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Abstract

Let Sn : [0, 1] → R denote the polygonal approximation of a random walk with zero-mean
increments, where both time and space are scaled by n. We consider the estimation of
the probability that, for fixed n ∈ N, Sn exceeds some positive function e.

As a result of the scaling, this probability decays exponentially in n, and importance
sampling can be used to achieve variance reduction. Two simulation methods are con-
sidered: path-level twisting and step-level twisting. We give necessary and sufficient
conditions for both methods to be asymptotically efficient as n → ∞. Our conditions
improve upon those in earlier work of Sadowsky [17].

1 Introduction

Let Z1, Z2, . . . be a sequence of i.i.d. zero-mean random variables taking values in R, with
distribution PZ . For 0 ≤ t ≤ 1, let the scaled polygonal approximation for the partial sums
of Zi be given by

Sn(t) :=
1

n

bntc
∑

i=1

Zi +

(

t −
bntc

n

)

Zbntc+1, (1)

where btc denotes the largest integer smaller than or equal to t.
We consider the estimation of a ‘time-varying level-crossing probability’. That is, we are

interested in estimating P (Sn(·) ∈ A) efficiently, where

A := {x ∈ C([0, 1]) : x(t) ≥ e(t) for some t ∈ [0, 1]}, (2)

for some lower semicontinuous function e : [0, 1] → (0,∞]. As ESn(t) = 0 for any n ∈ N and
t ∈ [0, 1], the probability P (Sn(·) ∈ A) clearly corresponds to a rare event, i.e., it vanishes as
n → ∞.

We remark that it is possible to consider the (more general) problem with noncentered
random variables Z and with Sn defined on [0, T ] for some T > 0. If one imposes that
e : [0, T ] → (−∞,∞] satisfies e(t)/t > EZ1 for all t ∈ [0, T ], it is readily seen that we may
restrict ourselves without loss of generality to the above simpler setup.

∗The research was supported by the Netherlands Organization for Scientific Research (NWO) under grant
631.000.002.
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Only in special cases, explicit expressions are available for P (Sn(·) ∈ A). When these
are not known, one may resort to simulation. As the probability of interest is small, direct
simulation can be extremely time-consuming. Unfortunately, the development of efficient
simulation methods is usually nontrivial. For the special case that e is affine, i.e., e(t) = a+bt
for some a, b ≥ 0, P (Sn(·) ∈ A) corresponds to a ruin probability for the finite-horizon case.
Simulation of this probability is studied by Lehtonen and Nyrhinen [13], while Asmussen [1,
Sec. X.4] and Asmussen et al. [2] consider the analogue in continuous time; then, a Lévy
process replaces the random walk.

In the present paper, two approaches for simulating P (Sn(·) ∈ A) are considered, both
based on importance sampling. That is, samples are drawn from a probability measure under
which A is not rare anymore, and the simulation output is then corrected with likelihood ratios
to retrieve an unbiased estimate. For both methods, the importance sampling is based on
sampling steps from an exponentially twisted distribution P θ

Z(dz) = eθzE(eθZ1)−1PZ(dz) for
some θ > 0.

In the first approach, which we call path-level twisting, typical sample paths under the
importance-sampling measure have the form of the ‘most likely’ path to exceedance under
the original measure; let τ̃ be the epoch where this most likely path exceeds e. This results
in the following procedure: (i) Sample the Zi from P θ

Z for i = 1, . . . , nτ̃ (with θ chosen such
that these Zi get a positive mean). Then (ii) sample Zi from the original distribution PZ for
i = nτ̃ + 1, . . . , n. It is important to note that in this approach the importance sampling is
‘turned off’ at an a priori determined epoch nτ̃ .

In the second approach, which we call step-level twisting, we always draw the Zi from P θ
Z ,

and each simulation run is stopped at the random moment that Sn exceeds e for the first
time (or, if this event does not occur, the end of the simulation horizon). This, quite natural,
method has been considered in [1, 13]. However, it does not correspond to exponentially
twisting in a path space, which makes it somewhat more difficult to handle from a theoretical
point of view.

The two methods that we study in the present paper are not the only possible approaches
for simulating P (Sn(·) ∈ A). We mention in particular a ‘sequential’ method, which has
been recently proposed by Dupuis and Wang [10]. Translated into the setting of our paper,
their method would suggest to apply an ‘adaptive exponential twist’: calculate, for any i,
the ‘best’ exponential twist for Zi given the realizations of Z1, . . . , Zi−1. It is known that
in various situations non-adaptive exponential twisting may have a malign impact on the
variance properties of the estimator (and consequently on the simulation speed), see the
examples in [11]. The sequential method neutralizes these effects by twisting adaptively. A
disadvantage of the sequential method, however, is that the best twist for Zi (for each i) needs
to be calculated through solving an optimization program, which has a considerable impact
on the simulation speed [8]. It is therefore of practical interest to know when a simpler, faster
method suffices; the main objective of this work is to study this in detail.

As for the technical part of this paper, we rely on elementary large-deviation theory,
in particular Mogul′skĭı’s theorem and Varadhan’s integral lemma. Mogul′skĭı’s theorem is
the basis of the present paper, as it describes the large deviations of Sn(·). In some cases,
Varadhan’s lemma yields necessary and sufficient conditions for asymptotic efficiency, see [9]
for details. Asymptotic efficiency is the standard optimality notion in rare event simulation,
and entails that the so-called relative error vanishes on an exponential scale.

Sadowsky [17] was the first to consider the above two simulation methods for estimating
P (Sn(·) ∈ A). The ideas used in the proofs of [9] make it possible to improve upon the results
of [17] for both simulation methods. Specifically, for the first method (path-level twisting),
we correct Sadowsky’s claim that it is never asymptotically optimal. For the second method
(step-level twisting), we give a sufficient condition for asymptotic efficiency that is sharper
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than Sadowsky’s. We exemplify this by establishing a closely related necessary condition.
The paper is organized as follows. We start with some preliminaries in Section 2. Section 3

discusses path-level twisting, and finds necessary and sufficient conditions for its asymptotic
efficiency. Step-level twisting is studied in Section 4; also here conditions for asymptotic
efficiency are derived. We compare the efficiency conditions of the two methods in Section 5.

2 Preliminaries

This section provides the basic background on sample-path large deviations, importance
sampling and asymptotic efficiency. General references on large-deviation theory are [6,
7], and the reader is referred to [3, 12] and references therein for a detailed discussion on
importance sampling and asymptotic efficiency.

2.1 Sample-path large deviations

In this subsection, we describe the large deviations of Sn. We define the cumulant-generating
function of Z1 as ΛZ(θ) := log E(eθZ1) for θ ∈ R, and we suppose that this function is every-
where finite for simplicity; we refer to Section 3 for a detailed discussion on this assumption.

The Fenchel-Legendre transform of ΛZ is given by Λ∗
Z(z) := supξ∈R[ξz−ΛZ(ξ)]. Cramér’s

theorem says that for every closed set F and open set G in R,

lim inf
n→∞

1

n
log P (Sn(1) ∈ G) ≥ − inf

z∈G
Λ∗

Z(z)

lim sup
n→∞

1

n
log P (Sn(1) ∈ F ) ≤ − inf

z∈F
Λ∗

Z(z).

This theorem is one of the most well-known examples of a so-called large-deviation principle.
The function Λ∗

Z is called the rate function associated to the large-deviation principle. In the
present paper, we need a sample-path version of this theorem.

To state such a sample-path version, it is important to first introduce a topology on a
path space, so that open and closed sets are defined. The path space that we consider is the
space C([0, 1]) of continuous functions on [0, 1]. It is a metric space with the metric

d(x, y) = sup
t∈[0,1]

|x(t) − y(t)|.

The space of absolutely continuous functions AC plays an important role in the sample-
path large-deviation principle that we consider here. It is defined as

AC :=

{

x :
k
∑

`=1

|t` − s`| → 0, s` < t` ≤ s`+1 < t`+1 =⇒
k
∑

`=1

|x(t`) − x(s`)| → 0

}

.

In particular, for any x ∈ AC, there exists some measurable function ẋ such that
∫ t
0 ẋ(s)ds =

x(t); if x is differentiable, ẋ is the derivative of x. We can now describe the large deviations
of the paths Sn; more details can be found in Section 5.1 of Dembo and Zeitouni [6].

Proposition 1 (Mogul′skĭı) Suppose that ΛZ(θ) < ∞ for every θ ∈ R. For every closed
set F and open set G in C([0, 1]),

lim inf
n→∞

1

n
log P (Sn ∈ G) ≥ − inf

x∈G
I(x)

lim sup
n→∞

1

n
log P (Sn ∈ F ) ≤ − inf

x∈F
I(x),
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where

I(x) :=

{ ∫ 1
0 Λ∗

Z(ẋ(t))dt if x ∈ AC;
∞ otherwise.

We remark that the level sets of I are compact, which is used in the sequel to apply results
from [9].

Since we are interested in exceedance probabilities, it is of interest to know how to compute
infx∈G I(x) for ‘exceedance sets’ G. Fix some τ ∈ [0, 1] and set Aτ := {x ∈ C([0, 1]) : x(τ) ≥
e(τ)}. It is standard that by Jensen’s inequality,

inf
x∈Aτ

∫ 1

0
Λ∗

Z(ẋ(t))dt ≥ inf
x∈Aτ

τ
1

τ

∫ τ

0
Λ∗

Z(ẋ(t))dt ≥ inf
x∈Aτ

τΛ∗
Z

(∫ τ

0
ẋ(s)ds/τ

)

= τΛ∗
Z(e(τ)/τ).

Consequently, the unique minimizing argument x̃τ of infx∈Aτ I(x) is a piecewise straight line
given by

γτ (t) :=

{

t(e(τ)/τ) if 0 ≤ t ≤ τ ;
e(τ) if τ < t ≤ 1.

(3)

Let us now consider the minimizer of I on A as defined in (2). Note that A =
⋃

τ∈[0,1] Aτ ,
and define

τ̃ := arg inf
τ∈(0,1]

τΛ∗
Z(e(τ)/τ), (4)

which exists by lower semicontinuity of t 7→ e(t)/t, but is not necessarily unique.
A minimizer over the set A is then given by arg infx∈A I(x) = arg infx∈Aτ̃

I(x) = γτ̃ . Note
that it need not be unique.

It is also useful to define an ‘ε-perturbed’ version of γτ . For τ ∈ [0, 1] and ε > 0, define
γε

τ as

γε
τ (t) :=

{

(e(τ) + ε)t/τ if 0 ≤ t ≤ τ ;
e(τ) + ε if τ < t ≤ 1.

(5)

2.2 Importance sampling

Given a probability measure ν on C([0, 1]), we are interested in the simulation of the ν-
probability of a given event A, where ν(A) is small. The idea of importance sampling is to
sample from a different distribution on C([0, 1]), say λ, for which A occurs more frequently.
This is done by specifying a measurable function dλ/dν : C([0, 1]) → [0,∞] and by setting

λ(B) :=

∫

B

dλ

dν
dν. (6)

Since λ must be a probability measure, dλ/dν should integrate to one with respect to ν.
Assuming equivalence of the measures ν and λ, set dν/dλ := (dλ/dν)−1 and note that

ν(A) =

∫

A

dν

dλ
dλ =

∫

C([0,1])
1A

dν

dλ
dλ,

where 1A denotes the indicator function of A. A widely used choice for λ is a so-called
exponentially twisted measure. That is, for some linear continuous functional ξ : C([0, 1]) →
R, λξ is defined by

dλξ

dν
(x) := exp

(

ξ(x) − log

∫

C([0,1])
exp[ξ(y)]ν(dy)

)

=
exp[ξ(x)]

∫

C([0,1]) exp[ξ(y)]ν(dy)
.
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The importance sampling estimator ν̂λ(A) of ν(A) is found by drawing N independent sam-

ples X
(1)
λ , . . . , X

(N)
λ from λ:

ν̂λ(A) :=
1

N

N
∑

i=1

1{X(i)∈A}

dν

dλ

(

X
(i)
λ

)

.

It is clear that ν̂λ(A) is an unbiased estimator, i.e., Eλν̂λ(A) = ν(A).
Since it may seem unnatural to use an exponential twist on a path space, it is worthwhile

to cast these notions into the framework of the present paper. Let ν be the distribution of
Sn(·). Any twist ξ directly translates into a vector of exponential twists for the distributions
of the Zi in (1). Indeed, let us write sz

n(·) for the polygonal approximation for the partial
sums of the vector z ∈ Rn. It can be seen that there exists some θξ,n ∈ Rn such that for any
measurable B ⊂ C([0, 1]),

λξ(B) =

∫

{z∈Rn:sz
n(·)∈B}

exp

(

n
∑

i=1

θξ,n
i zi −

n
∑

i=1

ΛZ(θξ,n
i )

)

PZ(dz1) · · ·PZ(dzn). (7)

This important representation indicates how each of the step-size distributions of a random
walk should be changed when sampling from λξ; only the θξ,n need to be determined.

Since any distribution λ (or twist ξ) gives an unbiased importance-sampling estimator,
one has the freedom to select an ‘efficient’ distribution, i.e., a distribution for which the
variance of the estimator is small. In particular, it is of interest to find the change of measure
that minimizes this variance, or, equivalently,

∫

A

(

dν

dλ

)2

dλ =

∫

C([0,1])
1A

(

dν

dλ

)2

dλ =

∫

A

dν

dλ
dν.

A zero-variance estimator is found by letting λ be the conditional distribution of ν given A
(see, e.g., [12]), but this change of measure is infeasible for simulation since dν/dλ then de-
pends on the unknown quantity ν(A). This motivates the use of another optimality criterion,
asymptotic efficiency.

2.3 Asymptotic efficiency and the relative error

Suppose that a sequence of measures {νn} is given, along with a set A. We are interested in

νn(A) for fixed n. To estimate this probability, we draw an i.i.d. sample X
(1)
λn

, . . . , X
(N)
λn

from
some importance sampling distribution λn, as described in the preceding subsection.

The definition of asymptotic efficiency is related to the so-called relative error. We define
the relative error ηN (λn, A) of the importance sampling estimator

ν̂λn
(A)N :=

1

N

N
∑

i=1

1n

X
(i)
λn

∈A
o

dνn

dλn

(

X
(i)
λn

)

(8)

as

η2
N (λn, A) :=

Varλn
ν̂λn

(A)N

νn(A)2
=

Eλn

(

ν̂λn
(A)N

)2

νn(A)2
− 1.

The relative error is proportional to the width of a confidence interval relative to the (ex-

pected) estimate itself; hence, it measures the variability of ν̂λn
(A)N .

In view of this, it is desirable that the relative error associated to the importance-sampling
family {λn} be bounded in n, i.e., that lim supn→∞ ηN (λn, A) < ∞. Since this property rarely
holds in practice, a second (much weaker) form of ‘efficiency’ has been introduced, asymptotic
efficiency. This allows the relative error to grow, but not on an exponential scale.
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Definition 1 An importance sampling family {λn} is called asymptotically efficient if

lim
n→∞

1

n
log ηN (λn, A) = 0. (9)

It can be seen (as in, e.g., [9]) that asymptotic efficiency is equivalent to 1
n log N∗

λn
→ 0,

where N∗
λn

:= inf{N ∈ N : ηN (λn, A) ≤ ηmax} for some given maximal relative error 0 <
ηmax < ∞. In other words, the number of samples required to achieve a fixed relative error
ηmax increases more slowly than any exponential. We note that the specific value of ηmax is
irrelevant.

In the literature, asymptotic efficiency is sometimes referred to as asymptotic optimality,
logarithmic efficiency, or weak efficiency.

3 Path-level twisting

In this section, we study the simulation of P (Sn(·) ∈ A) by path-level twisting, where A is
defined in (2):

A = {x ∈ C([0, 1]) : x(t) ≥ e(t) for some t ∈ [0, 1]}.

This analysis culminates in a necessary and sufficient condition for efficiency of this simulation
method.

We start with the formulation of the underlying assumptions:

Assumption 1 We assume that

(i) ΛZ(θ) < ∞ for all θ ∈ R,

(ii) PZ is nondegenerate, and

(iii) 0 < inft∈[0,1] e(t) < ∞.

Note that Assumption 1(i) implies that Proposition 1 applies. This assumption can
be considerably relaxed for a Mogul′skĭı-type large-deviation principle to hold; one then
uses other spaces, other topologies, and slightly modified rate functions. For instance,
Mogul′skĭı [14] allows the cumulant-generating function to be finite only in a neighborhood
of zero and uses the space of càdlàg functions D endowed with the (completed) Skorokhod
topology; see also Mogul′skĭı [15]. Although Mogul′skĭı’s rate function is slightly different
from I, the infima over exceedance sets are attained by straight lines as in Section 2.1, which
is its only essential property for this paper. In a more general context, Dembo and Zajic [5]
and de Acosta [4] work under the hypothesis of a finite cumulant-generating function of |Z|;
this is equivalent to Assumption 1(i).

It is explained in Section 2.2 how to define exponentially twisted distributions for a random
variable with values in C([0, 1]), but some care needs to be taken due to the presence of the

parameter n. For a twist ξ, we introduce the measure λξ
n by setting for any Borel set B in

C([0, 1]),

λξ
n(B) =

∫

B
exp

(

nξ(x) − log

∫

C([0,1])
exp[nξ(y)]P (Sn ∈ dy)

)

P (Sn ∈ dx).

Since λξ
n is a measure on the path-space C([0, 1]), ξ is a path-level twist.

Before formulating a condition that is equivalent to asymptotic efficiency, we show in
the next lemma that there is at most one asymptotically efficient twist. Furthermore, the
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uniqueness of τ̃ , as defined in (4), is necessary for a path-level twist to be asymptotically
efficient.

For these assertions to hold, A has to be an I-continuity set, that is, it has to satisfy
infx∈A I(x) = infx∈Ao I(x), where A and Ao denote the closure and interior of A respectively.
At the end of this section we give sharp conditions for A to satisfy this and related conditions.
We write dom Λ∗

Z := {z ∈ R : Λ∗
Z(z) < ∞}.

Lemma 1 Let Assumption 1 hold, and let A be an I-continuity set.

(i) There is at most one asymptotically efficient path-level twist.

(ii) If τ̃ is unique, the only path-level exponential twist that can achieve asymptotic efficiency
is ξτ̃ (x) := αx(τ̃), where α = arg supθ∈R[θ(e(τ̃)/τ̃) − ΛZ(θ)].

(iii) If there are two points τ̃1, τ̃2 ∈ arg infτ∈(0,1] τΛ∗
Z(e(τ)/τ) satisfying e(τ̃i)/τ̃i ∈ (dom Λ∗

Z)o

and τ̃1 6= τ̃2, there is no asymptotically efficient path-level twist.

Proof. We start with some elementary observations. Define

Λ(ξ) := lim
n→∞

1

n
log

∫

C([0,1])
exp[nξ(x)]P (Sn ∈ dx),

and note that this function is finite (in particular, the limit exists) for every functional ξ on
C([0, 1]) as shown in Sadowsky [17, p. 407]. Moreover, Λ is strictly convex whenever ΛZ is
strictly convex; this follows from Assumption 1(ii) as one easily deduces from the proof of
Hölder’s inequality (see, e.g., Royden [16]).

Therefore, Theorem 4.5.10 of Dembo and Zeitouni [6] shows that for all ξ and x,

Λ(ξ) = sup
x∈C([0,1])

[ξ(x) − I(x)] and I(x) = sup
ξ∈C([0,1])∗

[ξ(x) − Λ(ξ)]. (10)

Choose a sequence {γn} ⊂ Ao and a point γ ∈ A such that γn → γ and I(γn) → I(γ);
this is possible since A is an I-continuity set; see the proof of Proposition 4 of [9]. Due to
the strict convexity of Λ and by the second identity in (10), there exists at most one ξγ such
that I(γ) = ξγ(γ)−Λ(ξγ). For all other twists ξ, we apparently have I(γ) > ξ(γ)−Λ(ξ), and
therefore

inf
x∈C([0,1])

[I(x) − ξ(x)] = − sup
x∈C([0,1])

[ξ(x) − I(x)] = −Λ(ξ) < I(γ) − ξ(γ).

Consequently, ξ 6= ξγ cannot be asymptotically efficient, since

inf
x∈C([0,1])

[I(x) − ξ(x)] + inf
x∈Ao

[I(x) + ξ(x)] < I(γ) − ξ(γ) + lim
n→∞

[I(γn) + ξ(γn)]

= I(γ) − ξ(γ) + I(γ) + ξ(γ) = 2I(γ),

contradicting the necessary condition for efficient simulation in Theorem 1 of [9] (it is readily
checked that the underlying assumptions are satisfied as a result of Assumption 1). This
proves the first claim.

For claim (ii) we have to show that I(γτ̃ ) = ξτ̃ (γτ̃ ) − Λ(ξτ̃ ), where τ̃ is now unique.
Observe that the minimizer in infx∈A I(x) is γτ̃ , and that ξτ̃ is a continuous linear functional
on C([0, 1]). We first calculate Λ(ξτ̃ ).
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Let τ̃n := bnτ̃c/n, so that τ̃n → τ̃ as n → ∞. We then have by independence,
∫

C([0,1])
exp(nαx(τ̃))P (Sn ∈ dx)

=

∫

Rn

exp



α

nτ̃n
∑

i=1

zi + α(τ̃ − τ̃n)znτ̃n+1



PZ(dz1) · · ·PZ(dzn)

=

∫

R

exp(α(τ̃ − τ̃n)z)PZ(dz)

(∫

R

exp(αz)PZ(dz)

)nτ̃n

,

which should be compared with (7). Observe that ΛZ(θ) < ∞ for all θ ∈ R by Assump-
tion 1(i), and that ΛZ is continuous due to its convexity. Consequently, the first integral of
the last expression converges to one. Using the definition of ξτ̃ , we conclude that

Λ(ξτ̃ ) = lim
n→∞

1

n
log

∫

C([0,1])
exp(nαx(τ̃))P (Sn ∈ dx) = τ̃ΛZ(α),

implying ξτ̃ (γτ̃ ) − Λ(ξτ̃ ) = αe(τ̃) − τ̃ΛZ(α). By definition of α, this equals τ̃Λ∗
Z(e(τ̃)/τ̃) =

I(γτ̃ ).
We now proceed with the proof of (iii). Recall the definition of γε

τ in (5). Observe that

{γ
1/n
τ̃i

} ⊂ Ao, and that both γ
1/n
τ̃i

→ γτ̃i
and, as a consequence of the assumption imposed on

the τ̃i, I(γ
1/n
τ̃i

) → I(γτ̃i
). Therefore, the reasoning that established the first claim shows that

the only candidate path-level twists are ξτ̃1 and ξτ̃2 . It suffices to observe that these twists
are unequal since τ̃1 6= τ̃2. �

Motivated by Lemma 1, we often assume the uniqueness of the minimizer τ̃ of τ 7→
τΛ∗

Z(e(τ)/τ) in the remainder of this paper. We now state the main theorem of this section.

Theorem 1 Let Assumption 1 hold, and suppose that τΛ∗
Z(e(τ)/τ) has a unique minimizer

τ̃ . Moreover, let A be both an I-continuity set and an (I + ξτ̃ )-continuity set.
The path-level twist ξτ̃ defined as ξτ̃ (x) = αx(τ̃) is asymptotically efficient if and only if

τ̃Λ∗
Z

(

e(τ̃)

τ̃

)

+ αe(τ̃) (11)

≤ min

{

inf
τ∈(0,τ̃)

(

τΛ∗
Z

(

e(τ)

τ

)

+ inf
β∈R

[

(τ̃ − τ)Λ∗
Z

(

β − e(τ)

τ̃ − τ

)

+ αβ

])

,

inf
τ∈(τ̃ ,1]

inf
β∈R

[

τ̃Λ∗
Z

(

β

τ̃

)

+ (τ − τ̃)Λ∗
Z

(

e(τ) − β

τ − τ̃

)

+ αβ

]}

.

Proof. We prove the claim by invoking Corollary 1 of [9]. Note that the underlying assump-
tions hold. Hence, the path-level twist ξτ̃ is asymptotically efficient if and only if

inf
x∈C([0,1])

[I(x) − ξτ̃ (x)] + inf
x∈A

[I(x) + ξτ̃ (x)] = 2 inf
x∈A

I(x). (12)

The rest of the proof consists of rewriting condition (12).
The first term on the left-hand side of (12) is

inf
x∈C([0,1])

[I(x) − ξτ̃ (x)] = −Λ(ξτ̃ ) = −τ̃ΛZ(α) = τ̃Λ∗
Z(e(τ̃)/τ̃) − αe(τ̃),

so the left-hand side of (11) equals 2 infx∈A I(x) − infx∈C([0,1])[I(x) − ξτ̃ (x)]. Since clearly
τ̃Λ∗

Z(e(τ̃)/τ̃) + αe(τ̃) ≥ infx∈A[I(x) + αx(τ̃)], the condition

τ̃Λ∗
Z(e(τ̃)/τ̃) + αe(τ̃) ≤ inf

x∈A
[I(x) + αx(τ̃)] (13)
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Figure 1: Two possibilities for the minimizing argument of infx∈A[I(x) + αx(τ̃)].

is necessary and sufficient for asymptotic efficiency. It remains to investigate the right-hand
side of this inequality.

Jensen’s inequality shows that a minimizing argument of infx∈A[I(x)+αx(τ̃)] is a piecewise
straight line, which must exceed e in [0, 1], say at time τ , and has some value β ∈ R at time
τ̃ . The right-hand side of (13) is the infimum over β and τ when these paths are substituted
in the expression I(x) + αx(τ̃). Since τ̃Λ∗

Z(e(τ̃)/τ̃) + αe(τ̃) = I(γτ̃ ) + αe(τ̃), we may assume
that τ 6= τ̃ in order to derive a condition that is equivalent with (13).

Two possibilities arise. First, x can exceed e for the first time at some τ < τ̃ , then assumes
some value β ∈ R at τ̃ , and is constant on [τ̃ , 1]. This path is denoted by x̌β,τ . Another
possibility is that x has some value β at τ̃ , exceeds e for some τ > τ̃ , and then becomes
constant. This path is denoted by x̂β,τ . These two possible cases are illustrated by the solid
lines in Figure 1.

It is immediate that x̌β,τ satisfies for τ < τ̃

I(x̌β,τ ) + αx̌β,τ (τ̃) = τΛ∗
Z

(

e(τ)

τ

)

+ (τ̃ − τ)Λ∗
Z

(

β − e(τ)

τ̃ − τ

)

+ αβ.

This corresponds to the left-hand diagram in Figure 1. The same argument shows that for
τ > τ̃ ,

I(x̂β,τ ) + αx̂β,τ (τ̃) = τ̃Λ∗
Z

(

β

τ̃

)

+ (τ − τ̃)Λ∗
Z

(

e(τ) − β

τ − τ̃

)

+ αβ,

which finishes the proof. �

We remark that (11) can be slightly simplified using ΛZ . Note that

inf
β∈R

[

(τ̃ − τ)Λ∗
Z

(

β − e(τ)

τ̃ − τ

)

+ αβ

]

= −(τ̃ − τ) sup
β∈R

[

−α
β − e(τ)

τ̃ − τ
− Λ∗

Z

(

β − e(τ)

τ̃ − τ

)]

+ αe(τ),

and that the sup-term in this expression equals ΛZ(−α) by the duality lemma (Lemma 4.5.8
of [6]). Thus, (11) is equivalent to

τ̃Λ∗
Z

(

e(τ̃)

τ̃

)

+ αe(τ̃)

≤ min

{

inf
τ∈(0,τ̃)

(

τΛ∗
Z

(

e(τ)

τ

)

− (τ̃ − τ)ΛZ(−α) + αe(τ)

)

,

inf
τ∈(τ̃ ,1]

inf
β∈R

[

τ̃Λ∗
Z

(

β

τ̃

)

+ (τ − τ̃)Λ∗
Z

(

e(τ) − β

τ − τ̃

)

+ αβ

]}

.
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To illustrate Theorem 1, we now work out an example. Let the Zi have a standard normal
distribution, i.e., ΛZ(ξ) = Λ∗

Z(ξ) = 1
2ξ2. Set e(τ) = 1 + |2τ − 1|. It can be seen (for instance

with Lemmas 3 and 4 below) that A has the required continuity properties for application
of Theorem 1. Moreover, it is readily checked that τΛ∗

Z(e(τ)/τ) = e(τ)2/(2τ) is minimized
for τ̃ = 1/2, showing that α = 2. It is also immediate that e(τ)2/(2τ) + 2τ − 1 + 2e(τ)
‘attains’ its minimum value over (0, 1/2) as τ ↑ 1/2. The second minimizing β in (11) is
then 1/(2τ), and the minimum value over (1/2, 1] of the resulting function is attained for
τ ↓ 1/2. Consequently, we can estimate the desired probability efficiently by path-level
twisting. Therefore, this example corrects the unproven claim of Sadowsky [17, p. 408] that
no path-level twist is asymptotically efficient.

Different behavior is observed if e(τ) = 1 + |τ − 1/2|. Again, τ̃ = 1/2 and α = 2, but
now it turns out that the infimum in (11) is attained for τ = 1. Therefore, the same twist as
before is now asymptotically inefficient.

To implement the simulation procedure, the path-level twist ξτ̃ should be translated into
an importance sampling distribution for (Z1, . . . , Zn). In view of (7), this amounts to finding
the vector θξ,n; the exponentially step-level θ-twisted distribution of Z,

P θ
Z(dz) := exp(θz − ΛZ(θ))PZ(dz),

is the ‘building block’ for the required path-level exponential twist. Sadowsky [17] shows

that the step sizes Z1, . . . , Zbnτ̃c should be sampled from P α
Z , Zdnτ̃e from P

α(nτ̃−bnτ̃c)
Z , and

Zdnτ̃e+1, . . . , Zn from PZ ; the Zi should also be mutually independent. Using the realizations
of the Zi, one can construct a sample path with (1). The resulting paths are samples from

the path-level twisted distribution λξτ̃
n .

Both Lemma 1 and Theorem 1 require certain continuity properties of A. The remainder
of this section is devoted to sharp conditions for these to hold.

Continuity properties of A

We start by showing that A is closed. In fact, for later use, we prove this in slightly more
generality. Consider the set

AM
m := {x ∈ C([0, 1]) : x(t) ≥ M(t) for some t ∈ [0, 1] or x(t) ≤ m(t) for some t ∈ [0, 1]},

where M : [0, 1] → (−∞,∞] is lower semicontinuous and m : [0, 1] → [−∞,∞) is upper
semicontinuous with m ≤ M on [0, 1]. We prove that AM

m is closed, which implies that A is
closed by choosing m = e and M ≡ −∞.

Lemma 2 AM
m is closed in C([0, 1]).

Proof. Let {xn} be a sequence in AM
m converging in sup-norm to some x ∈ C([0, 1]). Suppose

that x 6∈ AM
m , and set ε := min(inf t∈[0,1][M(t) − x(t)], inft∈[0,1][x(t) − m(t)])/2. Since [0, 1] is

compact, the infima in this expression are attained, so that ε > 0. From the convergence in
sup-norm it follows that |xn(t)−x(t)| ≤ ε for all t ∈ [0, 1] and n large enough. By construction
of ε, a contradiction is obtained by noting that this would imply xn 6∈ AM

m . �

We now give a sharp condition for A to be an I-continuity set, for which we do not require
uniqueness of τ̃ .

Lemma 3 If e(τ̃)/τ̃ ∈ (dom Λ∗
Z)o for some τ̃ with τ̃Λ∗

Z(e(τ̃)/τ̃) = infx∈A I(x), then A is an
I-continuity set.

10



Proof. Similar arguments as in the proof of Lemma 2 show that Ao = {x ∈ C([0, 1]) :
x(t) > e(t) for some t ∈ [0, 1]}. As A is closed, it suffices to prove that infx∈A I(x) =
infx∈Ao I(x). Let τ̃ be such that τ̃Λ∗

Z(e(τ̃)/τ̃) = infx∈A I(x). With γε
τ̃ as in (5), we have

γε
τ̃ ∈ Ao and I(γε

τ̃ ) = τ̃Λ∗
Z([e(τ̃) + ε]/τ̃). By convexity of Λ∗

Z and the fact that there is
a neighborhood of e(τ̃)/τ̃ on which Λ∗

Z is finite, Λ∗
Z is continuous on this neighborhood,

and therefore Λ∗
Z([e(τ̃) + ε]/τ̃) ↓ Λ∗

Z(e(τ̃)/τ̃) as ε ↓ 0; note that inf t∈(0,1] e(t)/t > 0 as a
consequence of Assumption 1(iii). By the monotone convergence theorem, I(γε

τ̃ ) converges
to I(γτ̃ ). �

It is also of interest to give a condition for A to be an (I + ξτ̃ )-continuity set. This is the
content of the next lemma, but we omit the proof since it is a variation on the ε-argument
given in the proof of Lemma 3. The perturbed paths are drawn as the dashed lines in Figure 1.
Recall the definitions of x̌β,τ and x̂β,τ in the proof of Theorem 1.

Lemma 4 Let τ̃ be given. If one of the following two conditions holds, then A is an (I +ξτ̃ )-
continuity set:

(i) There exists an x ∈ arg infx∈A[I(x)+αx(τ̃)] of the form x̌β,τ for some β ∈ R and τ ≤ τ̃ ,
for which e(τ)/τ ∈ (dom Λ∗

Z)o,

(ii) There exists an x ∈ arg infx∈A[I(x)+αx(τ̃)] of the form x̂β,τ for some β ∈ R and τ > τ̃ ,
for which (e(τ) − x(τ̃))/(τ − τ̃) ∈ (dom Λ∗

Z)o.

4 Step-level twisting

This section is devoted to a simplification of the simulation scheme (i.e., the measure λξτ̃
n )

studied in Section 3. The new scheme overcomes an intuitive difficulty with a path-level
twisted change of measure. If a path sampled from λξτ̃

n remains below e on [0, dnτ̃e/n], it
has little chance of exceeding e after dnτ̃e/n. Indeed, since the original measure PZ is then
used for sampling, e is rarely exceeded after dnτ̃e/n. By the form of the estimator (8), a
sample path that does not exceed e does not contribute to the resulting estimate, so that it
is undesirable to have too many of such paths in the simulation.

The idea of the simplified simulation scheme is to sample every random variable Zi from
Pα

Z , until e has been exceeded. The simulation is then stopped and the likelihood is calculated.
We refer to this setup, which has first been studied in [17], as step-level twisting. Note that
this contrasts with path-level twisting as described in the preceding section, since there the
step-size distribution is twisted up to a fixed twist-horizon nτ̃ . In the setting of this section,
this horizon is sample-dependent.

Since both path-level twisting and step-level twisting are algorithms for estimating the
same probability, it is legitimate to ask which procedure is better. To answer this question
rigorously, it is our aim to develop necessary and sufficient conditions for asymptotic efficiency
of step-level twisting. These conditions are the ‘step analogue’ of Theorem 1. A comparison
of the two sets of conditions is the subject of Section 5.

Intuitively, it depends on the specific form of e if the probability of exceeding e on
[dnτ̃e/n, 1] is small enough for the simplification to work. Sadowsky [17, Prop. 2] finds a
sufficient condition in terms of a saddle-point inequality. The sufficient condition of The-
orem 2 below improves upon this result significantly: our necessary condition is extremely
‘close’ to the sufficiency condition.

Throughout this section, we adopt the setup and notation of the previous section. It is
worthwhile to specify the exact assumptions that we impose.

Assumption 2 We assume that

11



(i) Assumption 1 holds,

(ii) τ̃ = arg inf τΛ∗
Z(e(τ)/τ) is unique, and

(iii) e(τ̃)/τ̃ ∈ (dom Λ∗
Z)o.

In the previous section, we have seen that this set of assumptions guarantees that Mogul′skĭı’s
large-deviation principle holds, and that A is an I-continuity set, see Lemma 3. Lemma 1
shows that the uniqueness of τ̃ in Assumption 2(ii) is required to have a unique twist α for
the distribution of the Zi.

The next theorem generalizes the findings of Lehtonen and Nyrhinen [13] to nonlinear
boundaries e.

Theorem 2 Let Assumption 2 hold.

If e is lower semicontinuous, then step-level twisting is asymptotically efficient if

inf
τ∈(0,1]

[

τΛ∗
Z

(

e(τ)

τ

)

+ αe(τ) − τΛZ(α)

]

≥ 2τ̃Λ∗
Z

(

e(τ̃)

τ̃

)

. (14)

Conversely, suppose that e is upper semicontinuous. If step-level twisting is asymptotically
efficient, then

inf
{τ∈(0,1]: e(τ)/τ∈(dom Λ∗

Z
)o}

[

τΛ∗
Z

(

e(τ)

τ

)

+ αe(τ) − τΛZ(α)

]

≥ 2τ̃Λ∗
Z

(

e(τ̃)

τ̃

)

. (15)

Proof. As seen in [9], since A is an I-continuity set, asymptotic efficiency is equivalent to

lim sup
n→∞

1

n
log E(2)

n ≤ −2 inf
x∈A

I(x),

where E
(2)
n denotes the second moment of the estimator.

We introduce some notation used throughout the proof.

Notation. Let g : [0, 1] → [0,∞] be given by g(t) := tΛ∗
Z(e(t)/t) for t > 0 and g(0) := 0,

and define f : [0, 1] → [−∞,∞) as

f(t) := −αe(t) + tΛZ(α).

We also set for τ ∈ (0, 1],

Ãτ := {x ∈ C([0, 1]) : x(t) < e(t) for t ∈ [0, τ), x(τ) ≥ e(τ)},

i.e., Ãτ are the paths that exceed e for the first time at τ . Note that the Ãτ are disjoint and
that

⋃

τ∈[0,1] Ãτ = A.

Paths generated by the step-level-twisting procedure are in general no elements of C([0, 1]),
since the simulation is stopped at some random time, not necessarily at time 1. To overcome
this, note that stopping a simulation run amounts to continuing the simulation by drawing
from PZ . In other words, importance sampling is ‘turned off’ in the sense that the sampling
distribution becomes PZ after exceeding e. Therefore, the distribution in C([0, 1]) of sample
paths generated by step-level twisting is well-defined; we denote it by µn. The ‘original’
distribution of Sn in C([0, 1]) is denoted by νn. One can readily check that on Ãτ , we have
(for x in the support of νn)

dνn

dµn
(x) = exp(−nαx(τ) + nτΛZ(α)).

12



In the proof of the sufficient condition, we use the function ζ : C([0, 1]) → [−∞,∞) given
by

ζ(x) :=

{

f(τ) if x ∈ Ãτ ;
−∞ otherwise.

Since ζ is in general not upper semicontinuous, we cannot apply Varadhan’s integral lemma
to prove the sufficient condition. However, it is quite fruitful to use some ideas of its proof
(see Theorem 4.3.1 in Dembo and Zeitouni [6]).

The sufficient condition. In the proof it is essential that the functions involved have
specific continuity properties. Obviously, f is upper semicontinuous under the assumption
that e is lower semicontinuous. We now prove that g is lower semicontinuous. For this, let
{tn} be a sequence in [0, 1] converging to some t ∈ [0, 1]. For t = 0, it certainly holds that
lim infn→∞ g(tn) ≥ 0 = g(0). Therefore, we assume t > 0. Since inf t∈(0,1] e(t)/t > 0 and Λ∗

Z

is nondecreasing on [0,∞) (Z1 is centered), we observe that

lim inf
n

tnΛ∗
Z(e(tn)/tn) = t lim inf

n
Λ∗

Z(e(tn)/tn) ≥ tΛ∗
Z(lim inf

n
e(tn)/tn)

= tΛ∗
Z(lim inf

n
e(tn)/t) ≥ tΛ∗

Z(e(t)/t),

where the last inequality uses the lower semicontinuity of e. Hence, g is lower semicontinuous.
Let ε > 0. For any t ∈ [0, 1], by semicontinuity we know that there exists an open

neighborhood Tt of t with

inf
τ∈Tt

g(τ) ≥ g(t) − ε and sup
τ∈Tt

f(τ) ≤ f(t) + ε. (16)

Since
⋃

t∈[0,1] Tt is an open cover of the compact space [0, 1], one can find N and t1, . . . , tN ∈

[0, 1] such that
⋃N

i=1 Tti = [0, 1].
As dνn/dµn ≤ exp(nζ) on each of the sets Ãτ , the cover-argument implies that (see

Lemma 1.2.15 of [6])

lim sup
n→∞

1

n
log

∫

A

dνn

dµn
dνn ≤ lim sup

n→∞

1

n
log

∫

A
exp(nζ(x))νn(dx)

=
N

max
i=1

lim sup
n→∞

1

n
log

∫

S

τ∈Tti
Ãτ

exp(nζ(x))νn(dx).

The integral in this expression can be bounded by noting that ζ is majorized on
⋃

τ∈Tti
Ãτ

using (16):
∫

S

τ∈Tti
Ãτ

exp(nζ(x))νn(dx) ≤ exp[f(ti) + ε]νn





⋃

τ∈Tti

Ãτ



 .

Although
⋃

τ∈Tti
Ãτ is in general not closed, it is a subset of {x : x(t) ≥ e(t) for some t ∈ Tti}.

This set is closed by Lemma 2 for M = e on Tti and M = ∞ on [0, 1]\Tti . Therefore, by the
large-deviation upper bound, Jensen’s inequality, and (16),

lim sup
n→∞

1

n
log νn





⋃

τ∈Tti

Ãτ



 ≤ − inf
{x:x(t)≥e(t) for some t∈Tti

}
I(x) = − inf

t∈Tti

g(t)

≤ −g(ti) + ε.

Combining the preceding three displays, we obtain

lim sup
n→∞

1

n
log

∫

A

dνn

dµn
dνn ≤

N
max
i=1

[f(ti) − g(ti)] + 2ε

≤ sup
t∈[0,1]

[f(t) − g(t)] + 2ε.

13



The sufficient condition follows by letting ε → 0.

The necessary condition. We now turn to the necessary condition. Since A is an I-
continuity set and we suppose that step-level twisting is asymptotically efficient, we have

lim sup
n→∞

1

n
log

∫

A

dνn

dµn
dνn ≤ −2τ̃Λ∗

Z

(

e(τ̃)

τ̃

)

. (17)

Let ε > 0. The upper semicontinuity of e implies that for all t ∈ (0, 1] there exists some
δ ∈ (0, t) such that

sup
τ∈(t−δ,t]

e(τ) ≤ e(t) + ε. (18)

Fix t ∈ (0, 1], and define

Aδ,ε
t :=

{

x : x(τ) < e(τ) for τ ∈ [0, t − δ]; x(t) > e(t);
x(τ) < sups∈(t−δ,t] e(s) + ε for τ ∈ (t − δ, t]

}

.

Note that Aδ,ε
t ⊂ A and that it is open by the fact that AM

m in Lemma 2 is closed. Indeed,
set m(t) = e(t) and m = −∞ on [0, 1]\{t}; M = e on [0, t − δ] and M = sups∈(t−δ,t] e(s) + ε
on (t − δ, t].

We deduce that by definition of Aδ,ε
t ,

1

n
log

∫

A

dνn

dµn
dνn ≥

1

n
log

∫

Aδ,ε
t

dνn

dµn
dνn

≥
1

n
log

∫

Aδ,ε
t

exp

(

−nα

[

sup
τ∈(t−δ,t]

e(τ) + ε

]

+ ntΛZ(α)

)

νn(dx)

≥ −α[e(t) + 2ε] + tΛZ(α) +
1

n
log νn(Aδ,ε

t ),

where we used (18) for the last inequality.

Recall the definition of γτ and γε
τ in (3) and (5). Now two cases are distinguished.

Case 1: γt and e do not intersect before t.

Let t be such that γt and e do not intersect before t. Choose δ such that (18) is met, and
set

η :=
1

2
min

(

inf
τ∈[0,t−δ]

[e(τ) − γt(τ)] , ε

)

.

By the usual arguments, it is readily seen that η > 0 and γη
t ∈ Aδ,ε

t . Since I(γη
t ) = tΛ∗

Z([e(t)+
η]/t), we have by monotonicity of Λ∗

Z on [0,∞) and the large-deviation lower bound,

lim inf
n→∞

1

n
log

∫

A

dνn

dµn
dνn ≥ f(t) − 2αε − inf

x∈Aδ,ε
t

I(x)

≥ f(t) − 2αε − tΛ∗
Z([e(t) + η]/t)

≥ f(t) − 2αε − tΛ∗
Z([e(t) + ε/2]/t).

Since ε was arbitrary, we obtain a nontrivial lower bound if e(t)/t ∈ (dom Λ∗
Z)o.

An auxiliary result. Before proceeding with the complementary case, we first prove an
auxiliary result: asymptotic efficiency implies that for any t ∈ (0, 1] with e(t)/t ∈ (dom Λ∗

Z)o,

α
e(t)

t
− ΛZ(α) + Λ∗

Z

(

e(t)

t

)

≥ 0. (19)
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We work towards a contradiction by supposing that (19) is not satisfied for some t̂ with
e(t̂)/t̂ ∈ (dom Λ∗

Z)o. Without loss of generality, we may suppose that γt̂ does not intersect
with e before t̂. By the above derived lower bound for ‘Case 1’,

lim sup
n→∞

1

n
log

∫

A

dνn

dµn
dνn ≥ lim inf

n→∞

1

n
log

∫

A

dνn

dµn
dνn

≥ f(t̂) − t̂Λ∗
Z

(

e(t̂)

t̂

)

> 0.

Since −2τ̃Λ∗
Z(e(τ̃)/τ̃) ≤ 0, this contradicts the assumption that step-level twisting is asymp-

totically efficient.

Case 2: γt intersects e before t. We now suppose that γt intersects e before t, and the
first time that this occurs is denoted by t̄ < t. Use e(t)/t = e(t̄)/t̄ and the ‘auxiliary result’
to see that

−f(t) + tΛ∗
Z

(

e(t)

t

)

= t

[

α
e(t)

t
− ΛZ(α) + Λ∗

Z

(

e(t)

t

)]

≥ t̄

[

α
e(t̄)

t̄
− ΛZ(α) + Λ∗

Z

(

e(t̄)

t̄

)]

= −f(t̄) + t̄Λ∗
Z

(

e(t̄)

t̄

)

.

Hence, the infimum in (15) is not attained by t for which γt intersects with e before t.

Therefore, if step-level twisting is asymptotically efficient, we must have by (17)

inf
{t∈(0,1]:e(t)/t∈(dom Λ∗

Z
)o}

[

tΛ∗
Z

(

e(t)

t

)

− f(t)

]

≥ − lim inf
n→∞

1

n
log

∫

A

dνn

dµn
dνn

≥ − lim sup
n→∞

1

n
log

∫

A

dνn

dµn
dνn

≥ 2τ̃Λ∗
Z

(

e(τ̃)

τ̃

)

,

which proves the claim. �

As a result of the sufficient condition in Theorem 2, step-level twisting is asymptotically
efficient if the saddle-point inequality

αe(t) − tΛZ(α) ≥ τ̃Λ∗
Z(e(τ̃)/τ̃)

holds for all t ∈ [0, 1]. This is Sadowsky’s sufficient condition [17].

5 A comparison

In Theorems 1 and 2, we have provided necessary and sufficient conditions for asymptotic
efficiency of path-level twisting and step-level twisting respectively. It is our present aim to
compare these conditions, and we start by showing that the conditions must be different.

Consider the example given on page 9, in which e(τ) = 1 + |τ − 1/2|. We saw already
that τ̃ = 1/2 and α = 2. The infimum on the left-hand side of (14) is attained at τ = 1/2,
implying that step-level twisting is asymptotically efficient. Note that path-level twisting was
not asymptotically efficient.
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This raises the question how the conditions for the two methods are related. The following
corollary is of practical interest. Informally, it entails that path-level efficiency implies step-
level efficiency. In other words, comparing the conditions for path-level efficiency and those
for step-level efficiency, the conditions for step-level efficiency are the weaker.

Corollary 1 Condition (11) for path-level efficiency implies both the sufficient condition
(14) and the necessary condition (15) for step-level efficiency.

Proof. Since the sufficient condition (14) implies the necessary condition (15), it suffices to

compare (11) and (14). The first step is to note that τ̃Λ∗
Z

(

e(τ̃)
τ̃

)

> 0 and that

αe(τ̃) − τ̃ΛZ(α) = τ̃Λ∗
Z

(

e(τ̃)

τ̃

)

,

so that (14) is equivalent to

τ̃Λ∗
Z

(

e(τ̃)

τ̃

)

+ αe(τ̃)

≤ min

{

inf
τ∈(0,τ̃)

(

τΛ∗
Z

(

e(τ)

τ

)

+ αe(τ) + (τ̃ − τ)ΛZ(α)

)

, (20)

inf
{τ∈(τ̃ ,1]: αe(τ)−τΛZ(α)≥0}

(

τΛ∗
Z

(

e(τ)

τ

)

+ αe(τ) − (τ − τ̃)ΛZ(α)

)}

.

We now prove that the right-hand side of (11) cannot exceed the right-hand side of (20).
Clearly, the last term in the minimum of (20) cannot be smaller than

inf
τ∈(τ̃ ,1]

(

τΛ∗
Z

(

e(τ)

τ

)

+
τ̃

τ
[αe(τ) − τΛZ(α)]

)

+ τ̃ΛX(α) = inf
τ∈(τ̃ ,1]

(

τΛ∗
Z

(

e(τ)

τ

)

+ ατ̃
e(τ)

τ

)

.

Since ΛZ(α) ≥ 0 as a result of the fact that Z1 has zero mean, this immediately yields that
the right-hand side of (20) cannot be smaller than

min

{

inf
τ∈(0,τ̃ ]

(

τΛ∗
Z

(

e(τ)

τ

)

+ αe(τ)

)

, inf
τ∈(τ̃ ,1]

(

τΛ∗
Z

(

e(τ)

τ

)

+ ατ̃
e(τ)

τ

)}

.

To see that the right-hand side of (11) does not exceed this quantity, choose e(τ) and τ̃ e(τ)/τ
for the first and second β in (11) respectively. �
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