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Abstract

In this note, we consider a queue fed by a number of independent heterogeneous
Gaussian sources. We study under what conditions a reduced load equivalence holds,
i.e., when a subset of the sources becomes asymptotically dominant as the buffer size
increases. For this, recent results on extremes of Gaussian processes [6] are combined
with de Haan theory. We explain how the results of this note relate to square root
insensitivity and moderately heavy tails.

1 Introduction

Consider a fluid queue fed by the superposition of M independent stationary Gaussian
sources with mean input rate µ > 0. If the buffer is drained at some constant rate d > µ,
the steady-state probability that the buffer content exceeds u is given by

P

(

sup
t≥0

Yt − (d − µ)t > u

)

, (1)

where Y is a centered separable Gaussian process with stationary increments. Recently, the
asymptotics of this probability for u → ∞ have been found under some regularity conditions
[6].

The probability (1) plays not only a role in queueing theory. It is well-known that it
can be interpreted alternatively as the ruin probability of an insurance company with total
premium rate d, initial capital u, and cumulative claim process Yt +µt. The case that Y is a
superposition of two independent processes has recently attracted attention in the insurance
literature under the name ‘perturbed risk models’. We mention in particular Huzak et al. [8],
who study the influence of a perturbation with stationary independent increments on the
classical Cramér-Lundberg process. See [14, 15] for further examples and references.

In this note, we focus on Gaussian processes, and consider a slightly more general setting
than (1) by replacing the ‘drift’ (d − µ)t by ctβ for some β, c > 0. We study the question in
what cases only a subset of the M input sources contribute to a high value of supt≥0 Yt−ctβ,
i.e., for u → ∞,

P

(

sup
t≥0

M
∑

i=1

Yi(t) − ctβ > u

)

∼ P

(

sup
t≥0

∑

i∈S

Yi(t) − ctβ > u

)

(2)
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where S ⊆ {1, . . . , M}; we use the notation f(u) ∼ g(u) as u → ∞ for limu→∞ f(u)/g(u) = 1.
We present necessary and sufficient conditions for (2), and we say that we have reduced-load
equivalence when (2) holds for some S 6= {1, . . . , M}.

To explain the term ‘reduced-load equivalence’, consider two Gaussian sources with mean
input rates µ1 and µ2, and suppose the buffer is drained at rate d > µ1 + µ2. In the interval
[0, t], the input to the system is Y1(t) + µ1t + Y2(t) + µ2t and the output is dt. Hence, if (2)
holds for c = d− µ1 − µ2, β = 1, and S = {1}, the system behaves asymptotically as if only
the first source is present and the buffer is drained at rate d − µ2. It is easy to see that the
new load µ1/(d − µ2) is smaller than the old load (µ1 + µ2)/d. The same reasoning applies
if one has more than two sources.

Our main assumptions are the following. First, the variance function σ2 of Y is supposed
to be regularly varying at infinity with index 2H ∈ (0, 2). Moreover, we must impose that
β ∈ (H, 2H); otherwise (2) cannot hold, since the key ingredient from [6], Proposition 1
below, cannot be applied.

The motivation for pursuing our analysis stems from recent results on certain non-
Gaussian queueing models [1, 9, 12]. An interesting special case of the results in [12] is
M = 2 and Y1, Y2 being on-off sources with exponentially distributed on and off periods,
except for Y2; the latter process is supposed to have activity periods with a general distri-
bution G. It is then known that if the tail P (G > x) of G is heavier than exp(−x−1/2), the
queue length behaves asymptotically as if the second source produces traffic at a constant
rate equal to its load. This does not hold if the tail of G is lighter than exp(−x−1/2).

In our opinion, it is instructive to study the Gaussian case in detail for two reasons. First,
there is a vast body of literature on Gaussian processes, which makes this case relatively easy
to study. Moreover, one can use the Gaussian case to ‘predict’ reduced-load type behavior in
other models. For instance, the critical exponent 1/2 also arises in the Gaussian framework,
and a simple formula shows how this quantity changes if the underlying source characteristics
are altered, cf. Theorem 1. We remark that this phenomenon plays no role when studying
logarithmic asymptotics, see [5].

Our results are closely related to those of Zwart, Borst, and Dȩbicki [16]. While we present
a condition that is both necessary and sufficient, it is not clear that the sufficient condition for
reduced-load equivalence of [16] coincides with their necessary condition. Another difference
is that only the superposition of two Gaussian sources (M = 2) is studied in [16]. In
conclusion, we prove a condition that is better (or equally good) than the conditions of [16],
but our condition is extremely simple and easy to check.

Another related paper is Hüsler and Schmid [7]. They establish exact asymptotics of
(1) if Y is a sum of independent Gaussian processes. The difference with the present note
is that we assume stationary increments and allow general variance functions, while Hüsler
and Schmid restrict the variance function to be of the form

∑

i αit
2Hi but do not require

stationarity of the increments. Another, more fundamental, difference is the type of question
we pose. Exact asymptotics for (1) have already been established in [6] in the present setting,
but here we focus on the reduced load equivalence (2).

The results in this note are readily adapted if ctβ is replaced by a regularly varying func-
tion φ; the only reason for considering ctβ is to avoid cumbersome notation, cf. assumptions
M1–M4 in [6]. The case β 6= 1 may also be relevant in a queueing context; see [13].

Some words for the organization of this note. Section 2 describes the results, and Section 3
gives some examples. The required proofs are contained in Section 4.

2



2 Description of the result

We first introduce some notation. Let Y1, . . . , YM be independent centered Gaussian pro-
cesses with stationary increments. The finite dimensional distributions are then completely
determined by their respective variance functions σ2

1, . . . , σ
2
M : for s, t ≥ 0,

Cov(Yi(s), Yi(t)) =
1

2

[

σ2
i (s) + σ2

i (t) − σ2
i (|t − s|)

]

.

The sum of these processes is denoted by Y , so that Y has stationary increments and variance
function σ2 =

∑M
i=1 σ2

i .

Given a subset S of {1, . . . , M}, we set

σ2
S(t) :=

∑

i∈S

σ2
i (t),

and Sc := {1, . . . , M}\S.

Now we formulate the assumptions on the variance functions.

S1 For i = 1, . . . , M , σ2
i is continuous and regularly varying at infinity with index

2Hi for some Hi ∈ (0, 1),

S2 For i = 1, . . . , M , σ2
i is ultimately continuously differentiable and its first deriva-

tive σ̇2
i is ultimately monotone,

S3 For i = 1, . . . , M , σ2
i is ultimately twice continuously differentiable and its second

derivative σ̈2
i is ultimately monotone,

S4 σ(t) ≤ Ctγ on a neighborhood of zero for some C, γ > 0.

Note that S1 implies that the variance function σ2 of the sum Y is regularly varying
with index 2H, with H := maxM

i=1 Hi. Define

S∗ := {i ∈ {1, . . . , M} : σ2
i is regularly varying with index 2H},

as the family of indices with maximum index of variation.

We start with a simple consequence of Proposition 2 of [6], which we state without proof.
Note that for β = 1 the condition β ∈ (H, 2H) is equivalent to H ∈ (1/2, 1).

Proposition 1 Let the σ2
i and σ2 satisfy S1–S4. For H ∈ (0, 1) and β ∈ (H, 2H), we have

for any S ⊇ S∗,

P
(

supt≥0 Y (t) − ctβ > u
)

supt≥0 P (Y (t) − ctβ > u)
∼

P
(

supt≥0

∑

i∈S Yi(t) − ctβ > u
)

supt≥0 P
(
∑

i∈S Yi(t) − ctβ > u
) . (3)

Proposition 1 shows that (2) holds if and only if

sup
t≥0

P

(

M
∑

i=1

Yi(t) − ctβ > u

)

∼ sup
t≥0

P

(

∑

i∈S

Yi(t) − ctβ > u

)

. (4)

The following theorem, which is the main result of this note, gives a simple necessary and
sufficient condition for this to hold. It is proven in Section 4.
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Theorem 1 Let S ⊇ S∗. Under the conditions of Proposition 1, the reduced-load equivalence
(2) holds if and only if

lim
u→∞

uσSc(u1/β)

σ2
S(u1/β)

= 0. (5)

To understand this result intuitively, it is important to gain insight into the optimizers
on both sides of (4). As for the left hand side, we have

arg sup
t≥0

P

(

M
∑

i=1

Yi(t) − ctβ > u

)

= arg inf
t≥0

u + ctβ

σ(t)
=

(

u arg inf
t≥0

σ(u1/β)(1 + ct)

σ([ut]1/β)

)1/β

,

and by the regular variation of σ, it is plausible that the optimizer in the latter expression
tends to t∗ := arg inft≥0(1 + ct)/tH/β . The same reasoning applies to the right hand side of

(4). Hence, suppose that both suprema in (4) be attained for t∗u = (ut∗)1/β , where t∗ > 0 is
fixed. We then have a reduced load equivalence if and only if

Ψ

(

u(1 + ct∗)

σ((ut∗)1/β)

)

∼ Ψ

(

u(1 + ct∗)

σS((ut∗)1/β)

)

,

where Ψ denotes the complementary distribution function of the standard normal distribu-
tion. Standard estimates on Ψ show that this is equivalent to

lim
u→∞

[

u2(1 + ct∗)2

σ2
S((ut∗)1/β)

−
u2(1 + ct∗)2

σ2((ut∗)1/β)

]

= lim
u→∞

u2(1 + ct∗)2

σ2
S((ut∗)1/β)

σ2
Sc((ut∗)1/β)

σ2((ut∗)1/β)
= 0,

which is readily seen to hold if and only if (5) holds.

3 Examples

In this section, we present two examples to illustrate Theorem 1. While the first deals with
two sources, the second shows that one may need a strictly larger set than S∗ for reduced-load
equivalence to hold. In both examples we set β = 1.

3.1 An example with M = 2

The first example is related to Corollary 3.1 of [16]. Consider the sum of two processes, i.e.,
M = 2. Suppose that the variance functions satisfy σ2

1(u) ∼ C1u
2H1 and σ2

2(u) ∼ C2u
2H2

for some constants C1, C2 > 0 and H1 > H2. Also suppose that H1 > 1/2. For instance,
the first process is a fractional Brownian motion with long-range dependent characteristics,
and the second process a standard Brownian motion or a short-range dependent Gaussian
integrated process. Theorem 1 implies that a reduced-load equivalence holds if and only if
2H1 > 1 + H2.

Of special interest is the case H2 = 1/2, in which the condition reduces to H1 > 3/4. Since
the tail of the probability on the right hand side of (2) can be written as exp(−`(u)u2−2H1)
for some slowly varying function `, a reduced-load equivalence then holds if and only if the
exponent in this expression is smaller than 1/2. This is the connection with the discussion in
the introduction on a model with on-off sources. It illustrates that square root insensitivity or
moderately heavy tails play an important role in situations with both short range dependent
processes on the one hand and long range dependent processes or subexponential variables
on the other hand; see, e.g., [1, 2, 11, 10, 12].

It is interesting to note that the condition H1 > 3/4 also plays a role in a different problem
connected to the superposition of two independent processes. Indeed, set σ2

1(u) := u2H1 and
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σ2
2(u) := u for some H1 > 1/2; the distribution in C[0, T ] of Y1 + Y2 is absolutely continuous

to the distribution of Y1 (and vice versa) if and only if H1 > 3/4; otherwise they are singular.
These assertions are due to Cheridito [4]. However, we believe that the appearance of 3/4
in both problems is rather coincidence than caused by some underlying principle.

3.2 The set S∗ is not always the dominant set

We now illustrate the fact that one may need a larger set than S∗ for RLE to hold. For
simplicity, set M = 3 and suppose that Y1 is a fractional Brownian motion BH1

with Hurst
parameter H1, Y2 a fractional Brownian motion BH2

with Hurst parameter H2, and Y3 a
standard Brownian motion B (all mutually independent). Let H1 and H2 satisfy

3

4
< H2 < H1 <

H2 + 1

2
.

It is easy to verify that Theorem 1 implies that the following does not hold:

P

(

sup
t≥0

BH1
(t) + BH2

(t) + B(t) − t > u

)

∼ P

(

sup
t≥0

BH1
(t) − t > u

)

.

Hence, BH1
alone does not determine the asymptotics, although S∗ = {1}. However, Theo-

rem 1 also shows that the following does hold:

P

(

sup
t≥0

BH1
(t) + BH2

(t) + B(t) − t > u

)

∼ P

(

sup
t≥0

BH1
(t) + BH2

(t) − t > u

)

,

i.e., the first two processes are asymptotically dominant.

4 Proof of Theorem 1

The proof consists of three steps. We first present an ‘intermediate’ necessary and sufficient
condition, which is not so explicit. In the second step, this condition is shown to be necessary
for (5), and the last step shows sufficiency.

For notational convenience, we set µ(t) := t1/β/c. Moreover, we let t∗ denote the argu-
ment of the infimum of (1 + t)2/t2H/β over R+, i.e., t∗ = H/(β − H).

Step 1: auxiliary necessary and sufficient condition

Proposition 1 implies that (2) holds if and only if

lim
u→∞

[

inf
t≥0

u2(1 + t)2

σ2
S(µ(ut))

− inf
t≥0

u2(1 + t)2

σ2(µ(ut))

]

≤ 0. (6)

Let ε > 0 be small. In the first step of the proof, we show that the condition in the preceding
display is equivalent to

lim
u→∞

[

inf
t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

− inf
t∈[t∗±ε]

u2(1 + t)2

σ2(µ(ut))

]

≤ 0, (7)

where we denoted the interval [t∗ − ε, t∗ + ε] by [t∗ ± ε]. We only show this for the second
infimum; a similar reasoning applies to the first.

Select some (large) T > 0 such that

1

4
T 1−H/β ≥

1 + t∗

(t∗)H/β
.
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We start by showing that the infima in (6) can be taken over the interval [0, T ]. To see this,
note that for large u

inf
t≥T

1 + t

σ(µ(ut))
≥ inf

t≥T

t

σ(µ(ut))
≥

1

2

T 1−H/β

σ(µ(u))
≥ 2

1 + t∗

σ(µ(u))(t∗)H/β
≥

1 + t∗

σ(µ(ut∗))

where the second inequality is a consequence of Theorem 1.5.3 of Bingham, Goldie and
Teugels [3] (indeed, the map t 7→ t/σ(µ(t)) is locally bounded on [1,∞) and regularly varying
with index 1−H/β > 0). The last inequality follows from the definition of regular variation.

Now we show that infima cannot be attained on [0, T ]\[t∗ ± ε] for large u. Choose some
η > 0 such that

(1 + η)

[

sup
t∈[0,T ]\[t∗±ε]

tH/β

1 + t
+ η

]

≤
(t∗)H/β

1 + t∗
,

which is possible since ε > 0. Again exploiting the local boundedness of σ2, by Theorem 1.5.2
of [3] we have for large u,

inf
t∈[0,T ]\[t∗±ε]

1 + t

σ(µ(ut))
≥ inf

t∈[0,T ]\[t∗±ε]

1 + t

σ(µ(u))[tH/β + η]

≥
1

σ(µ(u))
[

supt∈[0,T ]\[t∗±ε]
tH/β

1+t + η
]

≥ (1 + η)
1 + t∗

σ(µ(u))(t∗)H/β
,

which majorizes inf t∈[t∗±ε](1 + t)/σ(µ(ut)) again by Theorem 1.5.2 of [3].

Step 2: (5) implies (7)

Before proving that (7) is equivalent to (5) by combining Step 2 and 3, we first make an
observation concerning the second-order behavior of the function σ2

S(µ(·))/σ2(µ(·)).
Observe that σ2 = σ2

Sc + σ2
S and that σ2

Sc(u)/σ2
S(u) → 0 since S ⊇ S∗, so that the

function σ2
S(µ(·))/σ2(µ(·)) lies in the de Haan class of σ2

Sc(µ(·))/σ2
S(µ(·)) with index 2(H −

maxi∈Sc Hi)/β, i.e., for t > 0,

σ2
S(µ(ut))

σ2(µ(ut))
−

σ2
S(µ(u))

σ2(µ(u))
∼
(

1 − t2(maxi∈Sc Hi−H)/β
) σ2

Sc(µ(u))

σ2
S(µ(u))

. (8)

For background on de Haan theory, we refer to Chapter 3 of [3].
Now we prove the sufficiency of (5). By (8), we have

inf
t∈[t∗±ε]

u2(1 + t)2

σ2(µ(ut))

= inf
t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

[

σ2
S(µ(u))

σ2(µ(u))
+ (1 + o(1))

(

1 − t2(maxi∈Sc Hi−H)/β
) σ2

Sc(µ(u))

σ2
S(µ(u))

]

(9)

≥
σ2

S(µ(u))

σ2(µ(u))
inf

t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

+
σ2

Sc(µ(u))

σ2
S(µ(u))

inf
t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

(

1 − t2(maxi∈Sc Hi−H)/β
)

(1 + o(1))

=: I(u) + II(u),

and o(1) is uniform in t ∈ [t∗ ± ε] by Theorem 3.1.16 of [3].
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Observe that

inf
t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

− I(u) =

(

1 −
σ2

S(µ(u))

σ2(µ(u))

)

inf
t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

=
σ2

Sc(µ(u))

σ2(µ(u))
inf

t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

=
u2σ2

Sc(µ(u))

σ4
S(µ(u))

σ2
S(µ(u))

σ2(µ(u))
inf

t∈[t∗±ε]

σ2
S(µ(u))(1 + t)2

σ2
S(µ(ut))

.

The infimum tends to a constant in (0,∞) by Theorem 1.5.2 of [3], and the other terms tend
to zero as a consequence of (5). Step 2 is complete once it has been shown that II(u) tends
to zero, or equivalently that

lim
u→∞

σ2
Sc(µ(u))

σ2
S(µ(u))

inf
t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

(

1 − t2(maxi∈Sc Hi−H)/β
)

= 0.

For this, note that the left hand side equals

lim
u→∞

u2σ2
Sc(µ(u))

σ4
S(µ(u))

inf
t∈[t∗±ε]

σ2
S(µ(u))(1 + t)2

σ2
S(µ(ut))

(

1 − t2(maxi∈Sc Hi−H)/β
)

= lim
u→∞

u2σ2
Sc(µ(u))

σ4
S(µ(u))

inf
t∈[t∗±ε]

(1 + t)2

t2H/β

(

1 − t2(maxi∈Sc Hi−H)/β
)

,

by Theorem 1.5.2 of [3] and the fact that 1 − t2(maxi∈Sc Hi−H)/β is bounded away from ±∞
on [t∗ ± ε]. Evidently, (5) implies that the limits in the preceding display are equal to zero.

Step 3: (7) implies (5)

Now suppose that (5) does not hold. Observe that

1 − t2(maxi∈Sc Hi−H)/β ≤ 1 −
1

2
(t∗)2(maxi∈Sc Hi−H)/β =: α < 1

for t ∈ [t∗ ± ε] if ε > 0 is small enough. Hence, for large u,

inf
t∈[t∗±ε]

u2(1 + t)2

σ2(µ(ut))
≤ inf

t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

[

σ2
S(µ(u))

σ2(µ(u))
+ (α + o(1))

σ2
Sc(µ(u))

σ2
S(µ(u))

]

,

so that by (9), for large u

inf
t∈[t∗±ε]

u2(1 + t)2

σ2
S(µ(ut))

− inf
t∈[t∗±ε]

u2(1 + t)2

σ2(µ(ut))

≥
u2σ2

Sc(µ(u))

σ4
S(µ(u))

[

σ2
S(µ(u))

σ2(µ(u))
− α + o(1)

]

inf
t∈[t∗±ε]

σ2
S(µ(u))(1 + t)2

σ2
S(µ(ut))

≥
1 − α

2

u2σ2
Sc(µ(u))

σ4
S(µ(u))

inf
t∈[t∗±ε]

(1 + t)2

t2H/β
,

which does not converge to zero.
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