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In this paper, we study a queue fed by a large number n of independent discrete-time Gaussian

processes with stationary increments. We consider the many-sources asymptotic regime, i.e., the

buffer-exceedance threshold B and the service capacity C are scaled by the number of sources

(B ≡ nb and C ≡ nc).

We discuss four methods for simulating the steady-state probability that the buffer threshold is

exceeded: the single-twist method (suggested by large-deviation theory), the cut-and-twist method

(simulating timeslot by timeslot), the random-twist method (the twist is sampled from a discrete

distribution), and the sequential-twist method (simulating source by source).

The asymptotic efficiency of these four methods is analytically investigated for n → ∞. A

necessary and sufficient condition is derived for the efficiency of the single-twist method, indi-

cating that it is nearly always asymptotically inefficient. The other three methods, however, are

asymptotically efficient. We numerically evaluate the four methods by performing a detailed sim-

ulation study, where it is our main objective to compare the three efficient methods in practical

situations.

Categories and Subject Descriptors: G.3 [Mathematics of Computing]: Probability and Statis-

tics

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Asymptotic efficiency, Gaussian processes, importance sam-

pling, large deviations, overflow probability, queueing theory

1. INTRODUCTION

Many systems in real life can be modeled as queues. The generic queueing model

consists of (i) a (random) arrival process, and (ii) a resource, commonly character-

ized by its service speed C, and buffer space B. If the traffic arrival rate temporarily

exceeds C, work is stored in the buffer, and, after some delay, served. Traffic that

does not fit into the buffer is lost. Hence, queues are an appropriate tool for de-

scribing congestion phenomena.
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Gaussian traffic. In this paper, we consider a queue fed by Gaussian traffic. We

focus on stationary input, i.e., the distribution of the traffic offered in an interval

only depends on the interval length. The study of Gaussian input is mainly moti-

vated by its flexibility and parsimony: a broad range of correlation structures can

be described by few parameters. Notably, Gaussian processes may exhibit ‘power-

law correlations’ corresponding to long-range dependence; an example is fractional

Brownian motion (fBm). Processes of this type can be used to accurately model

network data traffic. The focus on Gaussian models can also be justified from the

fact that in many practical situations a large number of independent sources are

superimposed; by virtue of central-limit-type arguments, one can argue that the

aggregate traffic converges to a Gaussian process, see, e.g., Dȩbicki and Palmowski

[1999].

Asymptotics. It is notoriously hard to calculate the full buffer content distribution

of a queue with Gaussian input; in fact, one has succeeded in this only for simple

special cases (Brownian motion, Brownian bridge). However, some limiting regimes

allow explicit analysis. The present paper focuses on the so-called many-sources

regime. In this regime we suppose that there are n i.i.d. Gaussian sources, and that

the queueing resources are scaled with n, i.e., C ≡ nc and B ≡ nb. The probability

that the steady-state buffer content exceeds level nb becomes small when n grows

large. For fixed but large n, we study this buffer-content probability pn in a discrete-

time model.

Likhanov and Mazumdar [1999] find the asymptotics of pn, i.e., they identify a

function g such that png(n) → 1 as n → ∞; notably, they find that pn decays

roughly exponentially in n. Based on these asymptotics, one could estimate pn by

1/g(n). However, due to the lack of error bounds one does not know a priori whether

these estimates are any good. More specifically, we do not have an n0 = n0(ǫ) such

that, for all n > n0, it holds that |png(n) − 1| < ǫ, where ǫ > 0 is a (small)

parameter. In fact, the derivation of png(n) → 1 indicates that 1/g(n) has the

undesirable property that it tends to underestimate pn, cf. Equations (2.1) and

(3.4) in Likhanov and Mazumdar [1999].

Simulation. In absence of analytical results (or asymptotic results that are backed

up by error bounds), one could resort to simulation. When simulating loss probabil-

ities in queues with Gaussian input, essentially two problems arise. The first is that

it is not straightforward to quickly simulate Gaussian processes, see for instance

Dieker and Mandjes [2003]. Although ‘exact’ methods for generating (discrete ver-

sions of) Gaussian processes are in general quite slow, a sophisticated simulation

technique becomes available by exploiting the stationarity of the sources [Davies

and Harte 1987]. In the important case of fBm, this leads to a fast algorithm (order

of T log T for a trace of length T ) for generating fBm traces. An inherent difficulty

with this algorithm is that the trace length should be specified before the simulation
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is started.

The second problem of simulation is that it is typically hard to estimate small

probabilities; we mainly focus on this difficulty in the remainder of this paper, as in

our setting pn → 0 as n → ∞. The general rule is that, for an estimate with a fixed

relative precision, the number of runs needed is inversely proportional to the prob-

ability to be estimated. Hence it is impractical, or even impossible, to estimate a

probability of less than, say, 10−9 with conventional Monte Carlo simulation. This

problem could be circumvented by performing a ‘fast simulation’ using a technique

that is known as importance sampling. In importance sampling, samples are drawn

from a distribution under which the event under consideration occurs more fre-

quently. An unbiased estimator is obtained by weighing the simulation output by

likelihood ratios. Inherently, one has the freedom to choose the importance sam-

pling measure, and the challenge is to find the measure that is in some sense ‘most

efficient’. A widely accepted efficiency criterion for discriminating between esti-

mators is asymptotic efficiency, sometimes referred to as asymptotic optimality or

logarithmic efficiency. The analysis in the present paper is based on this criterion.

Contributions. Estimators based on large-deviation theory are natural candidates

for efficient simulation. In fact, they are asymptotically efficient in many settings;

see Asmussen and Rubinstein [1995] and Heidelberger [1995] and references therein.

However, Glasserman and Wang [1997] give examples showing that this need not

always be the case. A main contribution of this paper is that we develop conditions

for asymptotic efficiency (as n → ∞) of the large-deviation estimator that would

apply to our buffer-content probability. It turns out that this estimator is predom-

inantly asymptotically inefficient for a wide range of Gaussian inputs, including

fBm and (perhaps surprisingly) even standard Brownian motion.

As the large-deviation estimator is inefficient in practice, a different approach

has to be taken. We present three other methods that can be proven to be asymp-

totically efficient. The first uses ideas of Boots and Mandjes [2002], and simulates

timeslot by timeslot. The second method is a randomized version of the large-

deviation estimator; it is based on the work of Sadowsky and Bucklew [1990]. A

third method relies on a recent paper by Dupuis and Wang [2004], and simulates

source by source. In the latter approach, the change of measure of the source under

consideration depends on the traffic generated by the sources that have already been

simulated. We present a detailed performance evaluation of these four approaches,

both analytically and empirically.

Some related results on fast simulation of queues with Gaussian input have been

reported by Michna [1999] and by Huang et al. [1999]. Michna focuses on fBm input

under the so-called large-buffer scaling (rather than our many-sources setting), but

does not consider asymptotic efficiency of his simulation scheme. The study of

Huang et al. also relates to the large-buffer asymptotic regime for fBm input. They

empirically assess the variance reduction of their proposed change of measure, but
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do not formally derive properties of their estimator (such as asymptotic efficiency);

in fact, Lemma 4.2 below entails that their estimator is unnatural from the point of

view of asymptotic efficiency. We would like to stress that the present paper focuses

only on the simulation of the buffer-content probability in the many-sources regime

(with general Gaussian input, not necessarily fBm).

The many-sources regime has been generally accepted as a framework that is

particularly suitable when studying large multiplexing systems, and in this sense

it is a useful alternative to the large-buffer regime, see for instance the reflections

in Kelly [1996] and Ganesh et al. [2004]. It is also remarked that the aggregate of

multiple i.i.d. Gaussian sources is again Gaussian. This implies that in the timeslot-

by-timeslot approach it suffices to simulate just the aggregate input process, rather

than the individual sources. In the source-by-source approach, however, one explic-

itly exploits the fact that there are multiple sources to obtain an asymptotically

efficient algorithm.

Organization. This paper is organized as follows. Section 2 formalizes the queue-

ing framework used in this paper. It also discusses how the simulation horizon can

be truncated, so that we can work with traces of prespecified length. Preliminaries

on importance sampling are given in Section 3. Section 4 studies the asymptotic

efficiency of the four simulation methods mentioned above from an analytical per-

spective. Section 5 contains a numerical evaluation of these methods, to assess their

performance under practical circumstances. The paper concludes with a discussion

in Section 6.

2. THE BUFFER-CONTENT PROBABILITY

The present section contains the description of our queueing model. In particular,

we show that the buffer-content probability can be translated into an exceedance

probability of the so-called free process on an infinite time interval, see Section 2.1.

To simulate this exceedance probability, the infinite time interval needs to be trun-

cated, where the neglected probability mass is below a tolerable level. Under the

truncation, we can obviously work with Gaussian traces of prespecified length. The

truncation issue is addressed in Section 2.2.

2.1 Description of the model — many-sources framework

Traffic model. We start by describing the traffic model. We consider n i.i.d. sources

feeding into a buffered resource. The sources are assumed to be stationary, so that

the distribution of the traffic generated in an interval [s, s+ t) only depends on the

interval length t (and not on the ‘position’ s). We focus on a discrete-time system,

i.e., time is indexed by Z.

Define An(·) as the aggregate cumulative traffic process. More precisely, let

An(s, t) denote the traffic generated by the superposition of the n sources in the

interval {s, . . . , t}, with s ≤ t. For notational convenience, we set An(t) := An(0, t),
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so that An(s, t) = An(t) − An(s). We also suppose that An(0) = 0; this can be

assumed without loss of generality, since we are interested in steady-state behavior.

In this paper, we assume that the sources are Gaussian, so that the distribution of

An(·) is completely determined by the mean input rate and the covariance structure.

Let µ denote the mean input rate of a single source, i.e., EAn(t) =: nµt. Because

the stationarity of the sources results in stationary increments of the process An,

the covariance structure is determined by the variance function σ2(t) := VarA1(t).

We suppose that σ2(t)t−α → 0 as t → ∞ for some α ∈ (0, 2); the Borel-Cantelli

lemma then shows that A1(t)/t → µ almost surely, see the proof of Lemma 3 in

[Dieker 2005].

It is readily deduced that the covariance of An(·) is given by Γn(s, t) = nΓ(s, t),

where

Γ(s, t) := Cov(A1(s), A1(t)) =
σ2(s) + σ2(t) − σ2(|s − t|)

2
.

An important special case of Gaussian input is fractional Brownian motion (fBm),

for which σ2(t) is (proportional to) t2H .

Queueing model. We now turn to the queueing model. In this paper, we scale the

queue’s (deterministic) service rate with the number of sources: the queue drains

at rate C ≡ nc. To ensure stability, we assume that µ < c.

We are interested in the steady-state probability pn of the buffer content ex-

ceeding some prespecified level, which we again scale with the number of sources:

B ≡ nb > 0. We first express this probability in terms of the aggregate cumulative

arrival process An(·), as follows. Let Qn(t) be the buffer content in the n-scaled

model at time t ∈ Z:

Qn(t) := sup
s∈{0,...,t}

[An(s, t) − nc(t − s)],

see for instance Equation (2.1) of Norros [1994]. The steady-state probability pn of

the buffer content exceeding nb reads

pn := lim
t→∞

P (Qn(t) > nb) = lim
t→∞

P

(

sup
s∈{0,...,t−1}

[An(s, t) − nc(t − s)] > nb

)

.

For any given t = 1, 2, . . ., {An(s, t) : 0 ≤ s ≤ t − 1} has the same distribution as

An(t − s) : 0 ≤ s ≤ t − 1}; this is called time-reversibility of An(·). Therefore, pn

can be rewritten as

pn = lim
t→∞

P

(

sup
s∈{1,...,t}

[An(s) − ncs] > nb

)

= P

(

sup
t∈{1,2,...}

[An(t) − nct] > nb

)

.

(1)

Indeed, Equation (1) constitutes a quite remarkable, and perhaps slightly counter-

intuitive, result: the steady-state buffer content of the queueing process (which is

reflected at 0, and hence takes values in [0,∞)) has the same distribution as the
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supremum of the free process (i.e., the process An(t)−nct, which is not reflected at

0). This useful duality between the buffer-content probability pn and exceedance

probabilities of the free process is discussed in greater detail in, for instance, Sec-

tion V.4 of Asmussen [2000].

In view of the duality of Representation (1), we can conclude that there are

essentially two ways of simulating the buffer-content probability:

—In the first place, one could estimate the buffer-content probability from the evo-

lution of the reflected process (i.e., the buffer-content process). However, standard

simulation approaches to do this have their intrinsic difficulties: a regenerative

approach fails in the context of Gaussian inputs (notice that busy periods are de-

pendent!), whereas in a ‘batch-means’ approach the estimator could suffer from

the relatively strong dependencies between the batches (particularly when the

Gaussian process is long-range dependent).

—As an alternative, one could estimate the buffer-content probability from sample

paths of the free process An(t)−nct. Every run is an independent sample of this

free process, and the corresponding estimator is the fraction of runs in which nb is

exceeded (for some t ∈ N). This approach clearly overcomes the above-mentioned

problems arising when estimating pn from the reflected process.

A practical difficulty of the latter approach, however, relates to the infinite ‘simu-

lation horizon’ involved (it needs to be verified whether the free process exceeds nb

for some t ∈ N), but this issue can be addressed, see the next subsection. Motivated

by these arguments, we have chosen to use in this paper the representation of the

buffer-content probability as an exceedance probability of the free process; in other

words: we estimate pn relying on the right-hand side of (1).

We remark that the probability pn of the steady-state buffer content being larger

than nb in a system with infinite buffer is often used as an approximation for the

loss probability in a system with finite buffer nb.

We emphasize that the behavior of the probability pn in discrete time is essentially

different from continuous time. The buffer-content probability in continuous time

is obtained by replacing N by R+ in Eq. (1). Notably, the asymptotics of the

buffer-content probability in continuous time differ qualitatively from those in (1),

see Dȩbicki and Mandjes [2003]. A further discussion of this issue is relegated to

Section 6.

2.2 The simulation horizon

Representation (1) shows that the buffer-content probability equals an exceedance

probability on an infinite time horizon. Hence, to estimate pn through simulation,

we first have to truncate N to {1, . . . , T}, for some finite T , while still controlling

the error made. That can be done as follows.
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Suppose we approximate pn by

pT
n := P

(

sup
t∈{1,...,T}

[An(t) − nct] > nb

)

. (2)

This is evidently a probability smaller than pn, but the larger T the smaller the

error. We now analyze how large T should be. Define τn := inf{t ∈ N : An(t)−nct >

nb}, so that pn = P (τn < ∞). As we propose to approximate pn by P (τn ≤ T ), we

discard the contribution of P (T < τn < ∞). As in Boots and Mandjes [2002], we

choose T such that

P (T < τn < ∞)

pn
< ǫ, (3)

for some predefined, typically small, ǫ > 0. When choosing ǫ small enough, the

truncation is of minor impact. Clearly, the smaller ǫ, the larger the T required.

The requirement in (3) does not directly translate into an explicit expression for

the simulation horizon T as a function of ǫ and n. Following Boots and Mandjes

[2002], this problem is tackled by establishing tractable bounds on P (T < τn < ∞)

and pn: with a lower bound on pn and an upper bound on P (T < τn < ∞), we can

choose T so large that P (T < τn < ∞)/pn < ǫ. We write

It :=
(b + (c − µ)t)2

2σ2(t)
.

A lower bound on pn. Obviously, for any t ∈ N, application of (1) entails

pn ≥ P (An(t) > nb + nct)

=

∫ ∞

√
n b+(c−µ)t

σ(t)

1√
2π

exp

(

−1

2
x2

)

dx

≥ 1√
π

1√
nIt +

√
nIt + 2

e−nIt , (4)

where the last inequality is a standard bound for the standard normal cumula-

tive density function (see Mitrinović [1970, p. 177–181] for related inequalities and

references).

In order to find the best possible lower bound, we compute t∗ := arg inft∈N
It

and use the lower bound (4) for t = t∗. The existence of t∗ is guaranteed by the

assumption that σ2(t)t−α → 0 as t → ∞ for some α ∈ (0, 2). In case t∗ is unique,

it is usually referred to as the ‘most probable’ exceedance epoch: given that the

free process An(t) − nct exceeds nb, it is most likely that it happens at epoch t∗;

see for instance Wischik [2001b].
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An upper bound on P (T < τn < ∞). By a Chernoff-bound argument, we have

P (T < τn < ∞) =

∞
∑

t=T+1

P (τn = t) ≤
∞
∑

t=T+1

P (An(t) − nct > nb) ≤
∞
∑

t=T+1

e−nIt .

(5)

In the present generality, it is difficult to further bound this sum. We could proceed

by focusing on a specific correlation structure, such as fBm for which σ2(t) = t2H ,

where H ∈ (0, 1). Instead, we focus on the somewhat more general situation that

the variance function can be bounded (from above) by a polynomial: σ2(t) ≤ Ct2H ,

for some H ∈ (0, 1) and C ∈ (0,∞). For instance, if σ2(·) is regularly varying (see,

e.g., Bingham et al. [1989]) with index α, then σ2(t) can be bounded from above

(for t sufficiently large) by tα+δ, for δ > 0; see Prop. 1.5.1 of Bingham et al. [1989].

Obviously, it is desirable to choose the horizon as small as possible under the

restriction that (3) holds; for this, C and H should be chosen as small as possible.

Under σ2(t) ≤ Ct2H we can bound (5) as follows:

∞
∑

t=T+1

e−nIt ≤
∞
∑

t=T+1

exp

(

−n
(c − µ)2

2C
t2−2H

)

≤
∫ ∞

T

exp

(

−n
(c − µ)2

2C
t2−2H

)

dt.

It turns out that we have to consider the cases H ≤ 1/2 and H > 1/2 sepa-

rately. For H ≤ 1/2, the following bound is readily found (its proof is deferred

to Appendix A.1.1). Set C0 := (c − µ)2/(2C) and q := 1/(2 − 2H) for notational

convenience.

Lemma 2.1. In case H ≤ 1/2, we have
∫ ∞

T

exp
(

−nC0t
1/q
)

dt ≤ q

C0n
exp

(

−nC0T
1/q
)

. (6)

We now focus on H > 1/2 (and hence q > 1). Let m be the largest natural

number such that q − 1 − m ∈ (0, 1]. Moreover, we define

γq := q − 1 − m, and βq :=
(q − 1) · · · (q − m)

γm
q eγq

. (7)

These quantities play a central role in the following lemma, which is proven in

Appendix A.1.2.

Lemma 2.2. In case H > 1/2, we have
∫ ∞

T

exp
(

−nC0t
1/q
)

dt ≤ qβq

Cq
0 (n − γq)

exp
(

−(n − γq)C0T
1/q
)

.

By combining the upper bounds and the lower bound, we derive the following

corollary:

Corollary 2.3. For H ≤ 1/2, let T (n) be the smallest integer larger than
(

− 1

nC0
log

[

1

q
√

π

nC0ǫ√
nIt∗ +

√
nIt∗ + 2

e−nIt∗

])q

,
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and for H > 1/2 let T (n) be the smallest integer larger than
(

− 1

nC0
log

[

1

qβq
√

π

(n − γq)C
q
0ǫ√

nIt∗ +
√

nIt∗ + 2
e−nIt∗

])q

.

Then the error as defined in (3) does not exceed ǫ.

Moreover, T := limn→∞ T (n) = (It∗/C0)
1/(2−2H).

Recall that t∗ could be interpreted as the most likely epoch at which the supre-

mum in (1) is attained. Hence, it is not surprising that T > t∗:

It∗

C0
=

(b + (c − µ)t∗)2

2σ2(t∗)

/

(c − µ)2

2C
> (t∗)2−2H = (t∗)1/q . (8)

2.3 Hurst parameter

In this subsection, we investigate the influence of the Hurst parameter on the sim-

ulation horizon. This is of special interest since the computational effort to obtain

estimates with the cut-and-twist method (see Section 4.2) is extremely sensitive to

this horizon.

As already observed, the limiting value (as n → ∞) of the simulation horizon is

given by (It∗/C0)
1/(2−2H), which equals by definition

T = T (H) =

(

inf
t∈N

b + (c − µ)t

(c − µ)tH

)1/(1−H)

.

Assuming that the infimum is taken over the whole real halfline, we see that T (H)

can be approximated by

T̃ (H) :=
b

c − µ

HH/(H−1)

1 − H
.

Clearly, T̃ (H) has a pole at H = 1, but it is insightful to plot T̃ as a function of

H and see how quickly it tends to infinity. Set b/(c− µ) = 1. In Figure 1, we have

plotted this function and its derivative.

It is intuitively clear that T̃ (H) increases in H . The higher H is, the more long-

term correlations are present, and more time is needed until unusual behavior is

diminished. In practice, it will hardly be possible to simulate the probability with

relative error at most ǫ if H > 0.95, cf. (3).

3. PRELIMINARIES ON RARE-EVENT SIMULATION

This section provides some background on the simulation of (small) probabili-

ties. Section 3.1 reviews the concept of importance sampling, one of the standard

techniques in rare-event simulation. The key metric for evaluating simulation ap-

proaches is the so-called asymptotic effiency, as defined in Section 3.2.

3.1 Importance sampling

Importance sampling is a variance reduction technique in which samples are drawn

from a distribution under which the rare event occurs relatively frequently. The
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Fig. 1. T̃ (H) as a function of H (left panel) and its derivative (right panel).

simulation output is weighed by so-called likelihood ratios, keeping track of the dif-

ference between the original and new measures, thus obtaining unbiased estimates.

More formally, suppose that we are given a probability measure ν on some

measurable space (X ,B), and that we are interested in the simulation of the ν-

probability of a given event A ∈ B, where ν(A) is typically small. The idea of

importance sampling is to sample from a different distribution on (X ,B), say λ,

under which A occurs more frequently. This is done by specifying a measurable

function dλ/dν : X → [0,∞] and by setting

λ(B) :=

∫

B

dλ

dν
dν.

Since λ must be a probability measure, dλ/dν should integrate to unity with respect

to ν.

Assuming the equivalence of the measures ν and λ, set dν/dλ := (dλ/dν)
−1

and

note that

ν(A) =

∫

A

dν

dλ
dλ =

∫

X
1A

dν

dλ
dλ,

where 1A denotes the indicator function of A. We refer to dν/dλ as the likelihood

ratio (or simply likelihood). The importance sampling estimator ν̂λ(A) of ν(A) is

found by drawing N independent samples X(1), . . . , X(N) from λ:

ν̂λ(A) :=
1

N

N
∑

k=1

1{X(k)∈A}
dν

dλ
(X(k)). (9)

It is clear that ν̂λ(A) is an unbiased estimator, i.e., Eλν̂λ(A) = ν(A). However, one

has the freedom to choose the distribution λ; a good choice results in an estimator

with small variance. In particular, it is of interest to find the change of measure that
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minimizes this variance. Since ν̂λ(A) is by construction unbiased, it is equivalent

to minimize the second moment
∫

A

(

dν

dλ

)2

dλ =

∫

X
1A

(

dν

dλ

)2

dλ.

It is not difficult to see that a zero-variance estimator is found by letting λ be

the conditional distribution of ν given A, see, e.g., Heidelberger [1995]. However,

the resulting estimator is infeasible for simulation purposes, since then dν/dλ de-

pends on the unknown quantity ν(A). This motivates the use of another optimality

criterion, asymptotic efficiency.

3.2 Asymptotic efficiency

In order to compare simulation techniques the notion of asymptotic efficiency was

introduced. Consider a family of probability measures {νn} on (X ,B). Suppose we

associate to each νn an importance sampling distribution λn on (X ,B); in Section 4,

we study several choices for λn.

Let X
(1)
λn

, . . . , X
(N)
λn

be N i.i.d. samples from λn. We define the importance sam-

pling estimator of νn(B) as in (9):

ν̂λn(B)N :=
1

N

N
∑

k=1

1n

X
(k)
λn

∈B
o

dνn

dλn

(

X
(k)
λn

)

. (10)

The relative error of the importance sampling estimator is defined as

ηN (λn, B) :=

√

Varλn

(

ν̂λn(B)N

)

νn(B)
=

√

Eλn

(

ν̂λn(B)N

)2

− νn(B)2

νn(B)
; (11)

here the notation Varλn(·) and Eλn(·) indicates integration with respect to λn.

Notice that the relative error, i.e., the square root of (11), is proportional to the

width of a confidence interval relative to the (expected) estimate itself; hence,

it measures the variability of the importance sampling estimator. Let N∗
λn

:=

inf{N ∈ N : ηN (λn, B) ≤ ηmax} be the number of samples needed for a prespecified

relative error. For asymptotic efficiency we require that this number vanishes on

an exponential scale. Asymptotic efficiency is sometimes referred to as asymptotic

optimality, logarithmic efficiency, or weak efficiency. The following notion was

introduced by Sadowsky [1991].

Definition 3.1. An importance sampling family {λn} is called asymptotically ef-

ficient if

lim sup
n→∞

1

n
log N∗

λn
= 0,

for some given maximal relative error 0 < ηmax < ∞.

It is important to observe that studying an importance sampling family for n →
∞ does not necessarily yield knowledge on the performance of the corresponding
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estimator for a given n. For instance, if one family induces a bounded relative error

(in n) and another yields an unbounded relative error which still vanishes on an

exponential scale, the first is clearly preferable. According to the above criterion,

both families are then called asymptotically efficient, and hence the asymptotic

efficiency criterion disguises the nice property of bounded relative error for the first

family. In the context of the simulation methods that we study in this paper, we

further clarify this point in Section 5.5.

We also note that, under a weak condition on the sets B, asymptotic efficiency

is equivalent to lim supn→∞ En ≥ 2, with

En :=
log
∫

B

(

dνn

dλn

)2

dλn

log νn(B)
; (12)

see criterion (2) of Asmussen and Binswanger [1997], and Dieker and Mandjes [2005]

for more details. For a given n, we refer to En as the relative efficiency.

4. SIMULATION METHODS

Using the bounds of Section 2.2, the simulation horizon can be truncated. We

therefore focus in the sequel of the paper on the simulation of this ‘truncated’

buffer-content probability p
T (n)
n defined in (2).

As argued in Section 3.2, asymptotic efficiency corresponds to the performance

of simulation methods for large n. Notice that, by virtue of Corollary 2.3, we can

safely set T (n) = ⌈T ⌉ for n large enough; for ease denote T := ⌈T ⌉. Conclude that

we can restrict ourselves to assess asymptotic efficiency of methods for estimating

pT
n .

In this paper, we concentrate on four methods for simulating pT
n . The first, which

we refer to as the single (exponential) twist method, is the simplest of the four. We

present explicit conditions on the covariance structure of the Gaussian sources under

which the method is asymptotically efficient. It appears that for important cases

the method does not yield asymptotic efficiency. Therefore, we also discuss three

asymptotically efficient alternatives: the first solves the theoretical difficulties by

simulating timeslot by timeslot (which we therefore call cut-and-twist), the second

by randomization of the twist (random twist), and the third by simulating source

by source (sequential twist).

4.1 The single-twist method

Large-deviation theory suggests an importance sampling distribution based on an

exponential change of measure (‘twist’). In a considerable number of simulation

settings this alternative distribution has shown to perform well — in some cases it

is asymptotically efficient, see for instance Asmussen [1989], Bucklew et al. [1990],

Collamore [2002], Lehtonen and Nyrhinen [1992a], Lehtonen and Nyrhinen [1992b],

Siegmund [1976]. However, one has to be careful, as a successful application of

such an exponential twist critically depends on the specific problem at hand, see
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e.g. Dieker and Mandjes [2005], Dupuis and Wang [2004], Glasserman and Wang

[1997]. Before deriving conditions for asymptotic optimality of the exponential

twist in the setup of the present paper, we first provide more background.

We denote

OT := {x ∈ R
T : ∃t ∈ {1, . . . , T} : xt + µt ≥ b + ct}

=
⋃

t∈{1,...,T}

⋃

{y:y+µt≥b+ct}
{x ∈ R

T : xt = y}, (13)

such that

pT
n = ν(T )

n (OT ),

with ν
(T )
n denoting the distribution of the centered (i.e., zero mean) process

{An(t)/n − µt : t = 1, . . . , T}.

The following lemma, which is proven in Appendix A.2, states that ν
(T )
n (OT ) decays

exponentially in n. We let Γ(T ) denote the covariance matrix of {A1(t) − µt : t =

1, . . . , T}, i.e., Γ(T ) := {Γ(s, t) : s, t = 1, . . . , T}. All proofs for this subsection are

given in Appendix A.2.

Lemma 4.1. We have

lim
n→∞

1

n
log ν(T )

n (OT ) = −1

2
x∗′
(

Γ(T )
)−1

x∗ = −It∗ , (14)

where t∗ := arg inft∈N It, and the vector x∗ ∈ RT is given by

x∗
t :=

b + (c − µ)t∗

σ2(t∗)
Γ(t∗, t). (15)

Recall that time epoch t∗ can be thought of as the most likely epoch that the free

process An(t)−nct exceeds nb: as n grows, the probability of exceeding nb vanishes,

but given that it occurs, with overwhelming probability it occurs at t∗. Likewise,

x∗ can informally be interpreted as the most likely path to exceedance; note that

indeed x∗
t∗ = b+(c−µ)t∗. It is important to realize that x∗ is piecewise linear only

in the case of (scaled) Brownian input (i.e., σ2(t) = Ct for some C > 0); in general

x∗ is a ‘curved’ path.

We can now introduce the family {λ(T )
n } of exponentially-twisted probability

measures. The probability mass assigned to a Borel set A ⊂ RT under this new

distribution is

λ(T )
n (A) =

∫

A

exp

(

n
b + (c − µ)t∗

σ2(t∗)
xt∗ − nIt∗

)

ν(T )
n (dx). (16)

Observe that

(Γ(T ))−1x∗ =
b + (c − µ)t∗

σ2(t∗)







Γ(1, 1) · · · Γ(1, T )
...

...

Γ(T, 1) · · · Γ(T, T )







−1





Γ(t∗, 1)
...

Γ(t∗, T )






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=
b + (c − µ)t∗

σ2(t∗)
et∗ ,

where ei is a T -dimensional vector of zeros, except for a one on the i-th position.

As a result, cf. (14),

1

2
x∗′
(

Γ(T )
)−1

x∗ =
b + (c − µ)t∗

2σ2(t∗)
x∗

t∗ = It∗ .

Also, the density on RT corresponding to λ
(T )
n reduces to

exp

(

n
b + (c − µ)t∗

σ2(t∗)
xt∗ − nIt∗

)

1

(
√

2π)T |Γ(T )/n|1/2
exp

(

−n

2
x′
(

Γ(T )
)−1

x

)

=
1

(
√

2π)T |Γ(T )/n|1/2
exp

(

−n

2
(x − x∗)′

(

Γ(T )
)−1

(x − x∗)

)

;

here it is used that

x′
(

Γ(T )
)−1

x∗ =
b + (c − µ)t∗

σ2(t∗)
xt∗ .

In other words: the new measure λ
(T )
n corresponds to the distribution of a Gaus-

sian process with mean vector {x∗
t : t = 1, . . . , T}, and covariance matrix Γ(T )/n.

Remark that the mean vector of the new measure is different from the old mean (in

fact, the new Gaussian process does not correspond to stationary sources anymore),

whereas the covariances under the old and new measure coincide. Since samples

from λ
(T )
n tend to follow the most likely path x∗ for large n, we say that this

exponential twist is in accordance with the large-deviation behavior of Lemma 4.1.

In the Gaussian setting, the above calculation shows that exponentially twisting

amounts to changing the mean vector; see, e.g., Huang et al. [1999] and Dieker and

Mandjes [2005]. Indeed, the above calculations show that the covariance structure

remains unchanged, while only the mean changes. Huang et al. [1999] (see their

Eq. (16)) and Michna [1999] propose to take a straight path as the mean vector, as

opposed to the ‘curved’ most-likely path x∗. The following lemma shows, however,

that x∗ is in fact the ‘best’ way to change the mean (i.e., the only candidate that

possibly yields asymptotic efficiency).

Lemma 4.2. Any mean vector different from x∗ does not yield asymptotic effi-

ciency.

Lemma 4.2 further motivates the verification of the asymptotic efficiency of the

twisted distribution λ
(T )
n , and the following theorem is therefore the main result

of this subsection. It presents sufficient and necessary conditions for asymptotic

efficiency of the estimator determined by (10), where λ
(T )
n is given by (16).

We recently came across a related theorem by Baldi and Pacchiarotti [2004]. An

important difference is that these authors study the continuous-time buffer-content

probability. We wish to remark, however, that our method can be extended to cover

continuous time by applying standard theorems for large deviations of Gaussian
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measures on Banach spaces, see for instance Deuschel and Stroock [1989] or Dieker

[2005]. However, we believe that discrete time is more natural in a simulation

framework; see also Section 6. Another difference is the proof technique; Baldi and

Pacchiarotti [2004] use recent insights into certain Gaussian martingales, while we

take a direct approach.

Theorem 4.3. Importance sampling under a ‘single exponential twist’ is asymp-

totically efficient for simulating pT
n if and only if

inf
t∈{1,...,T}

b + (c − µ)t + x∗
t

σ(t)
= 2

b + (c − µ)t∗

σ(t∗)
. (17)

Clearly,

ht∗ = 2
b + (c − µ)t∗

σ(t∗)
, where ht :=

b + (c − µ)t + x∗
t

σ(t)
;

hence Theorem 4.3 states that the change of measure is asymptotically efficient if

and only if ht ≥ ht∗ for all t ∈ {1, . . . , T}.
In the above we represented time by the natural numbers N, i.e., we used a grid

with mesh 1. The same techniques can be used to prove a similar statement for

any arbitrary simulation grid. In the following intermezzo, we analyze the impact

of making the grid more fine-meshed.

Intermezzo: refining the simulation grid. Consider simulation on the grid mN ∩
[0, T ] for some grid mesh m > 0. One can repeat the analysis in the proof of

Theorem 4.3 (see the appendix) to deduce that the infimum in (17) should then be

taken over mN∩ [0, T ]. Thus, by refining the grid, the left hand side of (17) can be

made arbitrarily close to the infimum over [0, T ]. This motivates an analysis of the

function g : R+ → R+ given by g(t) := [b+(c−µ)t+ x̄∗(t)]/σ(t), where x̄∗ denotes

the continuous-time analogue of (15):

x̄∗(t) =
b + (c − µ)t∗

2σ2(t∗)

[

σ2(t∗) + σ2(t) − σ2(|t − t∗|)
]

.

Hence, there is asymptotic optimality for any grid on [0, T ] if and only if g(t) ≥ g(t∗)

for all t ∈ [0, T ]. Suppose that σ2 is twice continuously differentiable with first and

second derivative denoted by σ̇2 and σ̈2 respectively. Necessary conditions for

inft∈[0,T ] g(t) ≥ g(t∗) are then ġ(t∗) = 0 and g̈(t∗) > 0. Therefore we compute

lim
t↑t∗

ġ(t) =
1

2

b + (c − µ)t∗

σ3(t∗)
σ̇2(0),

so that σ̇2(0) > 0 implies that exponential twisting becomes asymptotically ineffi-

cient as the grid mesh m tends to zero. For the complementary case σ̇2(0) = 0, we

can certainly find an ‘inefficient’ grid mesh if limt↑t∗ g̈(t) < 0. After some calcula-

tions, one obtains

lim
t↑t∗

g̈(t) =
1

4

b + (c − µ)t∗

σ3(t∗)

[

[σ̇2(t∗)]2

σ2(t∗)
− σ̈2(t∗) − σ̈2(0)

]

, (18)
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which is negative if [σ̇2(t∗)]2 < σ2(t∗)[σ̈2(t∗) + σ̈2(0)].

Having these conditions at our disposal, we can study some specific cases and ask

whether the single exponential twist becomes inefficient as the mesh tends to zero.

For instance, suppose that the input traffic A1(t) is a fractional Brownian motion

(fBm) with Hurst parameter H ∈ (0, 1), i.e., σ2(t) = t2H . Note that a special case

is Brownian motion, which corresponds to H = 1/2. If H ≤ 1/2, one has σ̇2(0) > 0

and a single exponential twist is therefore asymptotically inefficient for grid meshes

m small enough, in line with the results of Baldi and Pacchiarotti [2004]. Moreover,

if H > 1/2, it follows from (18) and σ̈2(0) = ∞ that limt↑t∗ g̈(t) < 0, so that we

here have inefficiency as well.

From the above we also see that it could be that the exponential twist is asymp-

totically optimal for some grid mesh m, but loses the optimality at some finer

threshold grid mesh m∗.

Intuition behind (in-)efficiency of exponential twist. Having seen that a single

exponential twist can be asymptotically inefficient, one may wonder why this occurs.

To this end, consider the likelihood term dν
(T )
n /dλ

(T )
n following from (16):

exp

(

−n
b + (c − µ)t∗

σ2(t∗)
xt∗ + nIt∗

)

= exp

(

−n
b + (c − µ)t∗

σ2(t∗)
(xt∗ − x∗

t∗) − nIt∗

)

,

where xt∗ corresponds to the value of An(t∗)/n−µt∗, with mean x∗
t∗ = b+(c−µ)t∗

under λ
(T )
n . For asymptotic optimality, this likelihood ratio should be ‘small’ for

realizations in the set OT . If there is exceedance at time t∗, then clearly

dν
(T )
n

dλ
(T )
n

≤ e−nIt∗ (19)

(use xt∗ ≥ b + (c − µ)t∗). However, if exceedance occurs at any other time epoch,

the likelihood ratio can take any (positive) value. Obviously, an extremely high

value has a dramatic effect on the variance of the estimator, but the probability of

such an extreme value might be low. Summarizing, condition (17) gives a criterion

to check whether high values for the likelihood are probable enough to affect (the

exponential decay of) the variance of the estimator.

4.2 The cut-and-twist method

In Section 4.1 we have seen that the likelihood may explode while simulating pT
n

with a single exponential twist. This can be overcome by partitioning the event OT

into disjoint sub-events, and simulating these individually. To this end, write

pT
n = ν(T )

n





⋃

t∈{1,...,T}
OT (t)



 =
∑

t∈{1,...,T}
ν(T )

n (OT (t)),

where OT (t) corresponds to the event that exceedance occurs for the first time at

time t:

OT (t) := {x ∈ R
T : xt + µt ≥ b + ct; ∀s ∈ {1, . . . , t − 1} : xs + µs < b + cs}.
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Hence, the problem reduces to simulating T probabilities of the type ν
(T )
n (OT (t)).

This partitioning approach is also taken by Boots and Mandjes [2002], where this

idea was exploited for a queue fed by (discrete-time) on-off sources.

The resulting simulation algorithm, to be called cut-and-twist method, works

as follows. Define the exponentially twisted measure tλ
(T )
n as in (16), but with

t instead of t∗, and estimate the probability ν
(T )
n (OT (t)) with the importance-

sampling distribution tλ
(T )
n . An estimate of pT

n is found by summing the estimates

over t ∈ {1, . . . , T}.
Before discussing the efficiency of this method, we note for the sake of clarity

that the estimator equals

1

N

N
∑

k=1

∑

t∈{1,...,T}
1n

X
(k)
t ∈OT (t)

o

dν
(T )
n

dλ
(T )
n

(

X
(k)
t

)

, (20)

where X
(1)
t , . . . , X

(N)
t is an i.i.d. sample from tλ

(T )
n , and the samples X

(·)
t , t =

1, . . . , T are also independent.

The following theorem is proven in Appendix A.3. Its proof is based on the

property that the method is such that, when estimating ν
(T )
n (OT (t)), for any x ∈

OT (t) the corresponding likelihood is uniformly bounded by exp(−nIt), cf. (19).

Theorem 4.4. The cut-and-twist method is asymptotically efficient for estimat-

ing pT
n .

This method is asymptotically optimal, but it has the obvious drawback that it

may take a substantial amount of time to simulate the T probabilities individually.

Summarizing, in this approach the exceedance event is split into disjoint events

that correspond to exceedance (for the first time) at time t. The main advantage

of this splitting is that every of these individual events can be ‘controlled’ now

(the corresponding likelihoods are even bounded, see the proof of Theorem 4.4),

whereas the single-twist method suffers from the (potentially large) likelihoods that

correspond to exceedance at time epochs different from the most likely time t∗, as

was noted in Section 4.1. As a result, the single-twist method is not necessarily

asymptotically efficient, while cut-and-twist is.

4.3 The random-twist method

An approach closely related to the cut-and-twist method was proposed by Sadowsky

and Bucklew [1990]. In the method of Sadowsky and Bucklew [1990], a random T
is drawn in each simulation run according to some (arbitrary) distribution Q =

{qt : t = 1, . . . , T} with qt strictly positive for any t ∈ {1, . . . , T}; subsequently, one

does a simulation run under the measure Tλ(T )
n (as defined in Section 4.2).

The likelihood ratio becomes
[

T
∑

t=1

qt exp

(

n
b + (c − µ)t

σ2(t)
xt − nIt

)

]−1

.
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Note that this likelihood ratio depends on the whole path x1, . . . , xT , as opposed

to the previous two methods.

The following result follows from Theorem 2(a) of Sadowsky and Bucklew [1990].

Theorem 4.5 (Sadowsky-Bucklew). The random-twist method is asymptot-

ically efficient for estimating pT
n .

Remarkably, the asymptotic efficiency does not depend on the specific choice of

the qt, as long as they are strictly positive. Hence, a drawback of the method is that

it is unclear how the distribution Q is best chosen. For instance, if Q is ‘almost’

degenerate in t∗, then the method is similar to the single-twist method; therefore,

it may suffer in practice from the same problems as discussed in Section 4.2. The

theorem indicates that this effect eventually vanishes (when n grows large), but

this could require extremely large n.

It is not the aim of this paper to investigate the impact of the choice of Q on

the quality of the estimates; in the sequel, we suppose that the qt correspond to a

truncated Poisson distribution with mean t∗, i.e.,

qt =
(t∗)t/t!

∑T
k=1(t

∗)k/k!
, t = 1, . . . , T.

The reason for this choice is that the Poisson distribution is nicely spread around its

mean value. In addition, it is straightforward to sample from a Poisson distribution,

so that one can sample from Q with a simple acceptance-rejection procedure.

4.4 The sequential-twist method

Recently, Dupuis and Wang [2004] introduced an intuitively appealing approach to

rare-event simulation. We now give a brief description of their method in the setting

of the present paper, although the method is known to work in a considerably more

general setting. Consider a sequence Ā1, Ā2, . . . of centered i.i.d. random vectors in

RT , where the Āj are distributed as {A1(t) − µt : t = 1, . . . , T}; as a consequence,

the vectors Āj have distribution ν
(T )
1 . Note that pT

n can be written as

P

(

1

n

n
∑

i=1

Āi ∈ OT

)

,

with OT defined in (13), and hence

pT
n =

∫

{(x(1),...,x(n)): 1
n

P

n
i=1 x(i)∈OT }

ν
(T )
1 (dx(1)) · · · ν(T )

1 (dx(n)). (21)

Instead of twisting νT
n as in the previous methods, the sequential-twist method

twists each copy of ν
(T )
1 (i.e., each source) in Equation (21) differently, exploiting the

fact that the sources behave stochastically independently. Recall that exponential

twisting for Gaussian random variables corresponds to shifts in the mean (and no

change in the covariance structure).
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This gives rise to the following sequential approach. Suppose Ā1, . . . , Āj (i.e.,

source 1 up to j) are already generated, and we are about to twist the traffic

generated by source j + 1 (for j = 0, . . . , n − 1). We aim to find the ‘cheapest’

way to reach the exceedance set OT given Ā1, . . . , Āj . Hence, we do not change

the measure if already 1
n

∑j
i=1 Āi ∈ OT (under this condition reaching OT is not

‘hard’ anymore, as EĀj(t) = 0); otherwise we change the mean of the distribution

of Āj+1 to µj+1 (recall this is a vector in RT ), where

µj+1 := arg inf
{y∈RT : 1

n

Pj
i=1 Āi+

1
n

P

n
i=j+1 y∈OT }

y′
(

Γ(T )
)−1

y;

here an empty sum is interpreted as zero. The following lemma gives a useful

explicit expression for µj+1. The proof is given in Appendix A.4.

Lemma 4.6. Define for j = 0, . . . , n − 1,

t∗j+1 := arg inf
t∈{1,...,T}

nb + n(c − µ)t −∑j
i=1 Āi(t)

(n − j)σ(t)
, (22)

and denote the corresponding infimum by Jj+1. Then we have

µj+1 =
Jj+1

σ(t∗j+1)
Γ(·, t∗j+1).

Observe that for j = 0 the formula reduces to the large-deviation most probable

path, which is to be expected since then no information is available on the previously

generated sources. The reader may check that the resulting likelihood ratio is

n
∏

j=1

exp

(

− Jj

σ(t∗j )
Āj(t

∗
j ) +

1

2
J2

j

)

.

An estimator is obtained by performing N independent runs, and computing the

estimate using (9).

The conditions for the following theorem of Dupuis and Wang [2004] are checked

in Appendix A.4.

Theorem 4.7 (Dupuis-Wang). The sequential-twist method is asymptotically

efficient for estimating pT
n .

Informally speaking, the idea behind the sequential-twist approach is that, by

adapting the mean µj of every next source j in the way described above, the

set OT is reached close to its most likely point, thus avoiding large likelihood

ratios. Apparently, as claimed in the above theorem, the resulting estimator is

asymptotically optimal.

A drawback of this approach is that all sources should be generated individually;

one does not simulate the aggregate input process, as in the previous methods.

However, the sequential approach can also be used with less than n Gaussian vectors

while retaining the property of asymptotic efficiency. This is done by twisting
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source batches instead of individual sources. Let M be a batch size such that

n/M ∈ N, where M does not depend on n. Define Ā
(M)
i := 1

M

∑M
j=1 Āj+(i−1)M . It

is important that M does not depend on n. We refer to this approach as the batch

sequential-twist method; since

P

(

1

n

n
∑

i=1

Āi ∈ OT

)

= P





1

n/M

n/M
∑

i=1

Ā
(M)
i ∈ OT



 ,

Theorem 4.7 also yields the asymptotic efficiency of the batch sequential-twist es-

timator for any fixed M .

Although the sequential-twist method and its batch counterpart are both asymp-

totically efficient, some practical issues arise when M is made (too) large. The rel-

ative efficiency then converges much slower to 2, so that we might not even be close

to efficiency for reasonable n. This issue is addressed empirically in Section 5.4.

5. EVALUATION

In this section, we evaluate the four methods of Section 4 as follows. First, we

discuss some issues related to our implementation of the methods. Based on this,

we come to preliminary conclusions on the time complexity of each of the methods.

In Section 5.2, we check empirically that our simulations support the claims of

Theorems 4.3, 4.4, 4.5, and 4.7. After this analysis, the reliability of the methods

is studied by refining the simulation grid; for this, we also take the computational

effort into account. Further empirical insight into the batch sequential-twist method

is gained by studying the influence of the batch size on the relative efficiency and

the relative error.

While the preceding sections are applicable to general Gaussian processes with

stationary increments (satisfying certain conditions), in this section we focus on the

important case of fractional Brownian motion.

5.1 Implementation and time complexity

Simulation of fractional Brownian motion is highly nontrivial. As the simulation

grid is equispaced, it is best to simulate the (stationary!) incremental process,

often called fractional Gaussian noise. When T is a power of two, the fastest

available algorithm for simulating T points of a fractional Gaussian noise is the

method of Davies and Harte [1987]. In this approach, the covariance matrix is

embedded in a so-called circulant matrix, for which the eigenvalues can easily be

computed. The Fast Fourier Transform (FFT) is then used for maximum efficiency;

the computational effort is of order T log T for a sample size of length T . For more

details on this method, we refer to Dietrich and Newsam [1997] and Wood and

Chan [1994].

Although we use this fast algorithm, the required number of traces per simulation

run still highly influences the speed of the methods. The single-twist method and

the random-twist method only need one trace (of length T ) for each simulation
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run, while n such traces are needed for the sequential-twist method. For the cut-

and-twist method, traces of length t = 1, . . . , T are needed. These considerations

indicate that it depends on the parameter values which method performs best.

We first address the impact of the number of sources n. A clear advantage of the

cut-and-twist method and the random-twist method is that the required simulation

time depends just mildly on n (due to the fact that T (n) → T ), as opposed to

sequential-twist (where the simulation time is roughly proportional to n).

As for the influence on the simulation horizon, we have already observed that T

is large when either b/(c − µ) or H is large, see Section 2.3. This badly affects the

cut-and-twist method, since such a sample is needed for each time epoch (of which

there are T ). The random-twist method only needs a single fBm trace, but the

computation of the likelihood ratio is of the order T . Sequential-twist calculates

the best twist n times, which amounts to computing the infimum in (22); this

computation is of order T .

We raise one further implementation issue, which plays a role for all of the meth-

ods. Once we have calculated the simulation horizon T , we round it off to the

smallest power of two T ′ with T ′ ≥ T , and we use this new horizon T ′. Similarly,

since traces of length t = 1, . . . , T ′ are needed for the cut-and-twist method, t is

rounded off, for every t.

5.2 Empirical validation of the theory

In Section 4, we studied whether the four discussed simulation methods are asymp-

totically efficient. In the present subsection, our aim is to validate these theoretical

results by performing simulation experiments. By doing so, we gain insight into

the quality of the methods.

The parameters are chosen as follows: b = 0.3, c − µ = 0.1, H = 0.8, M =

1, ǫ = 0.05, and ηmax = 0.1/1.96. Recall from Section 3.2 that the simulation

is stopped when the relative error drops below ηmax. It is left to the reader to

check that condition (17) does not hold, i.e., that the single-twist estimator is not

asymptotically efficient. The choice H = 0.8 is supported by several measurement

studies, see for instance Leland et al. [1994], and ηmax is chosen such that the width

of the confidence interval is 20% of the estimated probability. Reduction of this

value has a significant impact on the simulation time, and the present value yields

typical results within a reasonable time frame.

We first study the asymptotic efficiency of the simulation methods by varying

n and analyzing the number of simulation runs N∗
n needed to achieve the re-

quired relative error. In the left panel of Figure 2, we have plotted log N∗
n for

n = 100, 150, . . . , 500 and all four simulation methods, and in addition the ‘naive’

direct Monte Carlo estimator. The confidence intervals are not plotted, since they

are completely determined by the estimates themselves and the value of ηmax. Note

that under asymptotic efficiency, log N∗
n should be (ultimately) sublinear. There-

fore, the plot supports Theorem 4.4, Theorem 4.7, and the fact that the naive
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Fig. 2. Empirical verification of the asymptotic efficiency of the simulation methods.

n = 300 rel. eff. n = 1000 rel. eff.

naive 6.12 × 10−4 — — —

single twist 4.84 × 10−4 1.68 1.03 × 10−10 1.87

cut-and-twist 5.95 × 10−4 1.86 1.32 × 10−10 1.94

random twist 5.50 × 10−4 1.70 1.38 × 10−10 1.89

sequential twist 6.39 × 10−4 1.86 1.41 × 10−10 1.93

‘exact’ 5.8 × 10−4 1.38 × 10−10

Table I. Two of the estimates corresponding to Figure 2.

estimator is inefficient (in fact, the number of runs grows exponentially, in line with

pn decaying exponentially). However, it is not immediate from the left panel of

Figure 2 that single twist is asymptotically inefficient (cf. Theorem 4.3), and that

random twist is asymptotically efficient (cf. Theorem 4.5). Although the irregular

behavior indicates that this might indeed be the case, we find more convincing

evidence by increasing n further. This is done in the right panel of Figure 2.

It is interesting to see some of the estimated probabilities that correspond to

Figure 2. We give these for two different values of n in Table I. To obtain a

benchmark, we also performed a very long simulation, see the row labeled ‘exact’.

It was obtained with the cut-and-twist method, where the simulation is stopped as

soon as both ends of the confidence interval give the same value when rounded off

to one digit for n = 300, and to two digits for n = 1000.

The unstable behavior of the single-twist method (also reflected in a low value

of the relative efficiency in Table I) has been explained theoretically through the

interpretation of a possible failure of the exponential twist, see Section 4. As noted

there, the supremum is attained at time epoch t∗ in a ‘typical’ simulation run, but

it might also happen at some other epoch t 6= t∗. Although such a realization is

(relatively) rare, it has an impact on both the estimate and the estimated variance.

Since these two estimated quantities determine whether the simulation is stopped,

it may occur that the number of these ‘rare’ realizations is too low, so that the
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simulation is stopped too early and the buffer-content probability is underestimated.

Likewise, random twist can lead to underestimation, but this effect vanishes when

n grows large, in line with the theory of Section 4.3. The table shows that random

twist has a low relative efficiency for small n.

It is interesting to see that the sequential-twist method and cut-and-twist method

have comparable performance, both in terms of relative efficiency (Table I) and

number of simulation runs (Figure 2).

Hence, cut-and-twist and sequential twist seem to perform best, although the

random-twist method improves considerably as n grows. However, these methods

are also the slowest (i.e., the effort per experiment is highest). To obtain a more

realistic comparison, one should consider CPU time, rather than the number of

experiments. This is done in the next subsection.

5.3 Simulation grid

While the observations in the previous subsection were predicted by theory, we

now perform experiments that relate to the CPU time needed, for which no theory

is available. This analysis provides further insight into the performance of the

methods in practice, both in terms of reliability and speed. As a first step, we

investigate the influence of the grid mesh on the estimated probability.

We evaluate, with again Ān ∈ RT denoting the centered version of An,

αpn := P

(

sup
t∈{α,2α,...}

Ān(t) − n(c − µ)t > nb

)

(23)

for a range of α ≥ 0, in such a way that the simulation grid becomes finer. For

instance, one can take α = 1, 1/2, 1/4, 1/8; αpn then increases as α is made smaller,

as we only add grid points, and hence the supremum of the free process becomes

larger. Therefore, as a sanity check, we can test the reliability of the simulation

methods by checking whether the estimates indeed increase when making the grid

finer.

Before we can compare the estimated probabilities for different α, we first study

the impact of α on the simulation horizon. We denote this simulation horizon, as

a function of α, by T α. We now verify whether also αpT α

n (defined in a self-evident

manner) should increase when decreasing α. Since Ān(t) is a centered fractional

Brownian motion by assumption, one readily verifies that Ān(αt) has the same

distribution as αHĀn(t). This so-called self-similarity property now yields that

(23) equals

P

(

sup
t∈N

αHĀn(t) − nα(c − µ)t > nb

)

= P

(

sup
t∈N

Ān(t) − nα1−H(c − µ)t > nα−Hb

)

.

The above equation entails that a grid mesh α is equivalent to a unit grid mesh if
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b and c − µ are replaced by bα := α−Hb and cα := α1−H(c − µ). Note that then

Iα
t∗ := inf

t∈{α,2α,...}

(b + (c − µ)t)2

2t2H
= inf

t∈N

(b + α(c − µ)t)2

2α2Ht2H
,

so that the (limiting) simulation horizon then becomes (see (8))

T α =
Iα
t∗

c2
α/2

= inf
t∈N

(b/α + (c − µ)t)2

c2t2H
,

which is monotonic in α and tends to infinity as α ↓ 0. We conclude that the

monotonicity is preserved: αpT α

n increases when α ↓ 0, just like αpn does.

In order to investigate whether the estimates indeed decrease in α, we perform

some simulations with parameters n = 150, b = 0.9, c − µ = 0.3, H = 0.8, M = 1,

and ǫ = 0.05. To obtain each of the estimates, we stop the simulation after exactly

five minutes of CPU time. It would be desirable to do the simulations for grid

sizes 20, 21, 22, 23, 24, . . ., but this quickly becomes computationally too intensive.

Therefore, we focus on four sets of grids; 1/α = 1, 2, 4, 8, 1/α = 3, 6, 12, 1/α = 3, 9,

and 1/α = 5, 10.

In Figure 3, we have plotted these four sets using the four different methods.

The dotted lines correspond to the boundaries of the confidence intervals. Roughly

speaking, each of the plots shows the expected monotonicity, with the only excep-

tion of the single-twist method. This is in line with Theorem 4.3. The behavior of

the single-twist confidence intervals also differs from the other methods, but it is

interesting to compare these intervals for the other three (efficient) methods.

The widths of the confidence intervals do not seem to grow proportionally to the

estimates, most prominently for 1/α = 12. Although the stopping criterion (CPU

time) is proportional to the number of runs, the CPU time per run varies, since the

time horizon T depends on α. For instance, fBm traces of length 1024 are generated

if α = 1/10, while this increases to 2048 for α = 1/12. This is reflected in the plots

(especially in the cut-and-twist plot, as anticipated in Section 5.1). Clearly, the

random-twist confidence intervals are the smallest, but we have to keep in mind

that the probabilities may be underestimated, in view of the previous subsection.

5.4 Batch size for the sequential-twist method

The aim of the present subsection is to investigate the influence of the parameter

M in the batch sequential-twist method. That is, the n sources are divided into

batches of size M and each of the batches is considered a single source (using

the fact that the sum of independent Gaussian vectors is again Gaussian). The

advantage over the ‘normal’ sequential-twist method is that one needs to sample

just n/M sources per simulation run, rather than n. On the other hand, however,

this ‘lumping procedure’ limits the flexibility of the method (due to the fact that

the probability measure is adapted less often).

If we let the simulation run for a specified time period (here five minutes), there

are two effects as M increases. First, the relative efficiency decreases; in analogy



Fast Simulation of Overflow Probabilities · 25

1/α

p
ro

b
a
b
il
it
y

× 10
−14

13

12

12

11

10

10

9

9

8

8

7

6 54 3321
1/α

p
ro

b
a
b
il
it
y

× 10
−14

13

12

12

11

10

10

9

9

8

8

7

6 54 3321

1/α

p
ro

b
a
b
il
it
y

× 10
−14

13

12

12

11

10

10

9

9

8

8

7

6 54 3321
1/α

p
ro

b
a
b
il
it
y

× 10
−14

13

12

12

11

10

10

9

9

8

8

7

6 54 3321

Fig. 3. The influence of the grid mesh on the probability for single twist, cut-and-twist, ran-

dom twist, and sequential twist. The solid lines represent the estimates, while the dashed lines

correspond to confidence intervals.

with the single-twist method, this may cause underestimation of the probability of

interest. In the second place, we observe from our experiments that the relative

error decreases. It is the aim of this subsection to study these two opposite effects.

The values of the parameters are the same as in Section 5.2, except for the value

of M , which now varies.

We measure efficiency by means of the (estimated) relative efficiency. We set

n = 3840 and estimate the relative efficiency for M = 2, 4, 6, 8, 10, 12. The resulting

plot is given in Figure 4. From the plot, it is not so clear that an increase in M

makes the simulation less efficient, although the relative error seems to decrease.

Therefore, we also investigate what happens if M = 80, 160, 240, 320, 480, 640, 960;

the relative efficiency (relative error) is then estimated as 1.972 (0.0164), 1.969

(0.0135), 1.966 (0.0125), 1.960 (0.0140), 1.956 (0.0139), 1.953 (0.0137), and 1.950

(0.0127) respectively. These values indeed indicate that the simulation becomes

less efficient as M increases, while the relative error decreases.

Although the differences in the relative efficiency look small, one must keep in

mind that this quantity relates to the exponential decay rate of the variance of the

estimator. Therefore, small differences blow up exponentially, and we propose to

choose M small to control the risk of underestimation.
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5.5 Concluding remarks on simulation methods

We end this section by giving a number of general conclusions on the presented

simulation methods for estimating the buffer-content probability pn.

—The single-twist method should not be used. It usually does not estimate pn

asymptotically efficiently, which makes the method slow or even unreliable (as it

is not guaranteed that the variance of the corresponding estimator is finite).

—In our experiments the cut-and-twist method and the sequential-twist method

performed roughly equally well, both in terms of relative efficiency and number

of simulation runs. In both methods, there is no risk of underestimating the

probability of interest. In order to choose between the sequential-twist method

and the cut-and-twist method, the former is to be preferred if the time horizon

T is excessively large, whereas the latter should be chosen when the number of

sources is extremely large. We remark that T tends to be large when the system

is heavily loaded (i.e., c being just slightly larger than µ), and, in the case of

fBm, when H is close to 1 (recall Figure 1). It is not straightforward, however,

to describe the trade-off in more detail, as it depends strongly on all parameters

involved.

—The cut-and-twist and random-twist methods control the likelihood in the most

explicit way. In fact, the proofs of their asymptotic efficiency reveal that the

methods lead to a bounded relative error. Apart from its asymptotic efficiency,

we do not know further optimality properties of the sequential-twist method.

—The random-twist method is usually faster than the cut-and-twist method and

the sequential-twist method, but may suffer from underestimation. This effect is

of course minimal when the contributions to pn are concentrated in the immediate

neighborhood of t∗; bounds on these contributions can be found with techniques

in the same spirit as those used in Section 2.3.
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—The relative error of the batch sequential-twist method decreases with the batch

size. The relative efficiency, however, decreases as well, indicating an increas-

ing risk of underestimation. We therefore advise that the batch size be chosen

relatively small.

6. DISCUSSION

In this section, we stress two issues related to the findings of the present paper.

First, we explain why the buffer-content probability in discrete time does not nec-

essarily yield a good approximation for its continuous-time counterpart. We also

make some remarks on the main assumption underlying our analysis: the Gaus-

sianity of the sources.

Discrete time vs. continuous time. It is important to realize that the probability

(1) behaves qualitatively different in continuous time, i.e., when N is replaced by

R+. We illustrate this by recalling the asymptotics of (1) in both discrete and

continuous time. Denote the probability in continuous time by p
R+
n .

In discrete time, there exists a constant K such that [Likhanov and Mazumdar

1999]

pn ∼ K√
n

exp

(

−1

2
n

(b + (c − µ)t∗)2

σ2(t∗)

)

,

where t∗ minimizes It over N. However, in continuous time the asymptotics depend

on the behavior of σ near zero. If σ(t) ∼ Ctγ as t → 0 for constants C ∈ (0,∞)

and γ ∈ (0, 2), then, under suitable regularity assumptions, [Dȩbicki and Mandjes

2003]

pR+
n ∼ K′n

1
γ −1 exp

(

−1

2
n

(b + (c − µ)t∗)2

σ2(t∗)

)

,

with t∗ minimizer of It over R+, and for some constant K′ (which involves the

so-called Pickands’ constant for which no explicit representation is available). Con-

clude that the polynomial term in the above asymptotic expansions is different. To

our knowledge, reliable simulation methods for the continuous-time probability p
R+
n

do not exist.

Gaussian input. As pointed out in the Introduction, the study of a queue fed

by Gaussian sources is often motivated by (central) limit theorems. The buffer-

content probability of a Gaussian model may be a good approximation of the ‘real’

buffer-content probability, although in reality evidently network traffic cannot be

Gaussian (as the Gaussian model allows negative traffic). It is important to realize

that the accuracy of the approximation critically depends on the appropriateness

of the imposed scaling. Therefore, this should first be studied before resorting to a

Gaussian model; see the paper by Wischik [2001a] for a detailed discussion.
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A. APPENDIX: PROOFS

In this appendix, we provide proofs of the assertions in this paper. We start in

Appendix A.1 with the proofs related to the simulation horizon T , which apply to

all methods discussed in Section 4. Appendices A.2 and A.3 deal with the single-

twist method and cut-and-twist method respectively. The proof of Lemma 4.6 is

given in Appendix A.4.

A.1 Upper bounds on
∫∞

T e−nC0t1/q

dt

We distinguish the cases q ≤ 1 (Lemma 2.1) and q > 1 (Lemma 2.2).

A.1.1 Proof of Lemma 2.1. Since q ≤ 1 and T ∈ N, we can bound the left hand

side of (6) as follows:
∫ ∞

T

exp
(

−nC0t
1/q
)

dt =
q

Cq
0

∫ ∞

C0T 1/q

exp(−ny)yq−1dy

≤ q

Cq
0

(

C0T
1/q
)q−1

∫ ∞

C0T 1/q

exp(−ny)dy

=
q

Cq
0n

(

C0T
1/q
)q−1

exp
(

−nC0T
1/q
)

≤ q

C0n
exp

(

−nC0T
1/q
)

,

as claimed.

A.1.2 Proof of Lemma 2.2. First note that q > 1, which is crucial throughout

the proof. Recall that m ≥ 0 denotes the largest integer such that q−1−m ∈ (0, 1].

As before, we have by a simple substitution,
∫ ∞

T

exp
(

−nC0t
1/q
)

dt =
q

Cq
0

∫ ∞

C0T 1/q

exp(−ny)yq−1dy. (24)

The idea is to select β, γ ∈ (0,∞) such that

yq−1 ≤ βeγy (25)

for all y ∈ R+. We now discuss how these parameters can be chosen.

If q ∈ (1, 2] (i.e., m = 0), then pq : y 7→ yq−1 is concave. Since pq is differentiable

at 1 with derivative q − 1, by Theorem 25.1 of Rockafellar [1970] we have for all

y ∈ R+,

yq−1 ≤ 1 + (q − 1)(y − 1). (26)

Similarly, since y 7→ βeγy is convex and differentiable at 1 with derivative βγeγ , we

have for all y ∈ R+,

βeγy ≥ βeγ + βγeγ(y − 1). (27)

By comparing (26) to (27), we see that yq−1 ≤ βeγy upon choosing γ = q − 1 and

β = e−γ .
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To find β, γ such that (25) holds for q ∈ (m + 1, m + 2] where m > 0, the key

observation is that this inequality is always satisfied for y = 0. Therefore, it suffices

to choose β, γ such that the derivative of the left hand side of (25) does not exceed

the right hand side. By applying this idea m times, one readily observes that it

suffices to require that β, γ satisfy

βγmeγy ≥ (q − 1) · · · (q − m)yq−m−1.

Note that the right hand side of this expression is concave as a function of y since

q−m−1 ∈ (0, 1], and that the left hand side is convex as a function of y. Therefore,

we are in a similar situation as we were for m = 0. In this case, we choose β and γ

such that

βγmeγ = (q − 1) · · · (q − m)

βγm+1eγ = (q − 1) · · · (q − m)(q − m − 1).

Note that β and γ as defined in (7) solve this system of equations uniquely. As

before, Theorem 25.1 of Rockafellar [1970] is applied twice to see that for y ∈ R+,

(q − 1) · · · (q − m)yq−m−1

≤ (q − 1) · · · (q − m) + (q − 1) · · · (q − m)(q − m − 1)(y − 1)

= βγmeγ + βγm+1eγ(y − 1) ≤ βγmeγy.

Now that we have found simple bounds on yq−1, the assertion in the lemma

follows upon combining these bounds with (24):
∫ ∞

T

exp
(

−nC0t
1/q
)

dt ≤ qβ

Cq
0

∫ ∞

C0T 1/q

exp(−(n − γ)y)dy

=
qβ

Cq
0 (n − γ)

exp
(

−(n − γ)C0T
1/q
)

.

A.2 Proofs for the single-twist method

The key ingredient in the proofs of this subsection is a large-deviation principle

(LDP) known as Cramér’s theorem. Therefore, we start by discussing this theorem

in more detail. The proof of Lemma 4.2 is given last.

A.2.1 Large deviations for multivariate Gaussian distributions. The analysis in

Section 4.1 relies on standard large-deviation techniques. The reader is referred to

Dembo and Zeitouni [1998] for a rigorous introduction to the theory, or to Deuschel

and Stroock [1989].

Recall that given some T ∈ N, ν
(T )
n denotes the distribution of the centered

process {An(t)/n − µt : t = 1, . . . , T}. The covariance of ν
(T )
n is given by Γ(T )/n,

and this covariance defines an inner product 〈·, ·〉H and norm ‖·‖H on RT as follows:

〈x, y〉H := x′
(

Γ(T )
)−1

y, ‖x‖H :=
√

〈x, x〉H.
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This inner product sometimes referred to as Reproducing Kernel Hilbert Space inner

product or Cameron-Martin inner product.

As this paper deals with Gaussian random vectors, we state Cramér’s theorem

for the special case of Gaussian distributions. The theorem has been generalized to

Gaussian measures on abstract spaces by Bahadur and Zabell [1979].

Theorem A.1 (Cramér). {ν(T )
n } satisfies the LDP in RT with rate function

I : x → 1
2‖x‖2

H, i.e.,

(i) for any closed set F ⊂ RT : lim supn→∞
1
n log ν

(T )
n (F ) ≤ − 1

2 infx∈F ‖x‖2
H;

(ii) for any open set G ⊂ RT : lim infn→∞
1
n log ν

(T )
n (G) ≥ − 1

2 infx∈G ‖x‖2
H.

Proof. The proof can be found in Dembo and Zeitouni [1998, Thm. 2.2.30],

noting that

sup
θ∈RT

(

〈θ, x〉 − log

∫

e〈θ,y〉ν(T )(dy)

)

= sup
θ∈RT

(

〈θ, x〉 − 1

2
θ′Γ(T )θ

)

,

which equals 1
2x′ (Γ(T )

)−1
x = 1

2‖x‖2
H.

A.2.2 Proof of Lemma 4.1. Lemma 4.1 is an application of Cramér’s theorem.

We have to prove that

lim
n→∞

1

n
log ν(T )

n (OT ) = −1

2
inf

x∈OT

‖x‖2
H = −1

2
‖x∗‖2

H. (28)

The second equality in (28) is due to Addie et al. [2002]. We therefore turn to the

first equality. It is readily seen that OT is closed in RT . Cramér’s theorem gives

an upper bound on the decay rate of ν
(T )
n (OT ), as well as a lower bound on the

decay rate of ν
(T )
n (OT ), where OT denotes the interior of OT . The first equality of

(28) now follows upon combining these upper and lower bounds with the following

lemma (applied for r = 0).

Lemma A.2. For all y ∈ RT , we have

inf
x∈OT

‖x + y‖2
H = inf

x∈OT

‖x + y‖2
H = inf

t∈{1,...,T}

(b + (c − µ)t + yt)
2

2σ2(t)
.

Proof. First note that the interior of the exceedance set is given by

OT :=
{

x = (x1, . . . , xT ) ∈ R
T : xt + µt > b + ct for some t ∈ {1, . . . , T}

}

.

Also, evidently,

inf
x∈OT

‖x + y‖2
H = inf

x∈OT,y

‖x‖2
H,

where

OT,y :=
{

x ∈ R
T : xt + µt > b + ct + yt for some t ∈ {1, . . . , T}

}

.

A similar reasoning that led to the second equality in (28) now yields the desired.
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A.2.3 Proof of Theorem 4.3. As outlined in Section 2.2 of Dieker and Mandjes

[2005], it is a consequence of Lemma A.2 (with y = 0) that the single exponential

twist is asymptotically efficient if and only if

lim sup
n→∞

1

n
log

∫

OT

dλ
(T )
n

dν
(T )
n

(x)λ(T )
n (dx) ≤ − (b + (c − µ)t∗)2

σ2(t∗)
= −2It∗ , (29)

cf. (12). In principle, the statement can be proven using Theorem 1 of Dieker and

Mandjes [2005]. However, the argument can be given directly in this case. We

apply Varadhan’s Integral Lemma (Theorem 4.3.1 of Dembo and Zeitouni [1998])

to the left hand side of (29). In order to check the conditions for applying this

lemma, we note that for γ > 1,

lim sup
n→∞

1

n
log

∫

RT

exp

(

−nγ
b + (c − µ)t∗

σ2(t∗)
xt∗

)

ν(T )
n (dx) = γ2 [b + (c − µ)t∗]2

2σ2(t∗)
< ∞;

use that for a zero-mean normal random variable U (with variance σ2) the moment

generating function is E exp(θU) = exp(θ2σ2/2). Formally, one proceeds by deriv-

ing lower and upper bounds for the integral on the left hand side of (29), but, in

view of Lemma A.2, the resulting bounds coincide. We may therefore conclude that

the lim sup is actually a proper limit; the reader is referred to Section 3 of Dieker

and Mandjes [2005] for more details on this reasoning. Application of Varadhan’s

Lemma gives

lim
n→∞

1

n
log

∫

OT

dν
(T )
n

dλ
(T )
n

(x)ν(T )
n (dx)

= − inf
x∈OT

[

1

2
‖x‖2

H +
b + (c − µ)t∗

v(t∗)
x(t∗) − (b + (c − µ)t∗)2

2v(t∗)

]

= − inf
x∈OT

[

1

2
‖x‖2

H + 〈x, x∗〉H − 1

2
‖x∗‖2

H

]

= −
[

1

2
inf

x∈OT

‖x + x∗‖2
H

]

+ ‖x∗‖2
H

= −1

2
inf

t∈{1,...,T}

(b + (c − µ)t + x∗
t )

2

σ2(t)
+

(b + (c − µ)t∗)2

σ2(t∗)
,

where the last equality is due to Lemma A.2. The claim follows by combining this

with (29).

A.2.4 Proof of Lemma 4.2. Let λx
n denote a Gaussian measure on RT with mean

vector x and covariance Γ(T )/n. It can be shown along the same lines of the proof

of Theorem 4.3 that

lim
n→∞

1

n
log

∫

OT

dν
(T )
n

dλx
n

(y)ν(T )
n (dy) = −

[

1

2
inf

y∈OT

‖y + x‖2
H

]

+ ‖x‖2
H

≥ −1

2
‖x∗ + x‖2

H + ‖x‖2
H

=
1

2
‖x∗ − x‖2

H − ‖x∗‖2
H,

and this is strictly larger than −‖x∗‖2
H if x 6= x∗, contradicting (29).
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A.3 Proofs for the cut-and-twist method

In this subsection, we prove Theorem 4.4. Observe that for any j = 1, 2, . . ., by

definition of OT (t),

∫

OT (t)

(

ν
(T )
n

tλ
(T )
n

)j

d tλ(T )
n

=

∫

OT (t)

exp

(

nj
(b + (c − µ)t)2

2σ2(t)
− nj

b + (c − µ)t

σ2(t)
xt

)

d tλ(T )
n

≤ exp

(

−nj
(b + (c − µ)t)2

2σ2(t)

)

= e−njIt .

As an aside, we mention that this gives (by choosing j = 1), cf. Section 2.2,

pT
n =

T
∑

t=1

ν(T )
n (OT (t)) ≤

T
∑

t=1

e−nIt .

The second moment of the cut-and-twist estimator follows from (20):

1

N

∫

RT





∑

t∈{1,...,T}
1{xt∈OT (t)}

dν
(T )
n

d tλ
(T )
n

(xt)





2

d 1λ(T )
n (x1) · · · d Tλ(T )

n (xT )

=
1

N

∑

t∈{1,...,T}

∫

OT (t)

(

ν
(T )
n

tλ
(T )
n

)2

d tλ(T )
n

+
1

N

∑

s,t∈{1,...,T}
s6=t

sλ(T )
n (OT (t)) · tλ(T )

n (OT (t)),

and therefore it is bounded by

1

N





∑

t∈{1,...,T}
exp

(

−n
(b + (c − µ)t)2

2σ2(t)

)





2

≤ 1

N
T 2 exp(−2nIt∗),

where the last inequality is due to the definition of t∗ = arg inft It. Now take

logarithms, divide by n, and let n → ∞ to see that the relative efficiency equals 2,

cf. (12).

A.4 Proofs for the sequential-twist method

A.4.1 Proof of Lemma 4.6. We have to prove that

arg inf
{y∈RT : 1

n

Pj
i=1 Āi+(1−j/n)y∈OT }

‖y‖2
H =

Jj+1

σ(t∗j+1)
Γ(·, t∗j+1).

From Lemma 4.1, we know that the infimum equals J2
j+1. It is not hard to see that

µj+1 attains this value (by strict convexity of ‖ · ‖H, the minimizing argument is

even unique).
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A.4.2 Proof of Theorem 4.7. The two assumptions in Condition 2.1 of Dupuis

and Wang [2004] hold: since we are in a multivariate Gaussian setup we obviously

have an everywhere finite moment generating function, and Lemma A.2 implies

that

inf
x∈OT

x′
(

Γ(T )
)−1

x = inf
x∈Oo

T

x′
(

Γ(T )
)−1

x.

The claim is Theorem 2.1 of Dupuis and Wang [2004].
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