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ABSTRACT

Let {νε : ε > 0} be a family of probabilities for which the decay is governed by a large de-
viation principle, and consider the simulation of νε0

(A) for some fixed measurable set A and
some ε0 > 0. We investigate the circumstances under which an exponentially twisted impor-
tance sampling distribution yields an asymptotically efficient estimator. Varadhan’s lemma
yields necessary and sufficient conditions, and these are shown to improve the conditions of
Sadowsky [25]. This is illustrated by an example for which Sadowsky’s conditions do not
apply, while an efficient twist exists.
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1. Introduction

Given a probability distribution ν, we are interested in estimating a rare event probability
ν(A). In direct Monte Carlo methods, the usual estimator is the proportion of times that A
occurs in a certain number of independent samples from ν. However, an inherent problem
of this approach is that many samples are needed to obtain a reliable estimate for ν(A). In
fact, the required simulation time for estimating ν(A) may exceed any reasonable limit.

As an important special case, direct Monte Carlo methods are inappropriate for simulating
large deviation probabilities. A family of probability measures {νε : ε > 0} is said to satisfy a
large deviation principle (LDP) if νε(A) decays exponentially as ε → 0 for a wide class of sets
A. Given such a family, we refer to a probability of the form νε0(A) for some ε0 > 0 and some
event A as a large deviation probability. Probabilities of this type are encountered in many
fields, e.g., statistics, operations research, information theory, and financial mathematics.

A widely used technique to estimate rare-event probabilities is importance sampling. In
importance sampling, one samples from a probability measure λ different from νε0 , such
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that the νε0-rare event becomes λ-likely. Often, one chooses a so-called exponentially twisted
distribution for λ, but within this class there is still freedom to select a specific twisted
distribution. To evaluate the changes of measure, efficiency criteria have been developed. In
this paper, we use the asymptotic efficiency criterion.

Research initiated by the seminal paper of Siegmund [27] has shown that exponentially
twisting is asymptotically efficient in specific cases. We mention in particular the estimation of
the ‘level-crossing’ probability P (X1+. . .+Xn > M, for some n) for real-valued i.i.d. random
variables X1,X2, . . .; see Lehtonen and Nyrhinen [23], who study the regime M → ∞. Related
results in a more general Markovian setting are obtained by Asmussen [1] and Lehtonen and
Nyrhinen [22]. Collamore [8] extends this to a multi-dimensional setting.

Another example for which an exponential twist is known to yield asymptotic efficiency
relates to the ‘Cramér-type’ probability P (X1 + . . . + Xn ≥ γn) for γ > EX1, where n → ∞.
In case X1,X2, . . . have a special Markovian structure, this was found by Bucklew et al. [6].
Sadowsky [24] focuses on stability issues in the special case of i.i.d. random variables. To
estimate P (Sn ≥ γn) for generally distributed Sn, Sadowsky and Bucklew [26] show that that
there exists an asymptotically efficient exponential twist if the Gärtner-Ellis theorem applies
to {Sn/n}; this is also observed by Szechtman and Glynn [28].

However, it was noted that a successful application of an importance sampling distribution
based on large deviation theory critically depends on the specific problem at hand. Glasser-
man and Wang [19] give variations on both the level-crossing problem and the Cramér-type
problem, and show that exponential twists can be inefficient if the rare event A is irregular.
In fact, they obtain the stronger result that the so-called relative error can even become
unbounded in these examples. Similar observations have been made by Glasserman and
Kou [17] in a queueing context.

Given the examples of efficient and inefficient simulation with exponentially twisted impor-
tance sampling distributions, it is natural to ask whether there exist necessary and sufficient
conditions for asymptotic efficiency. In case the Gärtner-Ellis theorem applies, this question
is studied by Sadowsky and Bucklew [26], while Sadowsky [25] extends these findings to a
general abstract large deviation setting.

The necessary and sufficient conditions presented here have two advantages over those in
[25]. The first is that the proof is elementary; the conditions follow straightforwardly from
an application of Varadhan’s Integral lemma. Therefore, we refer to these conditions as
Varadhan conditions. Notice that this elementary lemma has already been applied earlier
to derive efficiency properties of certain rare event estimators (see Glasserman et al. [16],
Dupuis and Wang [14], and Glasserman and Li [18]).

The main result of this paper is that the elementary Varadhan conditions are shown to
improve the conditions of Sadowsky [25]. To explain the improvements, it is important
to realize that each set of conditions (the Varadhan conditions and Sadowsky’s conditions)
applies only under certain assumptions. On the one hand, the assumptions underlying the
Varadhan conditions are less restrictive than Sadowsky’s, so that the conditions apply in
more situations. Notably, convexity of the large deviation rate function is not required. On
the other hand, the Varadhan conditions themselves are better than Sadowsky’s conditions,
i.e., the Varadhan sufficiency condition is implied by Sadowsky’s sufficiency condition, and
vice versa for the necessary condition.

The use of the Varadhan conditions is illustrated by an example for which Sadowsky’s
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results cannot be applied. In this example, asymptotically efficient simulation is possible,
while a different approach, which seems perhaps more natural, turns out to be slower.

The paper is organized as follows. After providing the necessary preliminaries in Section 2,
we state the Varadhan conditions in Section 3. Section 4 shows that these conditions improve
those of Sadowsky. An example is worked out in Section 5, and Section 6 relates the use of
a single exponential twist to other approaches.

2. Preliminaries

This section provides the basic background on importance sampling and asymptotic efficiency,
and discusses their relationship with large deviation techniques. For a more detailed discus-
sion on importance sampling and asymptotic efficiency, see Asmussen and Rubinstein [3],
Heidelberger [21], and references therein. Valuable sources for large deviation techniques are
the books by Dembo and Zeitouni [9] and Deuschel and Stroock [10].

2.1 Importance sampling
Let X be a topological space, equipped with some σ-field B containing the Borel σ-field. Given
a probability measure ν on (X ,B), we are interested in the simulation of the ν-probability
of a given event A ∈ B, where ν(A) is small. The idea of importance sampling is to sample
from a different distribution on (X ,B), say λ, for which A occurs more frequently. This is
done by specifying a measurable function dλ/dν : X → [0,∞] and by setting

λ(B) :=

∫

B

dλ

dν
dν. (2.1)

Since λ must be a probability measure, dλ/dν should integrate to unity with respect to ν.
Assuming equivalence of the measures ν and λ, set dν/dλ := (dλ/dν)−1 and note that

ν(A) =

∫

A

dν

dλ
dλ =

∫

X
1A

dν

dλ
dλ,

where 1A denotes the indicator function of A. The importance sampling estimator ν̂λ(A) of
ν(A) is found by drawing N independent samples X (1), . . . ,X(N) from λ:

ν̂λ(A) :=
1

N

N
∑

i=1

1{X(i)∈A}

dν

dλ
(X(i)).

It is clear that ν̂λ(A) is an unbiased estimator, i.e., Eλν̂λ(A) = ν(A). However, one has the
freedom to choose an efficient distribution λ in the sense that the variance of the estimator
is small. In particular, it is of interest to find the change of measure that minimizes this
variance, or, equivalently,

∫

A

(

dν

dλ

)2

dλ =

∫

X
1A

(

dν

dλ

)2

dλ =

∫

A

dν

dλ
dν.

A zero-variance estimator is found by letting λ be the conditional distribution of ν given A
(see, e.g., Heidelberger [21]), but it is infeasible since dν/dλ then depends on the unknown
quantity ν(A). This motivates the use of another optimality criterion, asymptotic efficiency.
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2.2 Asymptotic efficiency

To formalize the concept of asymptotic efficiency, we introduce some notions that are exten-
sively used in large deviation theory.

A function I : X → [0,∞] is said to be lower semicontinuous if the level sets ΦI(α) := {x :
I(x) ≤ α} are closed subsets of X for all α ∈ [0,∞). The interior and closure of a set B ⊆ X
are denoted by Bo and B respectively.

Definition 1 A function I : X → [0,∞] is called a rate function if it is lower semicontinuous.
If ΦI(α) is compact for every α ≥ 0, I is called a good rate function.

A set B ∈ B is called an I-continuity set if infx∈Bo I(x) = infx∈B I(x) = infx∈B I(x).

The central notion in large deviation theory is the large deviation principle.

Definition 2 A family of probability measures {νε : ε > 0} on (X ,B) satisfies a large devia-
tion principle (LDP) with rate function I if for all B ∈ B,

− inf
x∈Bo

I(x) ≤ lim inf
ε→0

ε log νε(B) ≤ lim sup
ε→0

ε log νε(B) ≤ − inf
x∈B

I(x).

Throughout this paper, we assume that the family {νε} satisfies an LDP. We fix some rare
event A ∈ B, i.e., infx∈Ao I(x) > 0, implying that νε(A) decays exponentially as ε → 0. Since
ν(A) is supposed to be a large deviation probability, we have ν = νε0 for some ε0.

The definition of asymptotic efficiency is related to the so-called relative error. Consider

an i.i.d. sample X
(1)
λε

, . . . ,X
(N)
λε

from an importance sampling distribution λε. We define the
relative error ηN (λε, A) of the importance sampling estimator

ν̂λε
(A)N :=

1

N

N
∑

i=1

1n

X
(i)
λε

∈A
o

dνε

dλε

(

X
(i)
λε

)

(2.2)

by

η2
N (λε, A) :=

Varλε
ν̂λε

(A)N
νε(A)2

=
Eλε

(

ν̂λε
(A)N

)2

νε(A)2
− 1.

The relative error is proportional to the width of a confidence interval relative to the (ex-

pected) estimate itself; hence, it measures the variability of ν̂λε
(A)N .

For asymptotic efficiency, the number of samples required to obtain a prespecified relative
error should vanish on an exponential scale. Set N ∗

λε
:= inf{N ∈ N : ηN (λε, A) ≤ ηmax}.

Definition 3 An importance sampling family {λε} is called asymptotically efficient if

lim sup
ε→0

ε log N∗
λε

= 0, (2.3)

for some given maximal relative error 0 < ηmax < ∞.

In the literature, asymptotic efficiency is sometimes referred to as asymptotic optimality,
logarithmic efficiency, or weak efficiency. We will shortly see that the specific value of ηmax

is irrelevant.
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Let us briefly relate Definition 3 to other frequently used definitions for asymptotic effi-
ciency. By definition of ηN (λε, A), we have

N∗
λε

= inf

{

N ∈ N :
1

N

∫

A

(

dνε

dλε

)2

dλε ≤ (η2
max + 1)νε(A)2

}

=











∫

A

(

dνε

dλε

)2
dλε

(η2
max + 1)νε(A)2











. (2.4)

Equation (2.4) implies

lim sup
ε→0

ε log N∗
λε

≤ lim sup
ε→0

ε log

∫

A

(

dνε

dλε

)2

dλε − 2 lim inf
ε→0

ε log νε(A), (2.5)

with equality if the limit limε→0 ε log νε(A) exists. Sufficient for the existence of this limit
is that A be an I-continuity set; in that case, limε→0 ε log νε(A) = − infx∈A I(x). In many
applications, A is indeed an I-continuity set, in which case asymptotic efficiency is equivalent
to

lim sup
ε→0

ε log

∫

A

(

dνε

dλε

)2

dλε ≤ −2 inf
x∈A

I(x). (2.6)

In turn, this is equivalent to limε→0 ε log
∫

A

(

dνε

dλε

)2
dλε = −2 infx∈A I(x) by Jensen’s inequal-

ity. By similar arguments, one can also readily see that

lim sup
ε→0

log
∫

A

(

dνε

dλε

)2
dλε

log νε(A)
≥ 2

is equivalent to asymptotic efficiency when A is an I-continuity set. Again, the corresponding
lower bound follows from Jensen’s inequality.

3. The Varadhan conditions for efficiency of exponential twisting

This section investigates the asymptotic efficiency of the estimators that are based on an ex-
ponential twist. After formalizing the imposed assumptions, we state necessary and sufficient
conditions based on Varadhan’s lemma. Section 4 discusses the relation with the conditions
developed by Sadowsky [25].

Let X be a topological space and B be a σ-field on X containing the Borel σ-field. We
assume that X is also a vector space, but not necessarily a topological vector space. Through-
out this section, we fix a rare event A ∈ B and a continuous linear functional ξ : X → R.
Having a topological vector space in mind, we write 〈ξ, ·〉 for ξ(·). We are given a family {νε}
of probability measures on (X ,B).

Assumption 1 (Varadhan assumptions) Assume that

(i) X is a vector space endowed with some regular Hausdorff topology,

(ii) {νε} satisfies the LDP with a good rate function I,
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(iii) it holds that

lim
M→∞

lim sup
ε→0

ε log

∫

{x∈X :〈ξ,x〉≥M}
exp[〈ξ, x〉/ε]νε(dx) = −∞, (3.1)

and similarly for ξ replaced by −ξ,

We note that a simple sufficient condition for (3.1) to hold is given in Lemma 4.3.8 of [9]:
lim supε→0 ε log

∫

exp[γ〈ξ, x〉/ε]νε(dx) < ∞ for some γ > 1; similarly for ξ replaced by −ξ.

A new family of probability measures {λξ
ε} is defined by

dλξ
ε

dνε
(x) := exp

(

〈ξ, x〉/ε − log

∫

X
exp[〈ξ, y〉/ε]νε(dy)

)

(3.2)

=
exp[〈ξ, x〉/ε]

∫

X exp[〈ξ, y〉/ε]νε(dy)
.

The measures {λξ
ε} are called exponentially twisted with twist ξ. If the family {λξ

ε} is asymp-
totically efficient, we simply call the exponential twist ξ asymptotically efficient.

The following proposition plays a key role in the proofs of this section.

Proposition 1 Let dλξ
ε/dνε be given by (3.2), and let B ∈ B. Under Assumption 1, we have

lim inf
ε→0

ε log

∫

B

(

dνε

dλξ
ε

)2

dλξ
ε ≥ − inf

x∈X
[I(x) − 〈ξ, x〉] − inf

x∈Bo
[I(x) + 〈ξ, x〉],

lim sup
ε→0

ε log

∫

B

(

dνε

dλξ
ε

)2

dλξ
ε ≤ − inf

x∈X
[I(x) − 〈ξ, x〉] − inf

x∈B
[I(x) + 〈ξ, x〉].

Proof. Fix B ∈ B and note that

ε log

∫

B

(

dνε

dλξ
ε

)2

dλξ
ε = ε log

∫

B

dνε

dλξ
ε

dνε

= ε log

∫

B

exp

(

log

∫

X
exp(〈ξ, y〉/ε)νε(dy) − 〈ξ, x〉/ε

)

νε(dx)

= ε log

∫

X
exp (〈ξ, x〉/ε) νε(dx) + ε log

∫

B

exp (−〈ξ, x〉/ε) νε(dx). (3.3)

By Assumption 1 and the continuity of the functional ξ, Varadhan’s Integral Lemma (The-
orem 4.3.1 in [9]) applies. Thus, the limit of the first term exists and equals

lim
ε→0

ε log

∫

X
exp (〈ξ, x〉/ε) νε(dx) = sup

x∈X
[〈ξ, x〉 − I(x)].

A similar argument can be applied to the second term in (3.3). The conditions of Varad-
han’s Integral Lemma are again satisfied to apply the lemma to the continuous functional
−ξ. Now we use a variant of this lemma (see, e.g., Exercise 4.3.11 of [9]) to see that for any
open set G and any closed set F

lim inf
ε→0

ε log

∫

G

exp (−〈ξ, x〉/ε) νε(dx) ≥ − inf
x∈G

[I(x) + 〈ξ, x〉],

lim sup
ε→0

ε log

∫

F

exp (−〈ξ, x〉/ε) νε(dx) ≤ − inf
x∈F

[I(x) + 〈ξ, x〉].
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In particular, these inequalities hold for Bo and B. The claim follows by adding the two
terms in (3.3) [using the fact that the limit of the first term exists]. 2

The necessary and sufficient conditions, formulated in the next theorem, follow almost
immediately from Proposition 1.

Theorem 1 (Varadhan conditions) Let Assumption 1 hold. The exponential twist ξ is
asymptotically efficient if

inf
x∈X

[I(x) − 〈ξ, x〉] + inf
x∈A

[I(x) + 〈ξ, x〉] ≥ 2 inf
x∈Ao

I(x). (3.4)

Let Assumption 1 hold and let A be an I-continuity set. If the exponential twist ξ is
asymptotically efficient, then

inf
x∈X

[I(x) − 〈ξ, x〉] + inf
x∈Ao

[I(x) + 〈ξ, x〉] ≥ 2 inf
x∈A

I(x). (3.5)

Proof. Sufficiency follows from (2.5), the upper bound of Proposition 1, and the LDP of
Assumption 1(ii):

lim sup
ε→0

ε log N∗
λ

ξ
ε

≤ lim sup
ε→0

ε log

∫

A

(

dνε

dλξ
ε

)2

dλξ
ε − 2 lim inf

ε→0
ε log νε(A)

≤ − inf
x∈X

[I(x) − 〈ξ, x〉] − inf
x∈A

[I(x) + 〈ξ, x〉] + 2 inf
x∈Ao

I(x).

For necessity the argument is similar. Note that the lower bound of Proposition 1 implies
that

lim sup
ε→0

ε log

∫

A

(

dνε

dλξ
ε

)2

dλξ
ε ≥ − inf

x∈X
[I(x) − 〈ξ, x〉] − inf

x∈Ao
[I(x) + 〈ξ, x〉].

Moreover, by the large deviation upper bound,

lim inf
ε→0

ε log νε(A) ≤ − inf
x∈A

I(x).

Combining these observations with the assumption that A is an I-continuity set, we have

0 = lim sup
ε→0

ε log N∗
λ

ξ
ε

= lim sup
ε→0

ε log

∫

A

(

dνε

dλξ
ε

)2

dλξ
ε − 2 lim

ε→0
ε log νε(A)

≥ − inf
x∈X

[I(x) − 〈ξ, x〉] − inf
x∈Ao

[I(x) + 〈ξ, x〉] + 2 inf
x∈A

I(x),

as desired. 2

As suggested by the form of Theorem 1, the sufficient condition is also necessary under
a weak condition on the set A. We formalize this in the following corollary, which follows
straightforwardly from Theorem 1.
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Figure 1: Efficient simulation with twist ξγ (left) and inefficient simulation with twist ξγ

(right).

Corollary 1 Let Assumption 1 hold, and assume that A is both an I-continuity set and an
(I + ξ)-continuity set. Exponentially twisting with ξ is asymptotically efficient if and only if

inf
x∈X

[I(x) − 〈ξ, x〉] + inf
x∈A

[I(x) + 〈ξ, x〉] = 2 inf
x∈A

I(x).

We remark that Sadowsky [25] uses a more general notion than asymptotic efficiency,

namely ν-efficiency. Given an I-continuity set A, the importance sampling distribution λξ
ε is

said to be ν-efficient if

lim sup
ε→0

ε log

∫

A

(

dνε

dλξ
ε

)ν

dλε ≤ −ν inf
x∈A

I(x).

In this terminology, we have established conditions for 2-efficiency (see the remarks after
Definition 3). To obtain conditions for ν-efficiency with general ν ≥ 2, the statements in the
subsection are easily modified. As an example, when A is an (I + (ν − 1)ξ)-continuity set
and when Assumption 1(iii) holds with ξ replaced by (ν−1)ξ and −(ν −1)ξ, the exponential
twist ξ is ν-efficient if and only if

inf
x∈X

[I(x) − (ν − 1)〈ξ, x〉] + inf
x∈A

[I(x) + (ν − 1)〈ξ, x〉] = ν inf
x∈A

I(x).

We now illustrate the Varadhan conditions in a simple example. Let ν be the distribution of
a random variable X on Rd, and denote the distribution of the sample mean of n i.i.d. copies
of X by νn. Note that 1/n plays the role of ε in this example. Let ν be such that Cramér’s
theorem holds.

For instance, νn is a zero-mean bivariate Gaussian distribution with covariance of the form
Σ/n for some diagonal matrix Σ; see Figure 1. We are interested in νn(A) for two different
sets A; these are drawn in the left and right panel of Figure 1. Note that the rate function has
the form I(x1, x2) = C1x

2
1 +C2x

2
2 for some constants C1, C2 > 0. As indicated by the dashed

level curve of I, the ‘most likely point’ in A is in both cases γ, i.e., arg infx∈A I(x) = I(γ). One
can see that there is only one exponential twist ξγ ∈ R2 interesting for simulation purposes,
namely the conjugate point of γ. The level curve of I + ξγ + infx∈X [I(x) − ξt

γx] that goes
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through γ is depicted as a solid line. Since both sets A are I- and (I + ξγ)-continuity sets,
the twist ξγ is asymptotically efficient if and only if A lies entirely ‘outside’ the solid level
curve (see Corollary 1). Hence, in the left panel the twist ξγ is asymptotically efficient twist
and in the right panel it is not.

In the literature, sufficient conditions for asymptotic efficiency have been given in terms of
dominating points and convexity of A in case the rate function is convex (see, e.g., Sadowsky
and Bucklew [26] and references therein). Using Figure 1, we explain how it can be seen that
the Varadhan conditions improve these dominating point conditions (convexity of A implies
the existence of a dominating point, so we focus on dominating points). Every I-continuity
set that touches γ and that is contained in the halfspace above the dotted line has dominating
point γ. Obviously, such a set lies outside the solid level curve, and one can therefore estimate
νn(A) asymptotically efficiently by an exponential twist. However, Figure 1 indicates that
the dominating point condition is far from necessary: neither of the sets A have a dominating
point, while an efficient twist exists in the left panel.

4. Comparison with Sadowsky’s conditions

General necessary and sufficient conditions for asymptotic efficiency were also developed by
Sadowsky [25]. In this subsection, we compare the conditions of Theorem 1 with Sadowsky’s
conditions. We show that the assumptions underlying Varadhan’s conditions are less restric-
tive than Sadowsky’s assumptions. Moreover, the sufficient condition in Theorem 1 improves
Sadowsky’s sufficiency condition, and the same holds for the accompanying necessary condi-
tions.

In addition to the notation of the preceding subsection, we first introduce some new notions.
In this section, X denotes a topological vector space, and X ∗ denotes the space of linear
continuous functionals ξ : X → R. Let f : X → (−∞,∞] be a convex function. A point
x ∈ X is called an exposed point of f if there exists a δ ∈ X ∗ such that f(y) > f(x)+〈δ, y−x〉
for all y 6= x. δ is then called an exposing hyperplane of I at x.

To compare the Varadhan conditions to Sadowsky’s, we first recapitulate Sadowsky’s as-
sumptions.

Assumption 2 (Sadowsky’s assumptions) Assume that

(i) X is a locally convex Hausdorff topological vector space,

(ii) {νε} satisfies the LDP with a convex good rate function I,

(iii) for every δ ∈ X ∗,

Λ(δ) := lim sup
ε→0

ε log

∫

X
exp[〈δ, x〉/ε]νε(dx) < ∞,

(iv) A satisfies

0 < inf
x∈Ao∩F

I(x) = inf
x∈A

I(x) = inf
x∈A

I(x) < ∞,

where F denotes the set of exposed points of I.
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Although Assumption 2 looks very similar to Assumption 1, there are crucial differences.
To start with, X is not assumed to be a topological vector space in Assumption 1(i). To see

the importance of this difference for applications, note that the space D([0, 1], R) of càdlàg
functions on [0, 1] with values in R is a (regular, Hausdorff) vector space but no topological
vector space when equipped with the Skorohod topology. We stress that the regularity of X
assumed in Assumption 1(i) is implicit in Assumption 2(i): any real Hausdorff topological
vector space is regular.

Moreover, the convexity of the large deviation rate function is not assumed in Assump-
tion 1(ii). Note that this convexity is granted when an LDP is derived using an (abstract)
Gärtner-Ellis type theorem, but non-convex rate functions also arise naturally in applica-
tions; see Section 5 for a discussion. Assumption 2(iii) implies Assumption 1 since γξ is a
continuous linear functional for any γ ∈ R, while the fourth part of Assumption 2 is slightly
stronger than requiring that A be an I-continuity set.

In the above comparison between Assumption 1 and Assumption 2, we have shown the
following.

Proposition 2 Assumption 2 implies that Assumption 1 holds and that A is an I-continuity
set.

In the remainder of this subsection, we compare the necessary and sufficient conditions of
Theorem 1 to the conditions in [25]. Such a comparison is only possible when Sadowsky’s
assumption hold, i.e., we have to impose the (strong) Assumption 2. We start by repeating
Sadowsky’s conditions. Given that Assumption 2(iv) holds for A, we call γ ∈ A a point of
continuity if I(γ) = infx∈A I(x) and there exists a sequence {γn} ⊂ Ao ∩F such that γn → γ.

Theorem 2 (Sadowsky’s conditions) Let Assumption 2 hold. The exponential twist ξ is
asymptotically efficient if

(a) there is a point of continuity γ such that I(γ) = 〈ξ, γ〉 − Λ(ξ),

(b) I(x) + 〈ξ, x〉 ≥ I(γ) + 〈ξ, γ〉 for all x ∈ A,

(c) either 〈ξ, x〉 ≥ 〈ξ, γ〉 for all x ∈ A, or there exists an x ∈ F such that ξ is an exposing
hyperplane of I at x.

Let Assumption 2 hold. If the twist ξ is asymptotically efficient, then

(a) there is a point of continuity γ such that I(γ) = 〈ξ, γ〉 − Λ(ξ),

(b̃) I(x) + 〈ξ, x〉 ≥ I(γ) + 〈ξ, γ〉 for all x ∈ Ao ∩ F .

Proposition 3 Let Assumption 2 hold. The sufficient condition in Theorem 2 implies the
sufficient condition in Theorem 1.

Proof. By condition (a) of Theorem 2, there exists a point of continuity γ ∈ A such
that I(γ) = infx∈A I(x) = 〈ξ, γ〉 − Λ(ξ). Since we assume that an LDP holds for some
convex I [Assumption 2(ii)] and that Assumption 2(iii) holds, by Theorem 4.5.10(b) in [9]
we have I(x) = supδ∈X ∗ [〈δ, x〉 − Λ(δ)], and hence I(x) ≥ 〈ξ, x〉 − Λ(ξ). Combining this with
I(γ) = 〈ξ, γ〉 − Λ(ξ), we conclude

inf
x∈X

[I(x) − 〈ξ, x〉] ≥ −Λ(ξ) = I(γ) − 〈ξ, γ〉,
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where the inequality may obviously be replaced by an equality.
It is immediate from condition (b) of Theorem 2 that infx∈A[I(x) + 〈ξ, x〉] = I(γ) + 〈ξ, γ〉.

Since infx∈Ao I(x) = I(γ), this implies the sufficient condition (3.4) in Theorem 1. 2

It is important to notice that we did not use part (c) of Sadowsky’s sufficient condition in
the proof of Proposition 3; this part is redundant.

Proposition 4 Let Assumption 2 hold. The necessary condition in Theorem 2 is implied by
the necessary condition in Theorem 1.

Proof. Let the twist ξ be asymptotically efficient. We start by showing that a point of
continuity exists under Assumption 2. First note that infx∈Ao∩F I(x) = infx∈A I(x) [As-
sumption 2(iv)] implies that for any n ∈ N one can find some γn ∈ Ao ∩ F ∩ Kn, where

Kn := {x ∈ X : I(x) ≤ inf
y∈A

I(y) + 1/n}.

Use infx∈A I(x) < ∞ and the goodness of the rate function [Assumption 2(ii)] to see that Kn is
a compact subset of X , hence also sequentially compact. Since Kn decreases in n, we obviously
have {γn} ⊂ K1. Hence, one can substract a subsequence that converges, say, to γ ∈ K1.
Since Kn is closed for every n and {γ·} is eventually in Kn, we must also have that γ ∈ Kn

for every n. As a consequence, we have I(γ) ≤ infx∈A I(x). Moreover, since {γn} ⊂ Ao ∩ F ,

we also see that γ ∈ Ao ∩ F ⊂ A. Therefore, I(γ) = infx∈Ao∩F I(x) = infx∈A I(x), and γ is
a point of continuity.

The necessary condition in Theorem 1 implies

2I(γ) ≤ inf
x∈Ao

[I(x) + 〈ξ, x〉] − sup
x∈X

[〈ξ, x〉 − I(x)]

≤ lim
n→∞

[I(γn) + 〈ξ, γn〉] − [〈ξ, γ〉 − I(γ)] = 2I(γ).

As a result, the inequalities can be replaced by equalities and we obtain

sup
x∈X

[〈ξ, x〉 − I(x)] = 〈ξ, γ〉 − I(γ) and inf
x∈Ao

[I(x) + 〈ξ, x〉] = I(γ) + 〈ξ, γ〉.

By Theorem 4.5.10(a) of [9], we also have supx∈X [〈ξ, x〉 − I(x)] = Λ(ξ) under Assumption 2.
Hence, I(γ) = 〈ξ, γ〉−Λ(ξ) and part (a) of Sadowsky’s necessary condition is derived. Part (b̃)
is immediate by noting that infx∈Ao [I(x) + 〈ξ, x〉] = I(γ) + 〈ξ, γ〉 implies that I(x) + 〈ξ, x〉 ≥
I(γ) + 〈ξ, γ〉 for all x ∈ Ao. 2

5. An example

In this section, we provide an example showing how Corollary 1 is typically used. The con-
ditions of Sadowsky [25] do not apply to this example, since the rate function is non-convex.
Despite this non-convexity, we show that an exponential twist may still be asymptotically
efficient.

Non-convex rate functions arise naturally in several large deviation settings. Notably,
certain large deviations of Markov chains and Markov processes (such as diffusions) are
governed by rate functions that need not be convex; see, e.g., Feng and Kurtz [15]. Intuitively,
analyzing the rate of convergence of random functions to a non-linear (deterministic) function
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causes the rate function to be non-convex. Non-convex rate functions also appear when
investigating the rate of convergence to a non-degenerate measure, and the example of this
section is of the latter type.

For our example, it appears that the event under consideration can be cut into disjoint
‘subevents’, that comply with Sadowsky’s conditions. However, such a ‘cut approach’ might
be impossible in other cases, or lead to a large number of subevents (that need to be estimated
separately). This is especially relevant for the simulation of hitting probabilities of stochastic
processes, as in Collamore [8]. Depending on the shape of the hitting curve, the simulation
with a single twist may work, but the ‘cut approach’ leads to simulation of many events (each
of which corresponds to hitting the curve at a particular point in time).

To avoid technicalities that are irrelevant for this paper, we do not illustrate the Varadhan
conditions in a sample path setting. Instead, we discuss a relatively simple example, which
gives at the same time a good feel under what circumstances the Varadhan conditions are
more useful than Sadowsky’s conditions.

Let us first give some background on our example. Recall that a phase-type distribution
is a distribution associated to a finite Markov process, which can be characterized by three
quantities (E,α,T ), see, e.g., Asmussen [2, Ch. III.4]. Given an arbitrary distribution ν on
(0,∞), one can find a sequence of phase-type distributions that converges weakly to ν [2,
Thm. III.4.2]. This implies that νn(A) → 0 for a large number of sets A; in fact, νn(A) then
vanishes at an exponential rate. We are interested in νn(A) for fixed n.

We consider a particularly simple distribution, namely one that is concentrated on {1, 5}.
We write α = ν({1}) = 1 − ν({5}). It is notationally cumbersome to describe a sequence
of phase-type distributions that converges weakly to ν in the (E,α,T )-notation; a direct
description is more appropriate here. Define νn as the distribution of Yn, where Yn has
an Erlang(n, n) distribution with probability α and an Erlang(n, n/5) distribution with
probability 1 − α. (Recall that the sum of k independent exponentially distributed random
variables with parameter λ has an Erlang(k, λ) distribution.) It is left to the reader to check
that νn converges weakly to ν.

The approximating phase-type distributions are special cases of mixtures, and the phenom-
ena that we observe in our example are typically also encountered in the mixture setting.
Indeed, the large deviations of some mixtures are governed by non-convex rate functions.
This holds in particular for finite mixtures (in our case, νn is a mixture of two distributions),
for which the large deviations are readily analyzed. The infinite case is non-trivial; see Din-
woodie and Zabell [12, 13], Chaganty [7], and Biggins [4]. Importantly, mixtures also arise
naturally in connection with conditional probabilities, see, e.g., [18].

Consider the simulation of νn(A), where A := [0, 1/10) ∪ (10,∞). It is easy to see that νn

equals the distribution of
{

1
n

∑n
i=1 Xi with probability α;

5
n

∑n
i=1 Xi with probability 1 − α.

where X1,X2, . . . have a standard exponential distribution. Using Cramér’s theorem, it is
easy to see that {νn} satisfies the LDP with the non-convex good rate function

I(x) :=







x − 1 − log x if x ∈ (0, 5
4 log 5];

x
5 − 1 − log x

5 if x > 5
4 log 5;

∞ otherwise.
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In order to avoid simulation, one could try to compute νn(A) by calculating ν1
n(A) and

ν5
n(A) numerically, where ν1

n is the law of 1
n

∑n
i=1 Xi and ν5

n is the law of 5
n

∑n
i=1 Xi. Indeed,

both probabilities are readily expressed in terms of (incomplete) Gamma functions. How-
ever, numerical problems arise already for moderate values of n, since one has to divide an
incomplete Gamma function by (n − 1)!.

Therefore, it is natural to consider estimation of νn(A) using simulation techiniques, and
there are several possibilities. Since α is known, it suffices to simulate ν1

n(A) and ν5
n(A)

separately. However, ν1
n(A) cannot be simulated efficiently by twisting exponentially; refer

to Glasserman and Wang [19] for related examples. To see that problems arise, we apply
Corollary 1 for the simulation of ν1

n(A), i.e., with the rate function I1(x) := x−1−log x. First
note that infx∈A I1(x) = I1(1/10); one can readily check that the twist ξ = −9 is the only
candidate twist for asymptotic efficiency. However, this twist cannot be used for simulation
since the condition in Corollary 1 is violated: although infx∈R I1(x) + 9x = I1(1/10) + 9/10,
one also has infx∈A I1(x) − 9x < I1(1/10) − 9/10. In the setting of this example, this can
easily be overcome at some additional computational costs: one can simulate ν1

n((10,∞)) and
ν1

n([0, 1/10)) separately. These probabilities and ν5
n(A) can be simulated efficiently with an

exponential twist, so that a reliable estimate of νn(A) is found by simulating three different
probabilities.

However, it is more efficient to take a direct approach in this case: the reader easily checks
that the twist ξ = 1/10 is asymptotically efficient as a direct consequence of Corollary 1
(applied to the rate function I). For the direct approach to be more efficient than the ‘cut
approach’, it is essential that one can easily sample from the ξ-twisted distribution.

The ξ-twisted measure is λn, where for Borel sets A,

λn(A) =
α

∫

A
exp (nξx) ν1

n(dx) + (1 − α)
∫

A
exp (nξx) ν5

n(dx)

α
∫

exp (nξy) ν1
n(dy) + (1 − α)

∫

exp (nξy) ν5
n(dy)

(5.1)

= αn

∫

A
exp (nx/10) ν1

n(dx)
(

10
9

)n + (1 − αn)

∫

A
exp (nx/10) ν5

n(dx)

2n
, (5.2)

with

αn =
α

α + (1 − α)
(

9
5

)n .

Representation (5.2) explains how one can sample from λn: with probability αn, one draws
from an Erlang(n, 10

9 n) distribution, and with probability 1−αn, one draws from an Erlang(n, 10n)
distribution. Observe that αn → 0; this is quite natural as the mean of the twisted distri-
bution then tends to 10 = arg infx∈A I(x). The likelihood ratio can be written as follows, cf.
(5.1):

dλn

dνn
(x) =

exp(nx/10)

α
(

10
9

)n
+ (1 − α)2n

.

Therefore, in the direct approach only one probability is simulated instead of three as in the
‘cut approach’. On the other hand, one has to draw from the distribution (αn, 1 − αn).

6. Discussion

In case any exponential twist for estimating ν(A) is asymptotically inefficient, there are a
number of alternatives. First of all, it may be possible to write the rare event A as a union
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of m < ∞ disjoint rare events A1, . . . , Am, for which the probabilities can be estimated
efficiently by an exponential twist; see also Section 5. The sum of these probabilities is then
an asymptotically efficient estimator for ν(A). In many applications, however, A cannot be
written in that form. To overcome this, one can approximate ν(A) by ν(

⋃m
i=1 Ai) for suitably

chosen A1, . . . , Am and bound the error in some sense, as in [5] and [11]. A variant of this
approach is based on mixing relevant exponential twists; details can be found in Sadowsky
and Bucklew [26]. In a hitting probability framework, Collamore [8] uses related ideas to find
an estimator that is arbitrarily ‘close’ to asymptotic efficiency.

Another possibility to deal with asymptotically inefficient exponential twists is the recent
adaptive approach to importance sampling described by Dupuis and Wang [14]. Although
the authors illustrate this approach in an setting based on Cramér’s Theorem, they claim
it is useful in a more general setting. This dynamic exponential twisting contrasts with the
approach taken in this paper, as we consider a fixed exponential twist.

Although our definition of asymptotic efficiency is mathematically convenient, several other
criteria for discriminating between estimators have been proposed. Notably, the amount of
time (or work) required to generate one simulation replication was not taken into account
in our definition of asymptotic efficiency. Glynn and Whitt [20] elaborate on a definition in
which this is incorporated.
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