled ‘1’),
its maximum (labeled ‘2’), and (immediately before) its end point (labeled ‘3’). Let us now fix
some α ≥ 0. Equation (VI.1) of Bertoin [7] implies that for q > 0 and β ∈ R,

Ee−αG
X
eq

+iβXeq = Ee−αG
X
eq EeiβXeq+α ,

and similarly for the joint distribution of (FXeq
,Xeq

). In other words, since α is fixed, the joint
distribution (in time and space) of the increment from point 1 to point 2, as well as from point
2 to point 3, can be interpreted as a defective marginal distribution in space. Hence, a ‘killing
mechanism’ has been introduced, which allows us to study joint distributions in time and space
by applying (known) results on processes with given marginal (space) distributions.

More precisely, we define a Markov additive process in discrete time {(Jn, Sn)} as the
Markov process with state space {1, 2, 3} × R, characterized by the transform matrix

F (α, β) =







0 Ee−αG
X
eλ EeiβXeλ+α 0

0 0 Ee
−αFX

eλ Ee
iβXeλ+α

Eeiβξ 0 0






.

That is, S0 = 0, and Jn is deterministic given J0: in every time slot, it jumps from i to
i + 1, unless i = 3; then it jumps back to 1. If Jn−1 = 1 (i.e., point n − 1 corresponds to the

beginning of a ‘hat’), the process is killed with probability 1 − Ee−αG
X
eλ , and otherwise we set

Sn = Sn−1 + ηn−1, where ηn−1 is independent of Sn−1 and distributed as Xeλ+α
. The cases

Jn−1 = 2 and Jn−1 = 3 are similar, except for the absence of killing in the latter case. We also
write

τ+ = inf{n > 0 : Sn > 0}, τ− = inf{n > 0 : Sn ≤ 0}.
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Expressions such as P2(Jτ+ = 2) should be understood as P(Jτ+ = 2, τ+ < ∞|J0 = 2), and
similarly for E2.

In Wiener-Hopf theory for Markov additive processes, an important role is played by the
time-reversed process. To define this process, we introduce the Markov chain Ĵ , for which the
transitions are deterministic: it jumps from 3 to 2, from 2 to 1, and from 1 to 3. Hence, it
jumps into the opposite direction of J . We set Ŝ0 = 0, and define the transition structure of the
time-reversed Markov additive process (Ĵ , Ŝ) as follows. If Ĵn−1 = 2, the process is killed with

probability 1 − Ee−αG
X
eλ , and otherwise we set Ŝn = Ŝn−1 + η̂n−1, where η̂n−1 is independent

of Ŝn−1 and distributed as Xeλ+α
. Similarly, if Ĵn−1 = 3, the process is killed with probability

1 − Ee
−αFX

eλ , and otherwise the increment is distributed as Xeλ+α
. If Ĵn−1 = 1, the increment

is distributed as ξ > 0. The quantities τ̂+ and τ̂− are defined as the ladder epochs for Ŝ. We
write P̂2 for the conditional distribution given Ĵ0 = 2.

Recalling that the dependence on α is ‘absorbed’ in the killing mechanism, we define

G
(k,ℓ)
+ (α, β) = Ek

[

eiβSτ+ ;Jτ+ = ℓ
]

and

Ĝ
(k,ℓ)
− (α, β) = Êk

[

eiβŜτ̂− ; Ĵτ̂− = j
]

.

Note that G
(2,2)
+ = Ẽ

[

e−αLe+iβHe ;X
]

in the notation of the proof of Proposition 3, and similarly

G
(2,1)
+ = Ẽ

[

e−αLe+iβHe ;Y
]

.
The Wiener-Hopf factorization for Markov additive processes (refer to, e.g., Asmussen [4,

Thm. XI.2.12] or Prabhu [31, Thm. 5.2]) states that I −F (α, β) (where I denotes the identity
matrix) equals





1 0 0

−Ĝ
(1,2)
− 1 − Ĝ

(2,2)
− −Ĝ

(3,2)
−

0 0 1











1 −Ee−αG
X
eλ

+iβXeλ 0

−G
(2,1)
+ 1 −G

(2,2)
+ 0

−Eeiβξ 0 1






,

where the arguments α and β of G+ and Ĝ− are suppressed for notational convenience.

We start by computing the first matrix. Note that Ĝ
(3,2)
− (α, β) = Ee

−αFX
eλ

+iβXeλ , so that
two terms remain. Recall that Φ−X is the inverse of the function β 7→ ψ−X(β) = −Ψ−X(−iβ),
and similarly for Φ−Z .

Proposition 4 For β ∈ R, we have

Ĝ
(1,2)
− (α, β) = Ee−Φ−Z (α)ξ Φ−X(λ)

Φ−X(λ+ α) + iβ
,

and

Ĝ
(2,2)
− (α, β) =

Φ−X(λ+ α) − Φ−Z(α)

Φ−X(λ+ α) + iβ
.

Proof. We start with Ĝ
(2,2)
− . By ‘gluing together’ the transitions 2 → 1 and 1 → 3, we see that

the killing probability for going from 2 to itself now equals λ/(λ+α), and the distribution of a
jump from 2 to itself can be written as ξ+Xeλ+α

− eΦ−X(λ+α), where all three components are
independent. Therefore, by standard results on random walks (e.g., Lemma I.4 of Prabhu [31]),
we have

Ĝ
(2,2)
− (α, β) = Ê2

(

λ

λ+ α

)τ̂−

eiβŜτ̂− =
Φ−X(λ+ α)

Φ−X(λ+ α) + iβ
Ê2

(

λ

λ+ α

)τ̂−

,
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and it remains to calculate the mean, which we write as ηα. For this, we repeat the argument
that led to Theorem 1, but now for the minimum and in terms of ηα. We see that EeiβZeα

equals

Φ−Z(α)

Φ−Z(α) + iβ
=

Φ−X(λ+ α)

Φ−X(λ+ α) + iβ

1 − ηα

1 − ηα
Φ−X(λ+α)

Φ−X(λ+α)+iβ

=
(1 − ηα)Φ−X(λ+ α)

(1 − ηα)Φ−X(λ+ α) + iβ
,

so that 1 − ηα = Φ−Z(α)/Φ−X(λ+ α).

Now we study Ĝ
(1,2)
− . A descending ladder epoch occurs either at the first time that Ĵ visits

2, or in subsequent visits. The contribution to Ĝ
(1,2)
− of the first term is

Ê1

[

eiβŜ2 ; Ŝ2 < 0
]

= Ee
−αFX

eλ E

[

eiβ(ξ+Xλ+α); ξ +Xλ+α < 0
]

=

∫ ∞

0
Φ−X(λ)e−(Φ−X(λ+α)+iβ)t

E

[

eiβξ; ξ < t
]

dt

= Eeiβξ
∫ ξ

0
Φ−X(λ)e−(Φ−X(λ+α)+iβ)tdt

=
Φ−X(λ)

Φ−X(λ+ α) + iβ
Ee−Φ−X(λ+α)ξ .

To compute the contribution to Ĝ
(1,2)
− of paths for which Ŝ2 is positive, we apply results of

Arjas and Speed [1] on random walks with a random initial point. We also use their notation.

Using the expression for the previously computed Ĝ
(2,2)
− (again, the transform depends on

α through the killing mechanism), we define

w̄z−(β) =
1

1 − Ĝ
(2,2)
− (α, β)

=
1

1 −
Φ−X(λ+α)−Φ−Z (α)

Φ−X(λ+α)+iβ

= 1 +
Φ−X(λ+ α) − Φ−Z(α)

Φ−Z(α) + iβ
.

As in [1], define the projection operator P acting on a Fourier transform f(β) =
∫

R
eiβxF (dx)

as Pf(β) =
∫

(−∞,0] e
iβxF (dx). Theorem 1(b) of [1] shows that the second contribution to Ĝ

(1,2)
−

equals
1

w̄z−(β)
P
[

Ee−αF
X(eλ)

E

[

eiβ(ξ+X(λ+α)); ξ +X(λ+ α) > 0
]

w̄z−(β)
]

. (4)

A similar reasoning as before shows that

Ê1

[

eiβŜ2 ; Ŝ2 > 0
]

= Ee
−αFX

eλ E

[

e
iβ

“

ξ+Xeλ+α

”

; ξ +Xeλ+α
> 0

]

= Φ−X(λ)

∫ ∞

0
e−(Φ−X (λ+α)+iβ)t

E

[

eiβξ; ξ > t
]

dt

= Φ−X(λ)
Eeiβξ − Ee−Φ−X(λ+α)ξ

Φ−X(λ+ α) + iβ
.

As this is the transform of a positive random variable, the first observation in the proof of
Corollary 1 in [1] shows that

P

[

Φ−X(λ+ α) − Φ−Z(α)

Φ−Z(α) + iβ
Ê1

[

eiβŜ2 ; Ŝ2 > 0
]

]

=
Φ−X(λ+ α) − Φ−Z(α)

Φ−Z(α) + iβ
Ê1

[

e−Φ−Z (α)Ŝ2 ; Ŝ2 > 0
]

.

Therefore, (4) equals

Φ−X(λ)
Ee−Φ−Z (α)ξ − Ee−Φ−X(λ+α)ξ

Φ−X(λ+ α) − Φ−Z(α)

Φ−X(λ+α)−Φ−Z (α)
Φ−Z(α)+iβ

1 +
Φ−X(λ+α)−Φ−Z (α)

Φ−Z(α)+iβ

=
Φ−X(λ)

Φ−X(λ+ α) + iβ

[

Ee−Φ−Z(α)ξ − Ee−Φ−X(λ+α)ξ
]

.
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The claim follows by summing the two contributions. �

With the preceding proposition at our disposal, the Wiener-Hopf factorization yields that

G
(2,1)
+ (α, β) = Φ−X(λ)

Eeiβξ − Ee−Φ−Z(α)ξ

Φ−Z(α) + iβ
,

and

1 −G
(2,2)
+ (α, β) =

Φ−X(λ+ α) + iβ − Φ−X(λ)Ee−ΦZ (α)ξ
Ee−αG

X
eλ

+iβXeλ

Φ−Z(α) + iβ
,

where Ee−αG
X
eλ

+iβXeλ is explicitly known in terms of Φ−X .

From these expressions, by choosing α = β = 0, one obtains that P̃(X ) = 1 +
Φ−X(λ)

λ EX1

and P̃(Y) = Φ−X(λ)Eξ. In particular, 1 − P̃(X ) − P̃(Y) = −
Φ−X(λ)

λ EZ1.

Our next goal is to characterize distributions related to modified ladder epochs and heights,
which is the main result of this subsection.

Theorem 4 Let X be a general spectrally positive Lévy process (but X is not monotonic), and
let Y be a compound-Poisson subordinator. Suppose that both X and Y are integrable, and that
Z = X + Y satisfies EZ1 < 0.

1. For α, β ≥ 0, we have

Ee−αG
Z
χ−−βZχ− = E

[

e−αG
Z
χ−−βZχ−

∣

∣

∣χ <∞
]

= E

[

e−αG
Z
∞−βZ∞

∣

∣

∣χ = ∞
]

= −EX1
Φ−Z(α) − β

α− ψ−X(β) − ψ−Y (Φ−Z(α))
,

which should be interpreted as −EX1/ψ
′
−Z(β) for β = Φ−Z(α).

In particular, Zχ− has the same distribution as X∞.

2. For α, β ≥ 0, we have

E

[

e
−α

h

χ−G
Z
χ−

i

−β[Zχ−Zχ−]
∣

∣

∣

∣

χ <∞

]

=
1

EY1

ψ−Y (β) − ψ−Y (Φ−Z(α))

Φ−Z(α) − β
,

which should be interpreted as −ψ′
−Y (β)/EY1 for β = Φ−Z(α).

In particular, for y, z > 0,

P
(

Zχ − Zχ− > x,Zχ− − Zχ− > y |χ <∞
)

=
1

Eξ

∫ ∞

x+y
P(ξ > u)du.

3. For α, β ≥ 0, we have

E

[

e−αχ−βZχ ;χ <∞
]

=
ψ−Y (β) − ψ−Y (Φ−Z(α))

α− ψ−X(β) − ψ−Y (Φ−Z(α))
,

which should be interpreted as −ψ′
−Y (β)/ψ′

−Z(β) for β = Φ−Z(α).

In particular, P(χ <∞) = 1 − EZ1/EX1.
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Proof. To compute the transform of the joint distribution of (G
Z
χ−, Zχ−), we use elements of

the proof of Proposition 3:

Ee−αG
Z
χ−−βZχ− = Ee−αG

X
eλ

−βXeλ
1 − P̃(X )

1 −G
(2,2)
+ (α, iβ)

= −EX1

Φ−X(λ)
λ [Φ−Z(α) − β]

Φ−X(λ+α)−β

Ee
−αG

X
eλ

−βXeλ

− Φ−X(λ)Ee−Φ−Z (α)ξ
,

from which the first claim follows.

The second claim is a consequence of the observation that the transform equalsG
(2,1)
+ (α, β)/P̃(Y).

The second statement follows by choosing α = 0, and noting that

P
(

Zχ− − Zχ− > x
∣

∣Zχ − Zχ− = y, χ <∞
)

= P(ξ > x+ y|ξ > y).

The third claim is obtained from the identity

E

[

e−αχ−βZχ

∣

∣

∣χ <∞
]

= E

[

e−αG
Z
χ−−βZχ−

∣

∣

∣χ <∞
]

E

[

e
−α

h

χ−G
Z
χ−

i

−β[Zχ−Zχ−]
∣

∣

∣

∣

χ <∞

]

,

and from (3). �

Let us now calculate the transform of (GZ∞, Z∞) with Theorem 3: for α, β ≥ 0, we have

Ee−αG
Z
∞−βZ∞ =

−EZ1
Φ−Z(α)−β

α−ψ−X (β)−ψ−Y (Φ−Z(α))

1 −
ψ−Y (β)−ψ−Y (Φ−Z (α))

α−ψ−X(β)−ψ−Y (Φ−Z(α))

=
−EZ1 [Φ−Z(α) − β]

α− ψ−X(β) − ψ−Y (β)
,

in accordance with the standard fluctuation identity.

Note that Theorem 4.7 of [20] is recovered upon combining the ‘in particular’-statements
of this theorem with Proposition 3, at least if Y is compound Poisson. There is also another
way to see that P(Zχ− ≤ x|χ <∞) = P(X∞ ≤ x). Indeed, one can ‘cut away’ certain pieces of
the path of Z; Schmidli [33] makes this precise by time reversal of Z. However, his argument

cannot be used to find the distribution of G
Z
χ−.

We end this subsection by remarking that similar formulas can be derived if ξ is not nec-
essarily positive. However, the system of Wiener-Hopf relations then becomes larger and no
explicit results can be obtained, unless some structure is imposed; for instance, that Z has
downward phase-type jumps.

5 Asymptotics of the maximum

In this section, we study the tail asymptotics of P(Z∞ > x) and its local version P(Z∞ ∈
(x, x + T ]) for fixed T > 0 as x → ∞, where Z is a Lévy process drifting to −∞. The
motivation for studying this problem stems from risk theory; the probability P(Z∞ > x) is
often called the ruin probability.

It is our aim to show that the embedding approach is a natural and powerful method for
studying tail asymptotics for the maximum, regardless the specific assumptions on the Lévy
measure (e.g., that it be light-tailed or heavy-tailed). Relying on random walk results, for
which we refer to Korshunov [25] for an overview, we study both the global and the local
tail asymptotics in three different regimes. These regimes are referred to as the Cramér case,
the intermediate case, and the subexponential case. Interestingly, all known results on these
asymptotics for Lévy processes have been derived on a case-by-case basis (indeed, the Cramér

17



and global subexponential case have been successfully examined elsewhere). Most importantly,
since the embedding technique is a uniform approach that does not rely on the specific form
of the tail of the Lévy measure, it allows us to fill in the ‘gaps’ in the literature. For instance,
our results concerning the intermediate case and the local subexponential case are new. More
results (and references) on asymptotics for Lévy processes can be found in [17, 24].

In order to apply the embedding approach, we write Z as a sum of two independent processes
X and Y ; one with small jumps (ΠX([1,∞)) = 0), and a compound Poisson subordinator
Y with jumps exceeding 1. This decomposition has recently been used by Doney [16] and
Pakes [29] in the context of asymptotics. We set λ = ΠZ([1,∞)) ∈ [0,∞), and write ξ for a
generic jump of Y ; its distribution function is given by z 7→ ΠZ([1, z])/λ. If λ = 0, we set
ξ = 0. The random walk {Sqn} introduced in Section 2.1 plays an important role for q = 0. For
notational convenience, we write Sn for S0

n, i.e., S is a random walk with step-size distribution
ξ +Xeλ

.

The process X has a useful property: for any η > 0, both EeηXeλ and EeηXeλ are finite.
Chernoff’s inequality shows that both P(Xeλ

> x) and P(Xeλ
> x) then decay faster than

any exponential. To see that the moment generating functions are finite, first observe that for
ℜβ = 0, by the PRS identity,

EeβXeλ = EeβXeλ Ee
βXeλ .

This identity can be extended to ℜβ > 0 by analytic continuation, since on this domain

EeβXeλ =
λ

λ+ ΨX(−iβ)
<∞,

where the finiteness follows from the fact that ΠX is supported on (−∞, 1). It is trivial that

Ee
βXeλ is analytic for ℜβ > 0, hence the claim is obtained.

5.1 The Cramér case

First we deal with the Cramér case, i.e., when there exists some ω ∈ (0,∞) for which EeωZ1 = 1.

Given ω, one can define an associate probability measure P
ω, such that Z is a Lévy process

under P
ω with Lévy exponent ΨZ(u−iω). This measure plays an important role in the following

result, which is due to Bertoin and Doney [8]. Even though the original proof is relatively short,
it is instructive to see how the embedding approach recovers the result. The case where Z has
a discrete ladder structure is excluded, as random walk identities then directly apply.

Theorem 5 Let Z be a Lévy process for which 0 is regular for (0,∞). Moreover, suppose that
there is some ω ∈ (0,∞) such that EeωZ1 = 1, and that EZ1e

ωZ1 <∞.

Then, as x→ ∞, we have

P(Z∞ > x) ∼
Cω

ωEZ1eωZ1
e−ωx,

where

logCω = −

∫ ∞

0
t−1(1 − e−t) [P(Zt > 0) + P

ω(Zt ≤ 0)] dt. (5)

Moreover, for any T > 0, we have as x→ ∞,

P(Z∞ ∈ (x, x+ T ]) ∼
Cω

ωEZ1eωZ1

(

1 − e−ωT
)

e−ωx.

Proof. As the reader readily verifies, the second claim follows immediately from the first.
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Let us study the random walk Sn under the present assumptions. First note that EeωZ1 =
1 is equivalent with EeωXeλ Eeωξ = 1, so that by Lemma 1 of Iglehart [21] (the step-size
distribution is nonlattice),

P

(

sup
n≥1

Sn > x

)

∼ e−
P

∞

n=1
1

n{P(Sn>0)+E[eωSn ;Sn≤0]} 1

ωES1eωS1
e−ωx.

Since Xeλ
has a finite moment generating function, we have by Lemma 2.1 of Pakes [29] that

P(Z∞ > x) = P

(

Xeλ
+ sup

n≥1
Sn > x

)

∼ e−
P

∞

n=1
1

n{P(Sn>0)+E[eωSn ;Sn≤0]} EeωXeλ

ωES1eωS1
e−ωx.

The rest of the proof consists of translating ‘random walk terminology’ into ‘Lévy terminology’.
For this, we suppose that the ladder process of X is normalized such that for α > 0, β ∈ R,

α+ ΨX(β) = κX(α,−iβ)κ̂X (α, iβ),

and similarly for Z.

The quantity 1 − EeiβS1 = ΨZ(β)/(λ + ΨX(β)) has both a ‘random walk’ Wiener-Hopf
decomposition and a ‘Lévy’ Wiener-Hopf decomposition, and their uniqueness leads to the
identity

exp

(

−
∞
∑

n=1

1

n
E

[

eiβSn ;Sn > 0
]

)

=
κZ(0,−iβ)

κX(λ,−iβ)
.

Similarly, since 1 − Ee(ω+iβ)S1 = ΨZ(β − iω)/[λ+ ΨX(β − iω)], we have

exp

(

−
∞
∑

n=1

1

n
E

[

e(ω+iβ)Sn ;Sn ≤ 0
]

)

=
κ̂Z(0, iβ + ω)

κ̂X(λ, iβ + ω)
.

Using the facts that EeωX(eλ) = κX(λ, 0)/κX (λ,−ω) (cf. Equation (VI.1) of Bertoin [7]) and
that (use EeωZ(1) = 1)

ES1e
ωS1 =

EZ1e
ωZ1

λEeωξ
=

EZ1e
ωZ1

λ+ ΨX(−iω)
=

EZ1e
ωZ1

κX(λ,−ω)κ̂X (λ, ω)
,

the claim is obtained with Cω = κZ(0, 0)κ̂Z (0, ω). Corollary VI.10 of Bertoin [7] shows that
logCω is given by (5). �

5.2 The intermediate case

This subsection studies the tail asymptotics of Z∞ under the condition

δ = sup{θ > 0 : EeθZ1 <∞} > 0, (6)

but we now suppose that we are in the intermediate case, i.e., that δ < ∞ and EeδZ1 < 1.
These assumptions imply that λ ∈ (0,∞).

If D = 1 −D is a probability distribution on R, we write D ∈ S(α), α > 0, if

1. limx→∞D(x+ y)/D(x) = e−αy for all y ∈ R,

2.
∫∞
−∞ eαyD(dy) <∞,

3. limx→∞

{

D(2)(x)/D(x)
}

= 2
∫∞
−∞ eαyD(dy),
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where D(2) = D ∗ D is the convolution of D with itself. Note that the first requirement
excludes the case where D is concentrated on a lattice. More generally, if µ is a measure with
µ([1,∞)) <∞, we write µ ∈ S(α) if µ([1, ·])/µ([1,∞)) ∈ S(α).

We remark that if (6) holds and ΠZ ∈ S(α), then α necessarily equals δ, as the reader
easily verifies.

The following theorem builds on random-walk results of Bertoin and Doney [9] for step-size
distributions in S(α). It is closely related to Theorem 4.1 of Klüppelberg et al. [24], where
the tail asymptotics are expressed in terms of characteristics of the ladder process. With
Proposition 5.3 of [24], this can be rewritten in terms of the characteristics of Z itself (i.e.,
its Lévy measure). Here, we find the asymptotics directly in terms of these Z-characteristics
(and the tail asymptotics for Z1); this leads to a new asymptotic expression. Note that our
underlying assumptions are the same as those in [24].

Theorem 6 Let Z be a Lévy process drifting to −∞, for which δ ∈ (0,∞) and EeδZ1 < 1. If

ΠZ ∈ S(δ), then EeδZ∞ <∞ and P(Z∞ ≤ ·) ∈ S(δ); in fact, as x→ ∞, we have

P(Z∞ > x) ∼ −
EeδZ∞

log EeδZ1
ΠZ((x,∞)) ∼ −

EeδZ∞

EeδZ1 log EeδZ1
P(Z1 > x).

Moreover, under these assumptions, we have as x→ ∞, for any T > 0,

P(Z∞ ∈ (x, x+ T ]) ∼ −
EeδZ∞

log EeδZ1
ΠZ((x, x + T ]) ∼ −

EeδZ∞

EeδZ1 log EeδZ1
P(Z1 ∈ (x, x+ T ]).

Proof. It suffices to prove the first asymptotic equivalences; for the relationship between the
tail of the Lévy measures and the tail of the marginal distribution, we refer to Theorem 3.1 of
Pakes [29].

With the embedding in our mind, we first note that by Lemma 2.1 of [29], we have P(ξ +
Xeλ

> x) ∼ EeδXeλ P(ξ > x). Since EeδZ1 < 1 is equivalent with EeδS1 < 1, we may apply
Theorem 1 of Bertoin and Doney [9], which states (using Spitzer’s identity) that

P

(

sup
n≥1

Sn > x

)

∼
EeδXeλ

1 − EeδξEeδXeλ

E exp

(

δ sup
n≥1

Sn

)

P(ξ > x).

Some elementary calculations show that

EeδXeλ

1 − EeδξEeδXeλ

=
1

λ+ΨX(−iδ)
λ − Eeδξ

=
λ

ΨZ(−iδ)
= −

λ

log EeδZ1
.

Using the fact that the moment generating function of Xeλ
is finite, we can again apply

Lemma 2.1 of [29] to see that

P

(

Xeλ
+ sup
n≥1

Sn > x

)

∼ −
λ

log EeδZ1
EeδXeλ E exp

(

δ sup
n≥1

Sn

)

P(ξ > x)

= −
λEeδZ∞

log EeδZ1
P(ξ > x),

as claimed.
The second assertion is a consequence of the first claim and the observations P(Z∞ >

x+ T ) ∼ e−γTP(Z∞ > x) and ΠZ((x+ T,∞)) ∼ e−γTΠZ((x,∞)). �

It is readily checked that the statements of this theorem are equivalent to

P(Z∞ > x) ∼ −
δEeδZ∞

log EeδZ1

∫ ∞

x
ΠZ((y,∞))dy.

In this expression, one can formally let δ → 0, so that the pre-integral factor tends to 1/EZ1.
This naturally leads to the subexponential case.
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5.3 The subexponential case

A distribution function D on R+ is called subexponential, abbreviated as D ∈ S, if, in the

notation of the previous subsection, D(2)(x) ∼ 2D(x). An important subclass of subexponential
distributions have finite mean and satisfy

∫ x
0 D(y)D(x − y)dy ∼ 2

∫∞
0 D(y)dyD(x); we then

write D ∈ S∗. More generally, for a measure µ, we write µ ∈ S (or S∗) if µ([1,∞)) < ∞ and
µ([1, ·])/µ([1,∞)) ∈ S (S∗).

Suppose that the integrated tail of the Lévy measure

ΠI((x,∞)) =

∫ ∞

x
ΠZ((y,∞))dy

is subexponential, i.e., ΠI ∈ S. It is known that this property is implied by Π ∈ S∗. Recall
that we are interested in both the local and global tail asymptotics of Z∞. As opposed to
the Cramér and intermediate case, the local asymptotics do not follow immediately from the
global asymptotics. These local asymptotics, for which a proof is therefore nontrivial, appear
here for the first time. Several different proofs have been given for the global version. For the
first proof, we refer to Asmussen [3, Cor. 2.5]; see further Maulik and Zwart [27], Chan [12],
Klüppelberg et al. [24], and Braverman et al. [11].

Theorem 7 Let Z be an integrable Lévy process with EZ1 < 0, for which ΠI ∈ S. Then
P(Z∞ ≤ ·) ∈ S; in fact, as x→ ∞, we have

P(Z∞ > x) ∼ −

∫∞
x ΠZ((y,∞))dy

EZ1
∼ −

∫∞
x P(Z1 > y)dy

EZ1
.

Moreover, if ΠZ ∈ S∗ and ΠZ is (ultimately) nonlattice, then we have as x → ∞, for any
T > 0,

P(Z∞ ∈ (x, x+ T ]) ∼ −

∫ x+T
x ΠZ((y,∞))dy

EZ1
∼ −

∫ x+T
x P(Z1 > y)dy

EZ1
.

Proof. We have ΠZ((x,∞)) ∼ P(Z1 > x) (see, e.g., [29]); hence, it suffices to prove only the
first equivalences.

Since ΠI ∈ S, it is in particular long-tailed, so that for z ∈ R,
∫∞
x P(ξ > y + z)dy ∼

∫∞
x P(ξ > y)dy. Fix some η > 0. The latter observation implies that the function x 7→
xη
∫∞
1∨log x P(ξ > y)dy is locally bounded and regularly varying at infinity with index η, so that

by the Uniform Convergence Theorem for regularly varying functions, for large x,

∫ ∞

x
P(ξ > y − z)dy ≤ (1 + eηz)

∫ ∞

x
P(ξ > y)dy,

uniformly for z ∈ [0, x − 1]. Since Xeλ
≤ Xeλ

and EeηXeλ <∞, this implies that

∫ ∞

x
P(ξ +Xeλ

> y)dy ≤

∫ ∞

x
P(ξ +Xeλ

> y)dy = O

(
∫ ∞

x
P(ξ > y)dy

)

+

∫ ∞

x

∫

(x−1,y−1]
P(ξ > y − z)PXeλ

(dz)dy

+

∫ ∞

x
P(Xeλ

> y − 1)dy,

and the last two terms are readily seen to be O(P(Xeλ
> x)) and O(e−ηx) respectively. Using

Chernoff’s inequality and the fact that ξ is heavy-tailed, it follows that
∫∞
x P(ξ+Xeλ

> y)dy =
O
(∫∞
x P(ξ > y)dy

)

.
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This shows that one can apply dominated convergence after Veraverbeke’s theorem (e.g.,
[4, Thm. X.9.1(a)]) to see that

P

(

sup
n≥1

Sn > x

)

∼ −
1

E [Xeλ
+ ξ]

∫ ∞

x
P(Xeλ

+ ξ > y)dy

∼ −
1

E [Xeλ
+ ξ]

∫ ∞

x
P(ξ > y)dy.

By definition of ξ, the right hand side is readily seen to be equivalent to
∫∞
x ΠZ((y,∞))dy/|EZ1|.

Since this is the tail of a subexponential random variable, the first claim follows from the fact
that Xeλ

has a lighter tail.
The second assertion is proven similarly, but with Veraverbeke’s theorem replaced by its

local counterpart, see Equation (18) in Asmussen et al. [6]. The rest of the argument is simpler
than for the ‘global’ version, since P(Xeλ

+ ξ > x) ∼ P(ξ > x) as Π ∈ S∗ ⊂ S. A lattice version
can also be given. �

A different proof for the first claim can be given based on recent results of Foss and Zachary
[18]. Indeed, as noted in Section 4, a discrete-time Markov additive process is embedded
in the second diagram of Figure 1. In order to verify the assumptions of [18] we suppose
that Z is not spectrally positive, so that there exist M− ≤ 0 and M+ ≥ 0 such that λ± =
ΠZ(R\(M−,M+)) < ∞ and

∫

R\(M−,M+) zΠZ(dz) < 0. One can write Z as a sum of X and Y ,

where Y is now a compound Poisson process with Lévy measure ΠZ restricted to R\(M−,M+).
Further details are left to the reader.
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