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1 | Introduction

Sampling techniques play an increasingly important role in scientific and business applications.
On the one hand, randomized algorithms been shown to remove (sometimes in an ‘approximate’
sense) some of the known computational barriers of deterministic algorithms, see the landmark
papers [7, 16, 17, 24, 26]. On the other hand, techniques such as (Gibbs) sampling for missing
data (e.g., [39, 22, 23]) are quickly gaining significance in the era of ‘big data’. The past
decades have witnessed great advances in this domain through the cross-fertilization of operations
research, probability and statistics, computer science, and statistical physics.

In these lecture notes, we are interested in developing techniques for sampling from high-
dimensional sets such as convex bodies and its applications, based on the Markov Chain Monte
Carlo (MCMC) method. To assess the performance of these sampling schemes, we study the
regime where the ambient dimension grows to infinity. Since the required computational effort
is proportional to the mixing time (sometimes called burn-in or relaxation time), studying these
algorithms requires tools for mixing times of Markov chains. This leads us to excursions into
topics such as convex geometry and isoperimetric inequalities.

1.1 Sampling from high-dimensional objects

The problem of generating a sample of points according to a specified probability distribution
over some set K is a fundamental problem in operations research with various uses [42]: (i)
global optimization, where sampling forms the basis of simulated annealing and is used to
generate candidate points for local searches [38, 43, 47], (ii) Monte Carlo integration, where one
seeks to evaluate the integral

∫
K h(x)f(x)dx for some function h and some probability density

f [8], (iii) identifying constraints that can be dropped in order to describe a polytope [3, 41],
(iv) computing or approximating the volume of a convex body, which is a basic yet extremely
difficult task in general [34]. The special case of sampling uniformly from the set K is the most
fundamental setting in the sense that one can often bootstrap algorithms to handle a more
general case, see for instance [4, 9, 36] and references therein.

Three different families of sets K are of particular interest: (1) K is convex, (2) K is discrete,
and (3) K is the boundary of a convex set. The case of discrete K is fundamentally different
since the geometry of the ambient space is often irrelevant, and this is not the focus of these
lectures.

The global structure of the set K is rarely available in ‘explicit’ form. Therefore, we are
interested in algorithms that only have access to a membership oracle, which can tell the al-
gorithm whether any given point x ∈ Rn lies in K. We also briefly need so-called separation
oracles, which additionally give a hyperplane separating x and K if x does not lie in K. Our
main focus is not intrinsically dependent on the type of oracle, it is to find suitable algorithms.

It is instructive to see a simple example where an algorithm’s performance can be assessed by
letting the ambient dimension grow to infinity; this is the central feature of these notes. Suppose
we want to sample from an n-dimensional ball B in Rn with radius 1. Also suppose we embed
B within a hypercube with side length 2, and that we keep sampling from the hypercube until
the realization lies in the ball. This is known as the acceptance-rejection method. The output
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of this algorithm has the correct statistical properties regardless the value of the dimension n.
However, the probability that a sample from the hypercube lies in the ball is

πn/2

Γ(n/2 + 1)
≈ 1√

2
πn/2−1(n/2 + 1)−n/2−1/2en/2+1,

where Γ is the gamma function. Thus, as n grows, the ball only takes up a tiny fraction of the
hypercube in terms of volume. Consequently this algorithm generates a large number of samples
before finding a point inside the ball, and thus the algorithm performs poorly even for moderate
n. In the following exercise, you are asked to devise an algorithm that does work efficiently in
the setting of this example.

Exercise 1. Formulate a polynomial-time algorithm for sampling from a unit ball. ,

On polynomial time algorithms

An algorithm is said to be a polynomial time algorithm if its running time is upper bounded by a
polynomial in the size of the input for the algorithm. We think of any polynomial-time algorithm
in n as a fast, efficient, or tractable algorithm. Problems for which a polynomial time algorithm
exists belong to the complexity class P , which plays a central role in complexity theory.

Throughout these notes, we are interested in fast sampling algorithms in the sense that we
study algorithms that turn out to be polynomial-time algorithms in the ambient dimension n.
A central feature of the algorithms we discuss here is that they rely on randomness. To motivate
the study of such randomized algorithms, consider the problem of estimating the volume of a
convex body K in Rn which contains a unit ball. The next theorem essentially says that no
deterministic algorithm can estimate the volume of K efficiently. For instance, it says that one
needs exponential time to get a factor 2 approximation (say). The theorem is often attributed
to Bárány and Füredi, but we refer to [6] for a more detailed history.

Theorem 1. For every deterministic algorithm that runs in time O(na) and outputs two numbers
A and B such that A ≤ vol(K) ≤ B for any convex body K, there is some convex body for which
the ratio B/A is at least (

cn

a log n

)n
where c is some absolute constant.

Given this negative result for deterministic algorithms, the following positive result from [17]
is remarkable. Using randomness, we can overcome the preceding negative result!

Theorem 2. For any convex body K and any 0 ≤ ε, δ ≤ 1, there is a randomized algorithm
which computes an estimate V such that with probability at least 1− δ, we have (1− ε)vol(K) ≤
V ≤ (1 + ε)vol(K), and the number of oracle calls is polynomial in n, 1/ε, and log(1/δ).

This algorithm and related ones are based on Markov Chain Monte Carlo methodology and
the analysis of these algorithms boils down to establishing rapid mixing for Markov chains.
Several elements are needed, and we will discuss the first two in much detail during this week:
(1) Devising a Markov chain with a uniform stationary distribution. (2) Showing that one can
sample efficiently from an ‘almost’ uniform distribution by showing that, after a polynomial
number of steps of the Markov chain, the distribution of the chain is ‘close’ to the stationary
distribution. This is called rapid mixing. (3) Using the sampling methodology to produce
estimates for the volume.
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1.2 About these notes

These notes consist of ten lectures, and they are organized into three parts. In Part I, we focus on
applications of sampling from high-dimensional sets: convex optimization, volume computation,
and ranking and selection problem. In Part II, we discuss the mathematical background and
tools we need in this short course. In Part III, we introduce and analyze algorithms for sampling
high-dimensional objects. Much of what I discuss is “well-known” in certain circles; general
surveys of this material include [6, 45].

In these notes, I have aimed to emphasize ideas. As a result, I have had to make some
sacrifices regarding mathematical precision. In that sense, the style in these notes is different
from what you would see in a research paper or a semester-long specialized course, where details
such as measurability are filled in carefully. I have chosen this approach in order to be able to
summarize the full breadth of techniques in a short course of ten lectures.

I have used the following papers as the primary sources for the lectures, although much of
the material has been presented in other papers as well. Lectures 2, 8, and 9 are adaptations
of parts of [45], copied with permission. (But any errors, inaccuracies, and typos are mine.)
Lectures 4 and 5 are based on [34]. Lecture 6 and part of Lecture 7 is based on [21], the other
part is based on [27]. Lectures 3 and 10 are based on original work in progress; Lecture 3 with
Seong-Hee Kim and Lecture 10 with Santosh Vempala.

1.3 Acknowledgments

Special thanks to Krzysztof Dȩbicki, Zbigniew Palmowski, Tomasz Rolski, and Ryszard Szekli
for inviting me to deliver these lectures as a short course at the University of Wrocław. I
would also like to thank Santosh Vempala for many discussions on stochastic processes and
algorithms, which have heavily influenced these notes. Last but not least, I would like to thank
the participants in the course for their good questions and comments, which have resulted in
significant improvements to these notes.
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Part I

Applications
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2 | Optimization and volume

In this lecture, we discuss two applications of sampling from convex bodies.

2.1 Application I: Convex optimization

Let S ⊂ Rn, and f : S → R be a real-valued function. Optimization is the following basic
problem: min f(x) s.t. x ∈ S, that is, find a point x ∈ S which minimizes by f . We denote
by x∗ a solution for the problem. When the set S and the function f are convex, we obtain a
class of problems which are solvable in polynomial time in n and log(1/ε), where ε defines an
optimality criterion. If x is the point found, then |x− x∗| ≤ ε.

The problem of minimizing a convex function over a convex set in Rn is a common gen-
eralization of well-known geometric optimization problems such as linear programming as well
as a variety of combinatorial optimization problems including matchings, flows and matroid in-
tersection, all of which have polynomial-time algorithms [25]. The so-called ellipsoid method
solves these problems in polynomial time when K is given by a separation oracle. The algorithm
discussed here is based on random sampling, see [4] for details. The idea is to minimize a convex
function f by looking at the convex set Kt = {x ∈ Rn : f(x) ≤ t} and search (in a binary
fashion) for the smallest t for which this set is nonempty.

In the description below, we assume that the convex set K is contained in the axis-aligned
cube of width R centered at the origin; further if K is non-empty then it contains a cube of
width r. It is easy to show that any algorithm with this input specification needs to make at
least n log(R/r) oracle queries. We assume a separation oracle is given to us; we later briefly
discuss what happens when we only have a membership oracle. We next describe the algorithm;
the parameter L is equal to log R

r .

Input: A separation oracle for a convex set K and some number L.
Output: A point in K or a guarantee that K is empty.

1. Let P be the axis-aligned cube of side length R and center z = 0.

2. Check if z is in K. If so, report z and stop. If not, set

H = {x : aTx ≤ aT z}.

where aTx ≤ b is the halfspace containing K reported by the oracle.

3. Set P = P ∩H. Pick m random points y1, y2, . . . , ym from P . Set z to be their
average.

4. Repeat steps 2 and 3 at most 2nL times. Report K is empty.

The algorithm computes an approximate centroid in each iteration. Finding the exact cen-
troid is #P-hard, i.e., computationally intractable. The idea behind the algorithm is that an
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approximate centroid can be computed using O(n) random points and the volume of P is likely
to drop by a constant factor in each iteration with this choice of z, as formalized in the next
lemma. This idea builds on Grünbaum’s lemma, which says that the volume drops by a constant
factor if z is the centroid of P .

Lemma 1. Let z be the average of m points sampled from the uniform distribution π on a convex
set P . If H is a halfspace containing z, then we have

E (π(H)) ≥
(

1

e
−
√
n

m

)
.

The guarantee on the algorithm follows immediately.

Theorem 3. With high probability, the algorithm works correctly using at most 2nL oracle calls
(and iterations).

The algorithm can also be modified for optimization given a membership oracle only and
a point in K. It has a similar flavor: sample random points from K; restrict K using the
function value at the average of the random points; repeat. The oracle complexity turns out to
be O(n5L).

2.2 Application II: Volume computation

We next discuss perhaps the most important application and the principal motivation behind
many developments in the theory of random walks: the problem of computing the volume of a
convex body K. This has already briefly been discussed in Section 1.1. There are various ways
to devise algorithms to compute the volume of a convex body, see for instance [6, 45].

Assume that the diameter D of K is polynomial in n, and that K contains a unit ball Bn.
All known algorithms reduce volume computation to sampling from a convex body using the
multi-phase Monte Carlo technique. They construct a sequence of convex bodies K0 ⊆ K1 ⊆
· · · ⊆ Km = K, where K0 = Bn or some body whose volume is easily computed. The idea is
to estimate the ratios vol(Ki−1)/vol(Ki) by generating sufficiently many independent (nearly)
uniformly distributed random points in Ki and counting the fraction that lie in Ki−1. The
product of these estimates is an estimate of vol(K0)/vol(K).

In order to get a sufficiently good estimate for the ratio vol(Ki−1)/vol(Ki), one needs about
mvol(Ki)/vol(Ki−1) random points. So we would like to have the ratios vol(Ki)/vol(Ki−1) be
small. But, the ratio of vol(K) and vol(K0) could be nΩ(n) (e.g., when K is a hypercube),
and we need to keep vol(Ki)/vol(Ki−1) polynomial in order for the sampling scheme to work
efficiently. A good choice is to keep these ratios bounded; this can for instance be achieved by
setting K0 = Bn (unit ball) and Ki = K ∩ (2i/nBn) for i = 1, 2, . . . ,m = O(n log n).
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3 | Ranking and selection

This lecture describes an application for sampling from high-dimensional objects I am currently
working on.

In decision problems, one is often faced with the problem of selecting the best among several
systems from noisy evaluations of their performance. For instance, one can think of investigating
multiple possibilities to allocate service capacities in a stochastic network, where we want to se-
lect (say) the system with the lowest wait times [14, 15]. One could perform a simulation study
to obtain performance estimates for each of the systems, but this results in noisy observations
due to the use of simulation. It can be very costly to perform such a simulation study, especially
if you perform a real-world simulation as opposed to a computer simulation. Another example
are clinical trials, where different combinations of treatments are tested in order to find the
combination that works best. In each of these cases, the sooner you know which systems under-
perform, the better; you can discard those systems from your simulations or trials. Therefore,
we are interested in sequential procedures for judging which system is the best.

3.1 Background

The aforementioned selection-of-the-best problem has been studied actively in the context of
simulation ranking and selection. Selection-of-the-best procedures are also found to be useful
within optimization via simulation algorithms to clean up at the end of an optimization search
or assist in selecting the most promising neighbor. Although many statistical procedures with
statistical validity for correct selection have been presented, many of these use the Bonferroni
inequality to reduce the many-system case to a (one-dimensional) two-system case [29, 30], and
consequently the resulting statistical procedures are conservative even if the number of systems is
moderately large. This tends to be a serious problem as the number of systems increase. It limits
the number of simulated alternatives the procedures can handle and it limits their applications.
We are hoping that the sampling algorithms from these lectures can break this barrier, but our
current understanding is not good enough yet to answer in the affirmative. Regardless, I hope
you find the proposed ideas interesting.

There exist at least three different approaches to the selection-of-the-best problem: the
indifference-zone method, the Bayesian method, or the optimal computing budget allocation
method. The indifference-zone method finds the best system with a guarantee on the probability
of correct selection (PCS) while the other two methods maximize the PCS given a limited
computational budget. A review of the Bayesian and optimal computing budget allocation
methods can be found in [10], and a review of the indifference-zone method can be found in [31];
see also [11, 19, 29]. Some procedures are efficient in handling up to 1,000 simulated systems
and have been successfully incorporated into commercial software packages such as Arenar from
Rockwell Automation and Simior from Simio LLC.
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3.2 A sampling problem

It transpires from the above discussion that a critical issue with some existing ranking-and-
selection methods is that one derives bounds for a high-dimensional problem in terms of one-
dimensional problems. In doing so, one sacrifices accuracy. Therefore, we are interested in a
procedure that directly works with high-dimensional objects.

As we shall see momentarily, this problem leads us to the question of sampling from an
ellipsoid, which is the analog of an ellipse in arbitrary dimension. Suppose we seek a guarantee
on the probability of selecting the correct (true best) system. One component of this probability
is the probability that the best system does not get eliminated, and this is our main focus.
Therefore, an approach based on stochastic processes in high dimensions holds promise for being
able to identify the best system much faster. Some initial steps have been taken in joint work
with Seong-Hee Kim [13, 28], where we make a first step away from one-dimensional frameworks
by working with two-dimensional Brownian motions. Here we present it more generally (but we
don’t know yet if this can be pushed through completely).

We assume that there are n systems, n ≥ 2. At each time epoch, we obtain an observa-
tion from each of the n systems. Motivated by the connection with simulation, we call these
observations replications. We assume these replications are i.i.d. Let Yij be an observation
from replication j of system i for i = 1, . . . , n and j = 1, 2, . . .. The mean and variance of
the outputs from system i are defined as µi = E(Yij) and σ2

i = Var(Yij), respectively. Let
Yj = (Y1j , Y2j , . . . , Ykj) represent the observations from replication j for all n systems, and write
µ = (µ1, µ2, . . . , µn). Then we assume that the Yj are i.i.d. with a normal distribution with
mean µ and covariance matrix Σ. (In practice, variances are unknown and one instead resorts
to estimates.) It is important to allow for correlations, since for instance the output of the
simulation can be correlated due to the use of a simulation technique known as common random
numbers.

In admittedly somewhat of a leap, we suppose that the observations of the system perfor-
mance are generated in continuous time as opposed to discrete time, and we use the Brownian
motion model to investigate how we can devise an algorithm with performance guarantees.

Performance guarantees

The goal is to give a guarantee that the probability of correct selection (PCS), which is the
probability that the true best system remains after the elimination procedure, is sufficiently
high:

PCS = P(the best system is selected) ≥ 1− α.

We are thus let to deriving lower bounds on PCS. One particular component of the comple-
mentary probability is the probability that the best system is eliminated first, and we focus
our discussion on this probability. Since it is only the relative order of the different Brownian
motions that matters, we could study work in the subspace {x ∈ Rn : x1 + · · · + xn = 0} as in
[13, 28], but we do not do so here.

In an n-dimensional setting, this leads to the following concrete question of independent
interest. Consider a Brownian motion in Rn with drift µ and covariance matrix Σ, started at
the origin. When n is large, how can one calculate (or estimate) the probability that the location
at which the Brownian motion first hits the ellipsoid ∂K = {x ∈ Rn : x′Σ−1x = 1} satisfies
x1 = mini=1,...,n xi? The density of the exit location at x ∈ ∂K is proportional to exp(µ′Σ−1x)
[40], so we need to integrate this function over C ∩ ∂K, where C = {x ∈ Rn : x1 = minni=1 xi}. A
naive approach is to choose some mesh with small mesh size and approximate this integral with
a (kind of) Riemann sum. However, this approach cannot be polynomial; imagine this approach
on a unit hypercube instead of an ellipsoid, and note that one needs exponentially many small
hypercubes of (some) width δ to cover the whole hypercube. Instead, one can use Monte Carlo
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integration over the ellipsoid: writing σ(dx) for the surface measure,∫
C∩∂K

exp(µ′Σ−1x)σ(dx) ≈ 1

m

m∑
i=1

exp(µ′Σ−1Xi),

where the Xi are i.i.d. uniformly from C ∩ ∂K. Thus, to approximate this probability one needs
to be able to sample (approximately) uniformly from the set C∩∂K. This is the type of problem
discussed in these notes.
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Part II

Tools
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4 | Markov chains

There is much to say about Markov chains, here we focus on those elements that are relevant
from an algorithmic point of view. A good reference on Markov chains in the spirit of these
lecture notes is [32].

Throughout, K is a compact subset of some Euclidean space. All of the sets K we are
interested in are uncountable. Suppose {Pu : u ∈ K} is a family of measures on K indexed
by elements in K. (One actually needs some regularity in u, but we omit details as explained
in Lecture 1.) Informally, a Markov chain on K is a sequence {Xt} of elements of K, its first
element has an arbitrary distribution and each subsequent element Xi is chosen from PXi−1 and
independent of X0, . . . , Xi−1. We are only interested in discrete-time Markov chains in these
notes, and we use t to denote time. When we write t ≥ 0, it is implicit that t only takes integer
values.

Definition 1. A sequence of K-valued random variables {Xt : t ≥ 0} is a Markov chain with
transition kernel {Pu : u ∈ K} if, for any t ≥ 0 and any (measurable) set B,

P(Xt+1 ∈ B|X0, . . . , Xt) = PXt(B).

A distribution π on K is called stationary if∫
K
Pu(A)π(du) = π(A). (4.1)

If X0 has distribution π, then each of the Xt has distribution π, which explains why it is called a
stationary distribution. A distribution π on K is called atom-free if π({x}) = 0 for every x ∈ K.

Example 1. Suppose K = [−1, 1]n and select some small δ > 0. Let Pu be uniformly distributed
on [u−ε, u+ε]n∩K. The resulting Markov chain can be thought of as a continuous-space analog
of a nearest-neighbor random walk on {−m, . . . ,m}n, and it is related to the ball walks to be
discussed later.

We will be interested in Markov chains with a unique stationary distribution, particularly in
chains where the stationary distribution is uniform. Existence and uniqueness of π is a classical
topic which is not covered here. One way to avoid thorny uniqueness issues is to require that
the chain is lazy, meaning that we flip a fair coin to decide whether we stay in the current state
or whether we make a move according to the transition kernel. From now on, we assume that
our chain is lazy and that it has a unique stationary distribution π.

The flow of a subset A of K (with respect to π) is defined as

Φ(A) =

∫
A
Pu(Ac)π(du),

where the complement Ac of a set A is defined through Ac = K\A for A ⊆ K. The conductance
of a Markov chain is defined as

φ = inf
A⊆K

Φ(A)

min(π(A), π(Ac))
.
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To get some intuition for these definitions, it is helpful to look at an example. Suppose K is a
‘dumbbell’ as depicted below.

In this example, the set A has been colored. The sets A and Ac have the same size. However,
depending on the precise specification of the transition kernels {Pu}, the (probability) flow from
A to Ac can be very small since the connecting piece acts as a ‘bottleneck’. Therefore, the
conductance can be very small in such a case.

Exercise 2. The kernel {Pu} (or Markov chain) is said to be reversible with respect to π if
π(du)Pu(dx) = π(dx)Px(du). Show that Φ(A) = Φ(Ac) under reversibility. (All chains to be
discussed will be reversible.) ,

We need the following way to compare two probability measures P and Q on K. The total
variation distance between P and Q is defined as

‖P −Q‖TV = sup
A⊆K

|P (A)−Q(A)|.

The following lemma is useful when it is hard to manipulate every subset A as required in this
definition, and we include it here because its proof is ingenious and it gives us some insight into
how the supremum is attained.

Lemma 2. If P and Q are absolutely continuous with densities f and g, respectively, then we
have

‖P −Q‖TV =
1

2

∫
K
|f(x)− g(x)|dx.

Proof. Let B = {x ∈ K : f(x) ≥ g(x)} and let A ⊆ K be any event. Then

P (A)−Q(A) =

∫
A∩B

(f(x)− g(x))dx+

∫
A∩Bc

(f(x)− g(x))dx

≤
∫
A∩B

(f(x)− g(x))dx ≤
∫
B

(f(x)− g(x))dx = P (B)−Q(B).

One can similarly show that Q(A) − P (A) ≤ Q(Bc) − P (Bc). Note that Q(Bc) − P (Bc) =
P (B) − Q(B), so we have shown that |P (A) − Q(A)| ≤ P (B) − Q(B) = |P (B) − Q(B)| and
therefore ‖P −Q‖TV = |P (B)−Q(B)|. In particular,

‖P −Q‖TV =
1

2
[P (B)−Q(B) +Q(Bc)− P (Bc)]

=
1

2

[∫
{x:f(x)≥g(x)}

(f(x)− g(x))dx+

∫
{x:g(x)>f(x)}

(g(x)− f(x))dx

]

=
1

2

∫
x∈K
|f(x)− g(x)|dx,

as claimed.
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5 | Conductance and convergence

In this lecture, we discuss some tools for studying how close the distribution at time t is to the
stationary distribution. We write Qt for the distribution at time t; this distribution critically
depends on the initial distribution Q0.

There is a wide variety of tools that are available to address this and similar questions, see
for instance [32]. The conductance φ has emerged as a key quantity in this study; for instance,
it is well-known that φ is connected to the spectral gap through the so-called Cheeger inequality.
Our main tool is a proposition due to Lovász and Simonovits [34], which is less well-known yet
powerful. We stress that it relies on our assumption that we work with a lazy Markov chain.

For each x ∈ [0, 1], we define

Gx =

{
g : K → [0, 1]

∣∣∣∣∫
K
g(u)π(du) = x

}
and

ht(x) = sup
g∈Gx

(∫
K
g(u)Qt(du)−

∫
K
g(u)π(du)

)
= sup

g∈Gx

∫
K
g(u)Qt(du)− x.

To see the connection between ht and total variation distance, we mention that, when π is
atom-free,

ht(x) = sup
A:π(A)=x

Qt(A)− x, (5.1)

and the supremum is attained. We omit a proof; see [34]. Note that ‖Qt−π‖TV = supx∈[0,1] ht(x)
in this case. The definition of ht is useful because it exposes additional structural properties,
such as in the following exercise. For the definition of concavity, refer to Lecture 6.

Exercise 3. Verify that ht(x) is concave in x for every integer t ≥ 0. ,
The next proposition is a result for atom-free π; see [18] for a similar result on finite state

spaces.

Proposition 1. Let π be atom-free. Let C0 and C1 be such that h0(x) ≤ C0+C1 min(
√
x,
√

1− x).
Then we have, for t ≥ 0,

ht(x) ≤ C0 + C1 min(
√
x,
√

1− x)

(
1− φ2

2

)t
.

Proof. For any x ∈ [0, 1], let y = min(x, 1− x). The proof relies on the inequality

ht(x) ≤ 1

2
ht−1(x− 2φy) +

1

2
ht−1(x+ 2φy). (5.2)

We delay the proof of this bound and give the remainder of the argument first, which is an
induction argument. We assume that x ≤ 1/2, so that x = y; the case x > 1/2 is similar. The
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base of the induction has been assumed, so let us assume the claim with t−1 instead of t. Then
by (5.2),

ht(x) ≤ 1

2
ht−1(x(1− 2φ)) +

1

2
ht−1(x(1 + 2φ))

≤ C0 +
1

2
C1

(√
x(1− 2φ) +

√
x(1 + 2φ)

)(
1− φ2

2

)t−1

≤ C0 + C1

√
x

(
1− φ2

2

)t
,

where the last inequality uses
√

1− 2φ+
√

1 + 2φ ≤ 2(1− φ2/2).
It remains to verify (5.2). Let A satisfy (5.1). Then

ht(x) = Qt(A)− π(A) =

∫
K
Pu(A)(Qt−1(du)− π(du)).

Set g1(u) = (2Pu(A) − 1)1u∈A and g2(u) = 2Pu(A) − g1(u), and note that g1 ∈ Gx1 and
g2 ∈ Gx2 for x1 =

∫
K g1(u)π(du) and x2 =

∫
K g2(u)π(du). In view of this and the identity

2Pu(A) = g1(u) + g2(u), we deduce from the preceding display that

2ht(x) ≤
∫
K
g1(u)(Qt−1(du)− π(du)) +

∫
K
g2(u)(Qt−1(du)− π(du)) ≤ ht−1(x1) + ht−1(x2).

It is readily checked with (4.1) that x1 + x2 = 2x, and moreover that

x1 =

∫
K
g1(u)π(du) =

∫
A
π(du)− 2

∫
A
Pu(Ac)π(du) = x− 2Φ(A) ≤ x(1− 2φ),

so that x1 ≤ x(1 − 2φ) ≤ x ≤ x(1 + 2φ) ≤ x2. By concavity of ht−1, the chord from x1 to x2

lies below the chord from x(1− 2φ) to x(1 + 2φ), which implies the claim.

The next corollary contains the key result from this lecture.

Corollary 1. Let π be atom-free and set M = supAQ0(A)/π(A). Then we have, for t ≥ 0,

‖Qt − π‖TV ≤
√
M

(
1− φ2

2

)t
.

Proof. In view of (5.1), we have

h0(x) = sup
A:π(A)=x

Q0(A)− x ≤M sup
A:π(A)=x

π(A) = Mx.

We also have h0(x) ≤ supA:π(A)=x(1 − π(A)) = 1 − x. Together these imply that h0(x) ≤√
M min(

√
x,
√

1− x) for x ∈ [0, 1]. The claim thus follows from Proposition 1.
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6 | Convexity and inequalities

A subset K of Rn is convex if, for any x ∈ K and y ∈ K and any α ∈ [0, 1], the convex
combination αx + (1 − α)y lies in K. A function f : Rn → ∞ is called convex if, for every x, y
in its domain and α ∈ [0, 1], we have f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y). If −f is convex,
then a function is concave.

A function f : Rn → R is called logconcave if the function log(−f(·)) is convex, meaning
that for α ∈ [0, 1], x, y ∈ Rn,

f(αx+ (1− α)y) ≥ f(x)αf(y)1−α. (6.1)

Think of e−‖x‖2/2 as an example; many densities encountered in probability theory are logcon-
cave. The product and the minimum of two logconcave functions are both logconcave; the sum
is not in general. Momentarily we discuss several deeper properties of logconcave functions, as
a corollary of a pivotal result known as the Brunn-Minkowski inequality.

To formulate the Brunn-Minkowski inequality, we need some more notation. Given a set A,
we set αA = {αx : x ∈ A}. Note that, if A is n-dimensional, vol(αA) = αnvol(A) as is readily
seen by calculating the Jacobian of the transformation x 7→ αx. Given two sets A1 and A2 in
Rn, we define their Minkowski sum as

A1 +A2 = {y + z : y ∈ A1, z ∈ A2}.

An example is when the set A2 is a ball with radius ε. Writing Bn for the unit ball in Rn and
assuming A is convex, the so-called Minkowski’s theorem on mixed volumes implies that the
quantity vol(A+ εBn) is a polynomial in ε; we use this in the next lecture.

The Brunn-Minkowski inequality says that for any bounded measurable A and B such that
αA+ (1− α)B is measurable, we have

vol(αA+ (1− α)B)1/n ≥ αvol(A)1/n + (1− α)vol(B)1/n. (6.2)

Note that it is natural for vol(A)1/n to appear in an inequality since we have vol(αA)1/n =
αvol(A)1/n, so the volume functional has a special homogeneity property when it is raised to
the power 1/n. By this homogeneity property, (6.2) is equivalent with the inequality

vol(A+B)1/n ≥ vol(A)1/n + vol(B)1/n. (6.3)

Yet another equivalent statement is the inequality, for α ∈ [0, 1] such that αA + (1 − α)B is
measurable,

vol(αA+ (1− α)B) ≥ min{vol(A), vol(B)}. (6.4)

For a beautiful survey on the Brunn-Minkowski inequality, see [21].

Exercise 4. Prove the equivalence of (6.2) and (6.4). ,
We next mention a different version of the Brunn-Minkowski inequality, which states that

vol(αA+ (1− α)B) ≥ vol(A)αvol(B)1−α. (6.5)
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cf. (6.1). Interestingly, this inequality is again equivalent to (6.2).
An important special case is when A and B are parallel slices of a convex set K: A = K∩{x :

x1 = a} and B = K∩{x : x1 = b}. Then αA+(1−α)B = K∩{x : x1 = αa+(1−α)b}, so (6.2)
implies that vol(K ∩{x : x1 = y})1/(n−1) is concave and (6.5) implies that vol(K ∩{x : x1 = y})
is a logconcave function of y.

Using the Prékopa-Leindler inequality, which is stronger than the Brunn-Minkowski inequal-
ity, one can prove several remarkable properties of logconcave functions. Since we do not use
these in the current notes, we do not go into detail; but I’m mentioning these properties here to
pique your interest into the implications of these interesting geometric inequalities. There are
many more, see [21].

1. Sections (‘marginals’) of a logconcave function are logconcave.

2. The convolution of two logconcave functions is logconcave.

If you liked the material in this lecture and you’re interested in these inequalities, be sure to
read about optimal transport [20, 46].
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7 | Isoperimetric inequalities

The classical isoperimetric inequality states that, if K is a convex body, then(
vol(K)

vol(Bn)

)1/n

≤
(
S(K)

S(Bn)

)1/(n−1)

, (7.1)

where S denotes the surface area of the convex body K:

S(K) = lim
ε↓0

vol(K + εBn)− vol(K)

ε
. (7.2)

(The limit exists as a consequence of Minkowski’s mixed volume theorem, see the last lecture.)
The next exercise shows that, among all bodies with a given volume, a ball minimizes the

surface area. (Some in the audience are probably more familiar with the corresponding inequality
for Gaussian measures, where the analogs of balls are halfspaces and the isoperimetric inequality
is related to the Borell inequality for the maximum of a Gaussian vector.)

Exercise 5. Show that (7.2) is the same as saying that, for any x > 0,

inf
K:vol(K)=x

S(K) = S(rBn), (7.3)

where r satisfies vol(rBn) = x. ,
The next exercise shows that the isoperimetric inequality (7.1) follows from the Brunn-

Minkowski inequality.

Exercise 6. Use (7.2) and the Brunn-Minkowski inequality to deduce a lower bound on S(K),
and use this to prove (7.1). ,

We need the related problem of finding a surface that partitions a convex body K into two
parts, and whose measure is minimal relative to the volumes of the two parts. In general this
is a very difficult problem and it is only partially understood. However, for our purposes it is
sufficient to know that the surface area of S inside K is large compared to the volumes of S and
K\S: For any subset S of a convex body K with diameter D, we have

voln−1(∂S ∩K) ≥ 2

D
min(vol(S), vol(K\S)).

The following theorem states an inequality of this form but for an analog (stronger) version
where the sets S1 and S2 can be separated by a set with full measure. The bound is a bit worse
than in the preceding display, but this claim is a bit easier to sketch the proof for. (Throughout,
we are not worried about constants but we do worry about capturing the right dependencies on
the dimension n and diameter D.)

Theorem 4. Let S1, S2, and S3 be a partition into measurable sets of a convex body K of
diameter D. Then we have

vol(S3) ≥ d(S1, S2)

4D
min(vol(S1), vol(S2)).
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where d(S1, S2) denotes the Euclidean distance between S1 and S2:

d(S1, S2) = min{|u− v| : u ∈ S1, v ∈ S2}.

There is also a related result for the boundary of a convex body. There are many subtleties
when defining the ‘volume’ of an arbitrary set; this is the domain of geometric analysis, but here
we simply assume that the boundary is a Riemannian manifold so that we can work with the
so-called Riemannian volume form. This assumption also gives rise to a metric d, the geodesic
distance. The following theorem is a weak version of a recent result by Milman [37].

Theorem 5. Let S1, S2, and S3 be a partition into measurable sets of the boundary ∂K of a
convex body of diameter D. We then have, for some absolute constant c > 0,

vol(S3) ≥ c

D
d(S1, S2) min(vol(S1), vol(S2)),

where d(S1, S2) = infx∈S1,y∈S2 d(x, y) denotes the geodesic distance between S1 and S2 on ∂K.

In the remainder of this lecture, we discuss some elements of the proof of Theorem 4.
Throughout, fix K and S1, S2, and S3. The key idea is to use localization, which reduces
an n-dimensional inequality to a one-dimensional inequality.

Lemma 3. Let f : K → R be integrable, and n ≥ 2. For any 2-dimensional affine subspace A of
Rn and z ∈ A, there exists an a ∈ A such that the halfspaces H+ = {x ∈ Rn : (x−z)′(a−z) ≤ 0}
and H− = {x ∈ Rn : (x− z)′(a− z) ≥ 0} satisfy∫

H+∩K
f(x)dx =

∫
H−∩K

f(x)dx.

Proof. Given A and z ∈ A, consider the family of halfspaces H = {Hb : b ∈ A} given by
Hb = {x ∈ Rn : (x − z)′(b − z) ≤ 0}. The functional b ∈ A 7→

∫
Hb∩K f(x)dx −

∫
Hc
b∩K

f(x)dx

is continuous and changes sign under the transformation b 7→ 2z − b (antisymmetry about z).
This yields the existence of some a ∈ A for which the claim holds.

Definition 2. A partition of the convex set K is a finite collection P = {P1, . . . , Pk} of closed
convex subsets of K such that

1.
⋃k
i=1 Pi = K,

2. Pi ∩ Pj = ∂Pi ∩ ∂Pj , 1 ≤ i < j ≤ k.

We say that a partition P of K is ε-thin if each P ∈ P is contained in the Minkowski sum of
some one-dimensional affine space and εBn centered at the origin.

The following proposition is the key ingredient of the localization approach. I will sketch a
‘picture proof’ in class.

Proposition 2. Let f : K → R be an integrable function for which
∫
K f(x)dx = 0. For any

ε > 0, there exists an ε-thin partition P of K for which
∫
P f(x)dx = 0 for P ∈ P.

According to this proposition, the parts P ∈ P can be chosen as ‘almost’ line segments
while maintaining the property that f integrates to zero. The function f : K → R we apply
this proposition to is given by f(x) = vol(S2)1{x ∈ S1} − vol(S1)1{x ∈ S2}. The equality∫
P f(x)dx = 0 translates to vol(P ∩S1)/vol(P ∩S2) = vol(S1)/vol(S2). Suppose that vol(S1) <

vol(S2) without loss of generality.
Fix some part P , and let it be ‘long’ (i.e., not thin) in direction `. Brunn-Minkowski implies

that the volume on parallel slices orthogonal to ` yields a logconcave function. If P ∩ S1 and

18



P ∩ S2 are unions of such parallel slices intersected with P , then this can be used to derive the
following ‘one-dimensional isoperimetric inequality’ for thin parts P ,

vol(S3 ∩ P ) ≥ 2d(S1, S2)

D
vol(S1 ∩ P ) =

2d(S1, S2)

D
min(vol(S1 ∩ P ), vol(S2 ∩ P )). (7.4)

The arguments are slightly more subtle when S1 and S2 are not necessarily unions of parallel
slices orthogonal to ` since one then needs to use this argument approximately and let ε converge
to 0 appropriately, but the key idea remains the same.

The proof of Theorem 4 is completed as follows. First we classify the parts of P according
to the relative size of S3:

P+ =

{
P ∈ P : vol(S3 ∩ P ) ≤ 1

2
vol(P )

}
, P− =

{
P ∈ P : vol(S3 ∩ P ) >

1

2
vol(P )

}
.

Note that either
∑

P∈P−
vol(P ) ≥ 1

2vol(K) (first case) or
∑

P∈P+
vol(P ) ≥ 1

2vol(K) (second
case). In the first case, we have

vol(S3) ≥
∑
P∈P−

vol(P ∩ S3) >
1

2

∑
P∈P−

vol(P ) ≥ 1

4
vol(K) ≥ d(S1, S2)

4D
min(vol(S1), vol(S2)).

In the second case, we have by (7.4)

vol(S3) ≥
∑
P∈P+

vol(P ∩ S3) ≥ 2d(S1, S2)

D

∑
P∈P+

vol(S1 ∩ P ),

where we note that (7.4) has only been justified ‘approximately’ so one needs to be quite a bit
more careful to make this precise. From vol(S1 ∩ P )/(vol(S1 ∩ P ) + vol(S2 ∩ P )) ≤ vol(P ∩
S1)/vol(P ), we deduce that∑
P∈P+

vol(S1 ∩ P ) ≥
∑
P∈P+

vol(S1 ∩ P )

vol(S1 ∩ P ) + vol(S2 ∩ P )
vol(P ) =

vol(S1)

vol(S1) + vol(S2)

∑
P∈P+

vol(P )

≥ vol(S1)

2(vol(S1) + vol(S2))
vol(K) ≥ 1

2
vol(S1).

Combining the latter two displays shows that the inequality in Theorem 4 also holds in the
second case.
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Part III

Algorithms and their analysis
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8 | Geometric random walks

In this lecture we discuss several MCMC (approximate) sampling algorithms for sampling from
convex sets or their boundary. Initially, all research in this direction was aimed at proving
that the algorithm works in any dimension in the sense that the Markov chain underlying
the MCMC algorithm converges to the correct target distribution. Interest then shifted to
proving that the algorithms are efficient as the dimension increases, with key contributions by
the computer science community. The running time of these MCMC algorithms is polynomial
in the dimension n (sometimes under further assumptions on the geometry of the body), even
though no deterministic algorithm can achieve polynomial running time as mentioned in the
first lecture.

Throughout, letK be a convex set. Some of the walks defined here also ‘work’ for non-convex
sets, but there are virtually no accompanying performance guarantees (except for [12]). Some of
these walks are part of a more general family of similar walks; here we only discuss the simplest
representative of the family.

The ball walk is a variation of the nearest-neighbor random walk on a grid. Its mixing
properties were analyzed in [34], and we outline the proof in the next lecture.

Ball walk for sampling from K
• Pick a point y with a uniform distribution on the ball of radius δ centered at the

current point x ∈ K.

• If y is in K, go to y; otherwise stay at x.

The hit-and-run algorithm of Smith [44] and its variations [1, 2] is inherently different from
the ball walk in the sense that it could potentially take huge steps as opposed to being confined
to a small neighborhood of the previous point. Its mixing properties were analyzed in [33, 35].

Hit-and-run for sampling from K
• Pick a line ` through the current point x ∈ K according to a uniform distribution.

• The next point y has a uniform distribution on the chord ` ∩K.

Shake-and-bake is a variation of hit-and-run which is suitable for sampling from the boundary
of a set [5, 42]. Its mixing properties have not yet been analyzed, but Lecture 10 makes a first
start.

Shake-and-bake for sampling from ∂K
• Pick a line ` through the current point x ∈ ∂K. according to cosine.

• The next point y is the intersection point of ` with ∂K different from x.
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Exercise 7. Verify for each of these walks that the uniform distribution is a stationary distri-
bution. ,

These walks can be modified to sample much more general distributions. Let f : Rn → R+

be a nonnegative integrable function. It defines a measure πf (on measurable subsets of Rn):

πf (A) =

∫
A f(x) dx∫
Rn f(x) dx

.

The ball walk can be extended as follows.

Ball walk with Metropolis filter
• Pick a uniformly distributed random point y in the ball of radius δ centered at

the current point x.

• Move to y with probability min
{

1, f(y)
f(x)

}
; stay at x with the remaining proba-

bility.

Exercise 8. Prove that the ball walk with Metropolis filter has πf for its stationary distribu-
tion. ,

Hit-and-run can also be extended to sampling from such a general distribution πf . For any
line ` in Rn, let π`,f be the restriction of π to `, i.e.,

π`,f (S) =

∫
p+tu∈S f(p+ tu) dt∫

` f(x) dx
,

where p is any point on ` and u is a unit vector parallel to `.

Hit-and-run for general functions
• Pick a uniform random line ` through the current point x.

• Go to a random point y along ` chosen from the distribution π`,f .

Exercise 9. Prove that this version of hit-and-run has πf for its stationary distribution. ,
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9 | Mixing for the ball walk

This lecture discusses the mixing properties of the ball walk. There are several reasons as to
why it is natural to discuss this walk in more detail: (1) the proof structure is generic in the
sense that most proofs of conductance follow the same rough outline, (2) the connection with
isoperimetric inequalities is most apparent in this case, and (3) the proof is arguably the simplest
of the geometric random walks presented in the previous lecture.

A geometric random walk is said to be rapidly mixing if its conductance is bounded from
below by an inverse polynomial in the dimension. The ball walk is not rapidly mixing since it
can be stuck in a ‘corner’. For instance, if K is a hypercube in Rn with the current point being
a vertex of the hypercube, then the chance of the ball walk making a move in the next step is
2−n, so it takes an exponential amount of steps to get away from the vertex. You can make this
arbitrarily bad. Below we discuss possible remedies. Throughout, we assume that K contains a
unit ball.

Define the local conductance `(x) at x ∈ K as the probability of escaping from K, i.e.,
`(u) = 1− Pu({u}). We omit a proof of the next lemma.

Lemma 4. Let u, v ∈ K. If |u− v| ≤ tδ/
√
n and `(u), `(v) ≥ `, then we have

‖Pu − Pv‖TV < 1− `+ t.

Theorem 6. Let K be a convex body with diameter D containing a unit ball. Suppose that
`(u) ≥ ` for u ∈ K. Then the conductance φ of the ball walk satisfies

φ ≥ `2δ

16
√
nD

.

Proof. Let K = S1 ∪ S2 be a partition into measurable sets. We will prove that∫
S1

Px(S2) dx ≥ `2δ

16
√
nD

min{vol(S1), vol(S2)}. (9.1)

Note that since the uniform distribution is stationary,∫
S1

Px(S2) dx =

∫
S2

Px(S1) dx.

Consider the points that are “deep” inside these sets, i.e., points that are unlikely to jump
out of the set:

S′1 =

{
x ∈ S1 : Px(S2) <

`

4

}
and

S′2 =

{
x ∈ S2 : Px(S1) <

`

4

}
.

Let S′3 be the rest i.e., S′3 = K \ S′1 \ S′2. A sketch of these definitions is given in the following
diagram, where the boundary between S1 and S2 is represented by a solid curve, while the
boundaries between S′1 and S′3 as well as between S′2 and S′3 are represented by a dashed curve.
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Suppose vol(S′1) < vol(S1)/2. Then∫
S1

Px(S2) dx ≥ `

4
vol(S1 \ S′1) ≥ `

8
vol(S1)

which proves (9.1).
So we can assume that vol(S′1) ≥ vol(S1)/2 and similarly vol(S′2) ≥ vol(S2)/2. Now, for any

u ∈ S′1 and v ∈ S′2,

||Pu − Pv||TV ≥ 1− Pu(S2)− Pv(S1) > 1− `

2
.

Applying Lemma 4 with t = `/2, we get that

|u− v| ≥ `δ

2
√
n
.

Thus d(S1, S2) ≥ `δ/2
√
n. Applying Theorem 4 to the partition S′1, S′2, S′3, we have

vol(S′3) ≥ `δ√
nD

min{vol(S′1), vol(S′2)}

≥ `δ

2
√
nD

min{vol(S1), vol(S2)}.

We next note that ∫
S1

Px(S2) dx =
1

2

∫
S1

Px(S2) dx+
1

2

∫
S2

Px(S1) dx

≥ 1

2
vol(S′3)

`

4

≥ `2δ

16
√
nD

min{vol(S1), vol(S2)},

and this proves (9.1).

The next corollary follows from the preceding theorem and Corollary 1. It shows that the
mixing time is at most nD2/(`4δ2).

Corollary 2. Consider the setting of Theorem 6 and set M = supAQ0(A)/π(A). Then there
is a constant c such that, for t ≥ 0,

‖Qt − π‖TV ≤
√
M

(
1− c`4δ2

nD2

)t
.

Note that the presence of ` in this bound is related to the problem of being ‘stuck’ in a corner,
as discussed already. There are several ways around this, which each have different implications
on the choice of the parameter δ:
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• Expand the body a bit, so that each point has a local conductance ` that is bounded
away from 0. It is important not to increase the volume too much, because otherwise one
cannot make a connection with sampling on the original body. In this case, one can choose
δ = 1/(n

√
n) and the mixing time will be O(n4D2).

• Change the body K a bit, so that ` is bounded away from 0. One can choose δ = 1/
√
n

but there are conditions on the initial distribution to make this work (a so-called ‘warm
start’).

The most important consequence of this is that (approximate) sampling can be done in
time that is polynomial in D and n. Through a standard transformation, D can also be made
polynomial in n, thus establishing Theorem 2.
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10 | Mixing for shake-and-bake

This lecture discusses a result for sampling from the boundary of a convex body. There is much
less work on sampling algorithms in this setting, with [5, 42] and related work as an exception.
There are several reasons that warrant a detailed inquiry into such sampling algorithms: (1)
Sampling from the boundary of a convex set generalizes sampling from a convex set K, since
samples from K can be generated by sampling from the boundary of the set K × [0, 1] in Rn+1.
(2) There are specific applications for sampling from the boundary of a convex set, see Lecture 3.
(3) MCMC algorithms that exploit the boundary could prove to be faster, and the underlying
ideas could lead to faster algorithms for sampling from convex sets as well. (4) New tools need
to be developed, which promise to be useful in various other settings.

For x, y ∈ ∂K, define φxy to be the acute angle between x− y and nx, the inward normal at
x. The one-step distribution is [5, 42]

Pu(A) =
π(n−1)/2

|∂K|Γ((n+ 1)/2)

∫
A

cos(φuv) cos(φvu)

‖u− v‖n−1
dv, (10.1)

where Γ is the gamma function. For x ∈ ∂K, define F (x) through

Px({y ∈ ∂K : d(x, y) ≤ F (x)}) =
3

4
.

In other words, this is the 75’th percentile step length of a random point from x. For 1 ≥ γ ≥ 0
and x ∈ K, we also define the step size

sγ(x) = sup

{
t ≥ 0 :

vol(x+ tBn ∩K)

vol(tBn)
≥ γ

}
.

Lemma 5. For any x ∈ ∂K and γ ≤ 1/2,

F (x) ≥ sγ(x)

2
.

We say that K is a convex body with curvature bounded from above by C < ∞ if for each
x ∈ ∂K, there is a ball B with radius 1/C and center in K so that the tangent planes of K and
B at x coincide and B lies in K.

Lemma 6. Let γ ∈ (0, 1/2). If K is a convex body with curvature bounded from above by C <∞,
then

sγ(x) ≥ cγ
C
√
n
,

where cγ is a constant only depending on γ.

Proof sketch. Fix x ∈ ∂K and let B be the aforementioned ball with radius 1/C. Let B̃ be a
‘small’ ball with radius r centered at x. Let x be the origin of a new coordinate system, in which
the center of the larger ball is (1/C, 0, . . . , 0).
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We first characterize the points (in this new coordinate system) where the boundaries of
the two balls intersect. All of these points have the same first coordinate, namely equal to t
satisfying

1

C2
− t2 = r2 −

(
1

C
− t
)2

.

The solution is t = 1/C − Cr2/2.
We now use the property that, for a unit ball B, the volume of all points with first coordinate

exceeding 1/
√
n takes up a constant fraction of the whole volume. Therefore, if (1/C − t)/r =

1/
√
n, the volume fraction of the small ball inside the big ball is at least some constant. This

shows that r should be at least of order 1/(C
√
n).

Lemma 7. Let u, v ∈ ∂K. If

d(u, v) <
1√
n

max(F (u), F (v)),

then we have
‖Pu − Pv‖TV < 1− 1

500
.

Theorem 7. Let K be a convex body in Rn with diameter D containing a unit ball. Suppose
the curvature is bounded from above by C. Then the conductance φ of shake-and-bake satisfies

φ ≥ c

CnD
,

for some universal constant c.

Proof. Let K = S1 ∪ S2 be a partition into measurable sets. We will prove that∫
S1

Px(S2) dx ≥ c

CnD
min{vol(S1), vol(S2)}. (10.2)

In this proof, the constant c can vary from line to line. Consider the points that are deep inside
these sets, i.e., unlikely to jump out of the set:

S′1 =

{
x ∈ S1 : Px(S2) <

1

1000

}
, S′2 =

{
x ∈ S2 : Px(S1) <

1

1000

}
.

Set S′3 = K \ S′1 \ S′2.
Suppose vol(S′1) < vol(S1)/2. Then∫

S1

Px(S2) dx ≥ 1

1000
vol(S1 \ S′1) ≥ 1

2000
vol(S1)

which proves (10.2).
So we can assume that vol(S′1) ≥ vol(S1)/2 and similarly vol(S′2) ≥ vol(S2)/2. For any

u ∈ S′1 and v ∈ S′2,
‖Pu − Pv‖TV ≥ 1− Pu(S2)− Pv(S1) > 1− 1

500
.

Thus, by Lemma 7, we must then have

d(u, v) ≥ 1√
n

max{F (u), F (v)}. (10.3)

In particular, we have d(S′1, S
′
2) ≥ infx∈∂K F (x)/

√
n.

27



We next apply Theorem 5 to obtain

vol(S′3)

min{vol(S′1), vol(S′2)}
≥ c

D
√
n

inf
x∈∂K

F (x)

≥ c

2D
√
n

inf
x∈∂K

sγ(x),

where the last inequality follows from Lemma 5. By Lemma 6, this is bounded from below by
c/(CnD). Therefore, ∫

S1

Px(S2) dx ≥ 1

2
· 1

1000
vol(S′3)

≥ c

CnD
min{vol(S′1), vol(S′2)}

≥ c

2CnD
min{vol(S1), vol(S2)}

which again proves (10.2).

The next corollary follows from the preceding theorem and Corollary 1. It shows that the
mixing time is at most order C2n2D2.

Corollary 3. Consider the setting of Theorem 7 and set M = supAQ0(A)/π(A). Then there
is a constant c such that, for t ≥ 0,

‖Qt − π‖TV ≤
√
M
(

1− c

C2n2D2

)t
.
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Solutions to selected exercises

Solution to Exercise 1. (There are several correct answers.) Let U be uniformly distributed
on (0, 1), and let Y be a standard Gaussian random vector in Rn. Then let the algorithm output
U1/nY/‖Y ‖. It is readily seen this has the correct distribution; by symmetry it suffices to show
that the norm U1/n has the correct distribution. Indeed, P (U1/n ≤ x) = xn, which is the ratio
of the volume of a ball with radius x and the volume of a unit ball.

Solution to Exercise 2. Under reversibility, we have

Φ(A) =

∫
A
Pu(Ac)π(du) =

∫
A

∫
Ac
Pu(dx)π(du)

=

∫
A

∫
Ac
π(dx)Px(du) =

∫
Ac

∫
A
Px(du)π(dx) = Φ(Ac),

where the second last equality follows from Fubini’s theorem.

Solution to Exercise 3. Let x1, x2 ∈ [0, 1] and α ∈ [0, 1]. For g1 ∈ Gx1 and g2 ∈ Gx2 , we
have αg1 + (1 − α)g2 ∈ Gαx1+(1−α)x2 . In particular, we have the following upper bound for
ht(αx1 + (1− α)x2):

sup
g∈Gαx1+(1−α)x2

∫
K
g(u)Qt(du) ≤ sup

g1∈Gx1
sup

g2∈Gx2

∫
K

(αg1(u) + (1− α)g2(u))Qt(du)− x,

and the right-hand side equals αht(x1) + (1− α)ht(x2).

Solution to Exercise 4. For brevity we suppress the requirements that each set of which we
take the volume is measurable. Clearly, (6.2) implies (6.4). To prove the converse, note that we
may assume that vol(A) 6= 0 and vol(B) 6= 0. Replacing A and B in (6.4) by the unit-volume
bodies vol(A)−1/nA and vol(B)−1/nB, and setting α = vol(A)1/n/(vol(A)1/n + vol(B)1/n), (6.4)
becomes

(vol(A)1/n + vol(B)1/n)−1vol(A+B) ≥ 1,

which is (6.4).

Solution to Exercise 5.Wemust have r = (x/vol(Bn))1/n to match the volume of rBn with the
volume of K, so the right-hand side becomes S((x/vol(Bn))1/nBn) = (x/vol(Bn))(n−1)/nS(Bn).
Therefore, (7.3) is equivalent with

S(K) ≥
(

vol(K)

vol(Bn)

)(n−1)/n

S(Bn),

which gives us (7.1) upon rearranging.

Solution to Exercise 6. Note that

S(K) ≥ lim
ε↓0

(vol(K)1/n + εvol(Bn)1/n)n − vol(K)

ε
= nvol(K)(n−1)/nvol(Bn)1/n,

and that S(Bn) = nvol(Bn). The desired inequality follows upon rearranging.
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