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Abstract

This paper focuses on simulating fractional Brownian motion (fBm). Despite the
availability of several exact simulation methods, attention has been paid to approximate
simulation (i.e., the output is approximately fBm), particularly because of possible time
savings. In this paper, we study the class of approximate methods that are based on
the spectral properties of fBm’s stationary incremental process, usually called fractional
Gaussian noise (fGn). The main contribution is a proof of asymptotical exactness (in
a sense that is made precise) of these spectral methods. Moreover, we establish the
connection between the spectral simulation approach and a widely used method, origi-
nally proposed by Paxson, that lacked a formal mathematical justification. The insights
enable us to evaluate the Paxson method in more detail. It is also shown that spectral
simulation is related to the fastest known exact method.

1 Introduction

Fractional Brownian motion (fBm) is a widely used Gaussian process with a variety of appli-
cations, e.g. in communications engineering, (geo)physics, finance, bioengineering and fractal
imaging. Therefore, simulation of fBm has drawn a lot of attention. Although it is possi-
ble to generate a discrete-time realization of fBm (‘exact’ simulation), many ‘approximate’
methods have been proposed as alternatives to exact simulation. Each of these methods has
its own advantages and drawbacks.

Among the approximate simulation methods, spectral techniques have become quite pop-
ular in the recent past. Spectral methods can be used for simulating stationary processes.
In the Fourier filtering method by Saupe [14, pp. 93-94], the spectral approach is used for
approximating fBm. By construction, the resulting sample is a good approximation for fBm
in the spectral domain. However, some problems arise the time domain; fBm is a non-
stationary process, while the approximating Saupe sample is stationary. This problem is
circumvented in the spectral method by Yin [17] by simulating the stationary increments
of fBm, known as fractional Gaussian noise (fGn). Yin’s approach is closely related to the
family of spectral simulation methods that is analyzed in the present paper — see also [1, 9].

*Part of this work was done while A. B. Dieker was with the Vrije Universiteit Amsterdam. His research
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The connections between spectral and related methods are not so transparent, and it
is in some cases not even clear why the produced samples should be a good approximation
for realizations of fGn or fBm. Moreover, it is very difficult to develop a fair criterion for
evaluation of the approximate methods; one must trade off accuracy and efficiency (speed).
Most accuracy analyses include the statistical estimation or testing of the samples [11, 12].
As we will see, these tests may be misleading.

In this paper, we show that the spectrally simulated samples are (in some sense) asymp-
totically exact. Moreover, we establish the links between the spectral approach and the
method proposed by Paxson [12]. This enables us to conclude that Paxson samples are also
asymptotically exact. In addition, it makes it possible to study the mean square error at
each sample point and the covariance structure of the approximating sample.

The paper is organized as follows. Section 2 consists of the preliminaries: the introduction
of fBm and fGn, and a brief review of exact generation of f{Gn. Since fGn is the incremental
process of fBm, a discretized realization of fBm is then obtained from this sample by taking
cumulative sums. Some background on spectral densities is also provided in Section 2. The
main results of this paper are presented in Section 3. The intuitively plausible fact is proved
that spectrally simulated samples are (in a sense that will be made precise) asymptotically
exact, and the connections between the different spectral methods are established. The
error analysis and the numerical comparison of the approximate covariances are the topic of
Section 4.

2 Preliminaries

2.1 Definitions

In the pioneering work of Mandelbrot and van Ness [10], fBm was originally defined as
a stochastic integral with respect to ordinary Brownian motion. The family of fractional
Brownian motions is indexed by a single parameter H € (0,1), which is called the self-
similarity or Hurst parameter. Standardized fBm with Hurst parameter H is a centered
continuous-time Gaussian process By (-) with covariance function

o(5,4) = BBy (s) B (t) = % (027 4 2H | g2 (1)

for s,t > 0. Note that By reduces to an ordinary Brownian motion for H = 1/2.

The incremental process of fractional Brownian motion is a stationary discrete-time pro-
cess and is called fractional Gaussian noise (fGn). We define the fractional Gaussian noise
X ={Xr:k=0,1,...} by

X = BH(I{J + 1) — BH(k‘)

It is clear that any Xj; has a standard normal distribution; the complication, however, is
the covariance between the X;. To be precise, straightforward computations show that the
autocovariance function v(-) of X is given by

(k) = EXp e X = = [k — 12 — 227 + [k + 1)21] (2)

1
2
for k € Z. By writing down the Taylor expansion of the function h(z) = (1 — )27 — 2 +
(14 )27 at the origin and noting that (k) = $k*7h(1/k) for k > 1, it is easily seen from
(2) that

(k) ~ H(2H — 1)k (3)



as |k| — oo. Therefore, the autocovariance function is non-summable for H > 1/2. This
phenomenon is called long-range dependence, indicating (relatively) slow decay of the covari-
ance function. The present paper covers both the long-range dependent case, i.e. H > 1/2,
and the short-range dependent case H < 1/2. However, we often focus on the long-range
dependent case, since it is the worst case for the spectral approach (as will become clear in
Section 3).

2.2 Exact simulation of fractional Brownian motion

There exist algorithms for simulating general stationary Gaussian processes with a given
autocovariance function. Evidently, these algorithms can be used for generating fGn. An
fBm sample is then found by computing the cumulative sums of this fGn sample. The
so-called self-similarity property (i.e., the fact that By (at) has the same finite-dimensional
distributions as a’’ By (t)) can be used to obtain a sample on an arbitrary equispaced grid.

The method proposed by Hosking [7] simulates the sample recursively, conditioning on
all so far generated points. The required computation time is of order N2 when N sample
points are needed. The Cholesky method [1] uses the Cholesky decomposition of the covari-
ance matrix, which results in an order N algorithm. As pointed out in [5], both methods
implicitly compute the same matrix, but the Hosking method achieves that more efficiently.
However, the Cholesky method can also be applied to the covariance matrix of fBm, in which
case the methods work differently.

In the specific case of fGn, another exact method is the method first mentioned by Davies
and Harte [4]. It is of order N log N, i.e., even faster than the Hosking method. The method
was later simultaneously generalized by Dietrich and Newsam [6] and Wood and Chan [16].
The algorithm is based on the fact that the covariance matrix of a stationary discrete-time
Gaussian processes can be embedded in a so-called circulant matrix. This latter matrix
should be positive definite for the algorithm to work, which is indeed the case for f{Gn. The
constructed circulant matrix can be diagonalized explicitly, and the computations are done
efficiently with the so-called Fast Fourier Transform (FFT) algorithm. To be able to establish
the connections between this method and the spectral simulation approach of Section 3, we
describe the algorithm in more detail.

With the Davies and Harte method, an fGn sample of size N can be constructed as
follows:

e Define o := (k) for K = 0,...,N — 1, ay = 0 and a; = y(2N — k) for k =
N +1,...,2N — 1. Compute the (discrete) Fourier transform ()\k)ii[o_l of (ak)ii[o_l
with the FFT algorithm. Recall that the Fourier transform of (ak)fc;é is given by

Jj—1 L
An = ) Qpexp <2m’n—_> (4)
2 ;
forn =0,...,5 —1. When j is a power of two, the number of calculations required by
the FFT algorithm is of order jlog,(j); a considerable gain in speed compared to the
straightforward calculation of order j2. The A; are real by construction and they are
non-negative in the fGn case when ayy is set to y(IV), see [3]. However, we set ay =0
for reasons that become clear in Section 3. This has no influence on the resulting
fGn sample as long as the \; are non-negative (in practice, this is satisfied for any
reasonable sample size N).



e The output fGn sample is Zy,..., Zny_1, where the sequence (Zk)i]lal is the Fourier
transform of

0)

Mg 77( 0
U k= 0;
,/fj@(U(OH U()) k=1,...,N—1;
wy, 1= © (5)
—U k= N;,
Vak (U —UN,) k=N+1,.. 2N -1,
with U ,gi) i.i.d. standard normal random variables for £k =0,...,2N — 1, and mutually
independent vectors U and UM,
Note that Zy, ..., Zon_1 is also an fGn sample, but this sample is not independent of
20, ..y ZAN_1, DOT iS Zg, ..., Zan—1 an fGn sample. The reader may easily check that

Z is real by construction.

In addition to these exact methods, several approximation algorithms have been pro-
posed. Some of them can be found in [5], including spectral simulation. The Conditionalized
Random Midpoint Displacement method [11] is notable for its accuracy, but we remark that
the latter method does not produce stationary samples to approximate fGn.

2.3 Spectral densities

Instead of analyzing a stochastic process in the time domain, one could consider the so-called
spectral or frequency domain. It turns out that the so-called spectral density characterizes
all frequency information of stationary processes (see e.g. [13]). This spectral density is
computed as follows for frequencies —m < A < 7:

e}

FO) = > () exp(igh), (6)

j=—o0

where v(+) denotes the autocovariance function (e.g. of fGn (2)). The autocovariance function
is recovered by applying the inversion formula

1

1W0) = 5 | FN)esp(=iiAax (7

In this paper, we are particularly interested in the spectral density of fractional Gaussian
noise. It can be seen [15] that this density is given by

fN) = 2sin(nH)T(2H + 1)(1 — cos A) [|A| 72771 + B(\, H)], (8)

where I'(-) denotes the Gamma function and

o0

=3 {(@m 4 N 4 o - N )

for —m <A <.

Unfortunately, it is not known how this can be simplified further. However, a quite useful
result is the proportionality of this spectral density to |A|' =2/ near A = 0, checked by noting
that 1 — cos(A) = A2 + O(A1) as |A| — 0. Therefore, f has a pole at zero for H > 1/2. For



H < 1/2, f is non-differentiable at zero. From Equation (6), it follows that a pole at zero in
the spectral density corresponds to long-range dependence.

To numerically evaluate the spectral density of fGn, the infinite sum in Equation (9)
must be truncated. When the truncation parameter is chosen quite large, the function
evaluation becomes computationally more demanding. Paxson [12] suggests and tests a
useful approximation to overcome this problem. He shows that

NE

Bs(\ H) :=

{(a;r)qu n (a—)72H71} n (a3) 2" + (ag) 2 4 (a) 2 + (ag) 2"

1 ' J 8H

<.
Il

(10)

approximates f(\) quite well, where ajt =2mj + A\

3 Spectral simulation, the Paxson method, and the approxi-
mate circulant method

The idea of spectral simulation is to simulate a process in the spectral domain and transform
the resulting sample to the time domain. Although it is not possible to obtain exact fGn or
fBm samples by taking this approach, we will shortly see that the accuracy increases as the
sample size grows.

In the course of the exposition, it becomes clear that spectral simulation is closely related
to the Paxson method and the Davies and Harte method. The resulting modification of the
Davies and Harte method (which produces approximate samples, but is also faster) will be
called the approrimate circulant method.

3.1 Spectral simulation

The spectral analysis of a stationary discrete-time Gaussian process X = {X, : n =
0,...,N — 1} shows that it can be represented in terms of the spectral density as

X, = /0 i \/@ cos(n\)dBi () — /0 i \/@ sin(nA\)dBa()\), (11)

where the equality is to be understood as equality in distribution. The two integrators
are mutually independent (ordinary) Brownian motions. This result is called the spectral
theorem; using (7), its validity is easily checked by showing that the right-hand side of (11)
has covariance function (2). In what follows, we assume that the required sample size N is
a power of two.

We briefly interrupt the exposition to make clear how foﬂ ¢(s)dB(s) should be interpreted
for some function ¢ and an ordinary Brownian motion B as stochastic integrator. This will
be helpful for establishing the result that spectrally simulated samples are (in some sense)
asymptotically exact. The integral foﬂ ¢(s)dB(s) has a natural definition when the integrand
¢ is a so-called simple function, which means that there exists a positive integer ¢ and a
strictly increasing sequence of real numbers (tj)ﬁfzo with tg = 0 and t;, = 7, as well as a

bounded sequence of real numbers (qﬁj)ﬁ;é such that ¢(s) can be written as ¢(s) = ¢; for

s € (tj,tj+1] (the value at 0 is an arbitrary real number). For such a simple function ¢, the
stochastic integral has the following definition:
. -1

| 6618 = 3 05(Blty0) - ). (12)

Jj=0



It is known that every square integrable function 1 can be written as a limit in L? (the
space of all Lebesgue square integrable functions on [0,7]) of a sequence (¢,,) of simple
functions; the subset of simple functions is dense in L2. Then there exists a random variable

Z such that )
(2= [ vm1ans)) ] 0. (13)

This random variable is unique in the sense that another random variable that satisfies (13)
is almost sure equal to Z. This makes it possible to take this Z as the definition of the
stochastic integral [1(s)dB(s). We refer to the type of convergence (13) as convergence in
L2 -norm. Moreover, it can be shown that Z is independent of the approximating sequence
(¥m)m. We will need the following implication of this observation: when a given sequence of
simple functions (¢, ), converges in L?-norm to 1, the corresponding sequence of stochas-
tic integrals ([ ¢m(s)dB(s)), converges in £*norm to [1(s)dB(s). More on stochastic
integration can be found in any textbook on stochastic calculus, e.g. [8].

Spectral simulation is based on approximating Equation (11); the integrand is replaced by
a simple function. Define &,(\) := /f(\)/(27) cos(n\) and fix some integer ¢. After setting

tp =mk/lfor k=0,...,{—1, we define a simple function f,(f) on [0,7] for 0 <n < N—1by

lim E

m—00

f(t1)

™

J(thy1)

s

cos(nt1) 1y (A) +
k=0

Cos(ntk+1)1(tk,tk+1](>‘)~ (14)

Let 97(5)()\) be defined as 57(16)()\), but with the cosine terms replaced by sine terms. The first
integral in (11) is approximated by foﬁ g)()\)dBl()\), which can be computed using Equation
(12). Since a similar approximation can be made for the second integral, we arrive at the

following approximation X}(f) of Xy:

)A(T(f) = f(tl;rl) {cos(ntk+1)U,§0) — sin(ntk+1)U,§1)] , (15)
k=0
where U ,gi) are again i.i.d. standard normal random variables for £k = 0,...,¢ — 1. The two

vectors U and UM should also be mutually independent, since By and By are independent
as well.

It should be noted that for H > 1/2, we approximate the spectral density by functions
that have no pole at 0. As already pointed out, this pole is equivalent to long-range depen-
dence. Hence, we approximate a long-range dependent process by a short-range dependent
process. Still, we may obtain a sample with a covariance structure that approximates the
structure determined by (2) and (3) very well. This issue is explored further in Section 4.

The FFT can be used to calculate (15) efficiently. To this end, we define the sequence

(ak)k=o0,....20—1 by

0 k= 0;
1 (U,@1 n z‘U,gljl) T/t k=1,....0—1: )
ar —
T U VT k=6

(US4 = UG ) VT )T k= 41,201,

Using (4), one can check that the Fourier transform of (ay) is real and equals (15).



Since é’#) approximates &, better for larger £, an interesting question is whether the
approximate sample converges to an exact sample as £ — oo. However, different types of
convergence of random variables and processes exist; it is at first sight not clear in what
sense the approximate sample converges. In the remainder of this subsection, we deal with
this convergence issue.

Convergence

We start by deriving the covariance structure of X® . From (15) it follows that the covariance
between X}(rf) and )A(T(f) for n,m =0,...,N — 1 is given by

Cov(X¥), X(0) cos((m — n)tpy1), (17)

which depends only on m — n. Hence, the spectral simulation method produces stationary
approximate samples. A more detailed numerical analysis of the covariance structure is
deferred to Section 4.

It is readily checked with (7) that COV(X%),)A(,(LO) converges to y(|m — n|) as £ — oc.
From this fact, it is not difficult to deduce that the finite-dimensional distributions of X ()
converge in distribution to the corresponding finite-dimensional distributions of X as ¢ — oc.
However, we will not prove this, since we can prove an even stronger convergence result:
every sample point XT(ZE) converges in £2-norm to the corresponding exact sample point X,
as { — oo.

The proof of this fact is based on the definition of the stochastic integral appearing in
(11). Because f is integrable, the function &, is certainly square integrable for 0 <n < N —1.
Recall that the discussion on stochastic integration showed that if the sequence of simple
functions (5,@% satisfies, for fixed 0 <n < N — 1,

tim [ e, - €0)] ax=o, (18)

t—oo Jo

then [ ff)()\)dBl()\) converges in £2-norm to [ & (A)dBi(A) as £ — oo. It is indeed true
that (18) holds; a similar result holds for the second integrand of (11). A proof of these facts
can be found in the appendix. By the independence of B; and Bs, we deduce that every
sample point X}(f) converges to X, in £?-norm, i.e., in mean square sense.

Since the ‘error’ X,(f) — X, is a centered Gaussian variable for every n (with a variance that
decays to zero in £), we have E\X,(f) — X, = CP(EDA(,(@Z) — X,,|?)P for some constant C), > 0
depending only on p. Thus, X}(f) converges to X, in LP—norm for every p > 1! Because of the
normality, this is equivalent to convergence in probability. This convergence of the individual
sample points is readily extended to a joint convergence result: the finite-dimensional distri-
butions of X converge in probability to the corresponding finite-dimensional distributions
of X as ¢ — oo.

An interesting question is at what rate the convergence takes place. By the way the
stochastic integral is constructed, this rate is related to the rate of convergence of (18) and
its 6,-counterpart. Since the spectral density is proportional to \)\]1*2H near A = 0, we
observe that by monotone convergence:

% . = & —EDIP 4100 - 00
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where Cy denotes some constant. Thus, the rate of convergence is quite slow.

Since the length of the output sequence of the FFT algorithm applied to (16) must be
at least the sample size N, the smallest possible choice for ¢ is N/2, although better results
are obtained for larger ¢. For £ = N/2, the spectral simulation approach is closely related to
the Paxson method, as will be made clear in the next subsection.

3.2 The Paxson method

Paxson [12] proposes a rather intuitive method for simulating fractional Gaussian noise. By
studying the output statistically, he tests if the resulting samples have indeed the desired
properties. Unfortunately, the paper lacks a thorough justification of the proposed procedure,
and it remains unclear why the obtained sample should be (close to) Gaussian.

However, with the formulas above, it is possible to make the arguments precise. In the
Paxson method, the approximate fGn sample is the Fourier transform of

0 k= 0;
by = /ka(tk) exp(i®) k=1,...,N/2;
bN_k k:N/2+1,,N_1,

where Ry, are independent exponentially distributed random variables with mean 1 for & > 1,
and the asterisk denotes the complex conjugate. Besides ® y/o, which is set to zero, the . are
independent uniformly distributed random variables on [0, 27] for k£ > 1, also independent of
the Ry. In this case, tj equals 2rk/N. Note that the obtained sample is real by construction.

Because Ry, is exponentially distributed with mean 1, /2Ry exp(i®},) has the same dis-
tribution as U ,E,O) + iU ,gl), where U’go) and U,E,l) are independent standard normal random
variables in the usual notation. This fact is also used in the well-known Box-Muller algo-
rithm to simulate Gaussian random variables (e.g., [1]).

Let us now compare this with the spectral simulation method for ¢ = N/2. In that case,
the sample is the Fourier transform of (see (16))

0 k= 0;
Vi (U + o)) k=1,... . N/2—1, .
/zf(tk 1y k= N/2: (19)

H(U}\?)k VU ) k= N241 N -

where the U ,gl) have their usual meaning. At this point it becomes clear what the relation
between the spectral method and the Paxson method is; by comparing by, to b}, we see that
the value of b/, is the only difference (of course, the indexing of the random variables U@
differs, but this has no impact). However, this effect will vanish for ‘large’ N; it is readily
checked that it does not affect the convergence result of the previous subsection. Thus,



the accuracy of the Paxson method increases with the sample size N, and is even exact
as N — oo in the sense that each sample point converges to an ‘exact’ sample point in
probability. This new result is the consequence of studying the Paxson method as a special
case of the spectral simulation approach.

We can now argue that Paxson’s suggestion to set ®x/; = 0 is not useful, since this
destroys the normality of by/o, which is reflected in every sample point, cf. (4). This is
the reason that Paxson finds in some cases that the resulting sample points have a ‘nearly’
normal distribution. Therefore, we set

fEns2) o)
bnje = WUN/Q,

although (as before) the imaginary part has no influence on the sample. In the remaining of
this paper, we call this improved Paxson method simply the Paxson method.

The method is faster than the Davies and Harte method, although still of order N log(N).
This is because the Paxson method requires just one Fourier transform of a sequence of size
N, instead of two transforms of size 2N. Hence, the Paxson method is approximately
four times faster than the exact Davies and Harte method, provided that N is large. It
may thus offer a good alternative to exact simulation when large sample sizes are required.
Empirical observations show that the Paxson method is slightly less than three times faster
for N = 2!5 when the Paxson approximation for the spectral density (10) is used; apparently
the asymptotic regime is not reached yet. A more detailed runtime comparison is made in
[5].

The fBm samples produced with Paxson fGn samples have the special property that
the end point is always 0. This property is easily seen by using the definition of the FFT
transform (4):

N-1N-1 N-1 N-1 &
Z Z by exp <2m—> Z by, Z exp <2m’%) = Nby = 0.

This highly undesirable property of Paxson fBm samples can be regarded as a fractional
Brownian bridge-effect.

Having recognized that the Paxson method equals the spectral simulation method with
¢ = N/2, a natural question is what can be said about spectral simulation with ¢ = N. The
next subsection shows that there is a connection with the Davies and Harte method.

3.3 The approximate circulant method; connection with the Davies and
Harte method

In this subsection, we make the remarkable observation that the spectral simulation approach
is related to the circulant diagonalization algorithm of Davies and Harte. In that algorithm,
the Ay are calculated with (4), which can be rewritten as

N—1 N—1
B gk ) (2N —j)k
Y — v(j) exp <27112N> + Z v(j) exp <2m 5N
J=0 j=1
1 )
_ Jk
= Z v(j) exp <2m 2N> (20)
—N+1



Letting t;, = mk/N, we may approximate this by replacing the finite sum by an infinite
sum Z;’ifoo v(j) exp(ijty) when N is ‘large’. Note that this is just the spectral density
(6). In that case, we approximate Ay with f(tx) for K =0,1,..., N and with f(ton_j) for
k=N+1,...,2N — 1. To avoid problems with the pole, f(0) has to be approximated by a
finite value. Since we can compute )¢ directly from (20) using (2), the choice f(0) = Ao =
N2H _ (N —1)%H seems justified.

Instead of using the exact Ag, we investigate what happens when the approximations
f(tg) are used in the Davies and Harte algorithm to generate a sample. The FFT is then
applied to (see (5))

1(tx) 17(0) .
2(]\1;)Uk k=0;
0 (1

. 48 (0 +iuV) k=1,...,N—1; o
SR RSO .

2N “k — 1Y

_ 0 (1
L) (U, iU ) k=N+1..,2N -1

The first N coefficients of the Fourier transform constitute an approximate fGn sample.
Because the only difference with the Davies and Harte method (that was based on a circulant
matrix) is the use of approximate A\, we will refer to this method as approximate circulant
method. The input coefficients (¢j) closely resemble (16) with £ = N; the differences are the
coefficients for £k = 0 and k = N. Again, the effects of this difference vanish as the sample
size N grows, which indicates that the method is asymptotically exact in the sense described
earlier.

Moreover, we can measure now how the spectral simulation method with £ = N performs
in the spectral domain for finite N: it can be calculated what ‘spectral’ error is made by
using the spectral density (6) rather than the Ax. A further investigation of this issue is
found in the next section.

By approximating A\, with the value of the spectral density at t;, the number of ap-
plications of the FFT on a sequence of size 2N is halved. Instead, the spectral density is
evaluated in 2N points; this is done in order N time. Therefore, the spectral simulation
method with ¢ = 2N is theoretically twice as fast as the exact Davies and Harte method
for large N. However, the method is in practice only a bit faster than the exact method for
reasonable sample sizes.

This observation indicates that it makes no sense to increase ¢ further to 2N in the
spectral simulation method. Still, sometimes (e.g. in time series analysis) the autocovariances
of some relevant process are unknown, although the spectral density has some known closed
form. Then, it is an interesting option to simulate such a process with the approximate
spectral simulation method with £ = 2N. Note that the proof in the appendix indicates that
the convergence result holds for any stationary Gaussian process with spectral density f(-).

3.4 Improvements

We have seen that the function 57(1@ defined in (14) converges to &, in the sense of (18),
which led to all theoretical results in the current section. A natural question is if this simple
function is the only possible choice for which this type of convergence holds. A glance at the
proof indicates that the answer is negative. The function f,(f) was constructed by evaluating
the spectral density in the rightmost point of each interval of the grid. Looking at (17),

10



another interesting possiblity is to replace f(tx+1)/¢ by

/ RICOP (22)

& s

Unfortunately, it depends on the spectral density f(-) whether this integral can be computed
(efficiently). In the fGn case, this integral cannot be computed directly, but should be ap-
proximated (e.g., by integrating f numerically). For k = 0, the integral can be approximated
accurately by replacing f(\) by its Taylor expansion sin(mH)['(2H + 1)A1 =21 cf. (8).

Instead of using computationally intensive numerical integration techniques to calculate
(22), it is also possible to interpolate f(-) linearly between the grid points (this is impossible
for k = 0 when H > 1/2 because of the pole at 0, but the Taylor based approximation can
then be used). This variant is similar to the approach described in Section 3.1; the spectral
density is evaluated at the middle point of each interval on the grid, instead of the rightmost
point.

These possibilities will not be investigated in the remaining part of this paper; we will
focus on the Paxson and the approximate circulant method.

4 Evaluation of the methods

4.1 Error analysis

As already pointed out in the preceding section, the connection between the Davies and
Harte method and the approximate circulant method is useful to perform an error analysis.
Define the ‘spectral’ error o7 for k > 0 by

2
[e’s) N—-1
o= | Do v exp(mijk/N)— | > () exp(rijk/N) | . (23)
j=—00 j=—N+1

For this moment, we will neglect the notational technicalities involving the factor v2N
instead of VAN in wy and cy. Then, 0',% is the variance of wy — ¢x, up to a constant scaling
factor, see (5) and (21).

Denote the approximate circulant sample by X and the exact Davies and Harte sample
by X. It is readily checked that the ‘time domain’ error X,, — X,, is a centered Gaussian
variable with variance

2N-1

1
2 _ 2
O-Xn_Xn o 2N Z O-k7
k=0

which does not depend on n. The convergence result of the previous section guarantees that
agv( _y decays to 0 as N — oo.

"Notice that this observation concerns the fGn sample, but that it is also interesting to

calculate the variance U%n_yn of the error Y, — Y, = E?ZO(X ; — Xj) of the corresponding
fBm sample. It may be checked that U%niyn depends on n and is given by
2 2
AR n n
U%n_yn = 5N Z op ZCOSQ(ij/N> + ZsinQ(ﬂjk/N)
k=0 Jj=0 Jj=0
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Since 0,% is, in the presence of a pole in the spectral density (H > 1/2), large when k is either
small or large, the term between the square brackets is approximately n? for these values

of k. This implies that the expected square error of the fBm sample 0327 _y I8 proportional

to n? for large sample sizes, i.e. 02 v = Cn’o X x for some positive constant C'. Since
n—In n n
ai . converges to zero as N — oo, the expected square error of a fBm sample point at
n-_ n

fized n converges to zero as well.

4.2 Numerical analysis of the autocovariance function

Since the autocovariance function characterizes a stationary Gaussian sample uniquely, in-
sight into the performance of the spectral simulation method can be gained by comparing
the approximate covariances to the desired covariances.

We have already seen that spectrally simulated fGn samples are stationary. This holds
also for Paxson and approximate circulant samples, for which the autocovariance functions
Ap resp. yac are given by

N/2—1
Z ! 2;\% s(27rjk/N)+%(—1)k (24)
and Vot
- i 2H __ _1\2H T
nctt) = 3o LI sy + Yo Z VT IO e )
j=1

fork=0,...,N —1.

Some problems arise for the Paxson method at this point. Recall that in a sample of size
N, the (co)variances ¥(0),...,v(N — 1) are approximated by 4p(0),...,7p(N — 1). From
(2) follows that the autocovariance function (k) decreases in k for H > 1/2, but this is not
the case for the approximation 4p(k), since this function is symmetrical around k = N/2.

To illustrate this problem, the autocovariance function 4p is plotted together with the
autocovariance function v for H = 0.8 and N = 2% in the upper panel of Figure 1. The lower
panel consists of the functions ya¢ and +.

Besides the symmetry problem of 4p, the differences with the exact autocovariance func-
tion are relatively large; even negative covariances are present in Paxson samples for N = 25.
Still, the Paxson method passed many tests (see Paxson [12]), even without the normality
improvement of Section 3. It should be noticed that 4p approximates v better as the sample
size N increases, which is probably the reason for Paxson’s empirical finding that satisfactory
samples are obtained for N = 215,

According to the lower panel of Figure 1, the approximate circulant method is more
promising. Except for high-lag autocovariances, the function ya¢ is almost indistinguishable
from ~, which will even improve when N — oco.

However, we are particularly interested in the tail behavior of 44c when H > 1/2, which
cannot be observed in Figure 1. In view of (3), this tail behavior is best studied on a log-log
scale; for f{Gn with Hurst parameter H = 0.8, the graph of v on a log-log scale is a straight
line with slope 2H — 2 = —0.4 for large k. This plot is given in Figure 2 for the approximate
circulant method with H = 0.8 for N = 2! and N = 2!3. Since we are mainly interested in
the tail behavior, the plot of the autocovariance function starts at k = 2'°. We see that the
exact autocovariance function is indeed a straight line, but that this is not the case for the
autocovariance function of the approximate circulant method. The differences at the left end
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Figure 1: The autocovariance function of the Paxson method and the approximate circulant
method with the autocovariance function of fractional Gaussian noise (dashed) for H = 0.8.

y(k)

Figure
log-log

0.028

0.026

0.020 0.025

0.015

2

Autocovariance function of the approximate circulant method with N = 2!
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: The tail of the autocovariance function of the approximate circulant method on a

scale. The dashed line is the exact autocovariance function (H = 0.80).
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of the graph are quite small, and can presumably even be made smaller by implementing one
of the suggested improvements of Section 3. Interestingly, the solid line curves upwards for
the approximate circulant method. Of course, this has to do with the fact that a long-range
dependent process is approximated by a short-range dependent process.

If a sample of size N is needed, an obvious improvement is to take the first N elements
of an approximate circulant sample of size 2N. This corresponds to the spectral simulation
method with £ = 2N.

5 End notes and conclusions

As we have seen, a convenient property of spectral simulation is the convergence in probability
of the approximate fGn sample points to exact fGn sample points. The rate at which
this convergence takes place and the implications for the corresponding fBm sample are
interesting yet unsolved problems.

The spectral simulation approach for one-dimensional fBm can be extended to higher
dimensions (for appropriately defined higher dimensional fBm), for instance by the so-called
turning bands method [17]. It should be noted that the Davies and Harte method can also
be extended to higher dimensions [6, 16].

The main results can be summarized as follows:

e The described spectral simulation method provides the theoretical foundation for the
Paxson method, which clarifies many empirical observations and leads to an important
improvement of the method.

e A natural extension of the Paxson method, the approximate circulant method, has
a direct connection with the exact Davies and Harte method. The obtained insights
show that the accuracy of both methods increases as the sample size grows, and that
the methods are even asymptotically exact in the sense that the expected square error
at each sample point converges to zero.

e It is possible to perform an error analysis for the approximate circulant method. This
shows that the expected square error of the corresponding fBm sample at sample point
n grows approximately like n?.

e Whereas the errors in the covariances are quite large for the Paxson method (although
they vanish asymptotically), the autocovariance function of the approximate circulant
method is visually almost indistinguishable from the exact autocovariance function.
Still, this autocovariance function does not show the desired hyperbolical tail behavior
when H > 1/2. In fact, it is theoretically impossible to obtain this structure in
spectrally simulated samples, since spectral density of fGn is approximated by functions
without pole at 0.

Appendix: Proof of (18)

We keep n fixed throughout the proof, and start by showing that 0,(1@ converges to 6, in

L?>-norm as ¢ — oo, where 6,()\) = 1/ % sin(n)). Note that f has a pole at 0, but that
the sine-term compensates this pole. Thus, 6,,()\) is continuous on [0, 7] for every Hurst

parameter 0 < H < 1. Tt follows that [#,,(\)]* is Riemann integrable on [0, 7], which implies
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that limg o fi" [9,&”@)}2 X\ = [T [0,(A)]2 dA. Since 0 (A) — 0,()) for every 0 < X < 7 as
£ — 00, we have the desired convergence of 07(5) to 6, in L?>norm, see for instance Theorem
4.5.4 of Chung [2].

More care is needed to prove a similar fact for the &, functions. When 0 < H < 1/2, the
same reasoning as above applies. However, &, has a pole at 0 for 1/2 < H < 1. Still, f is
Riemann integrable because f is a spectral density; in fact, fg f(A)d\ = 7. For any € > 0,
this makes it possible to find a 6 > 0 (independent of ¢) such that

[eom-aw]'a < [ @00+ an] a<t [ Gz
< 4/6 FN)dX < €/2,
0

where the first two inequalities use the fact that &,(\) > {,(f)(/\) > 0 for small A\. As before,
we have 57(15)()\) — £,(\) for every § < A < m, and the Riemann integrability of [£,(\)]* on

2
[0, ], which implies that lim/ . [5° [gﬁf)(/\)} dx = [ [£,(MV)]? dX. Hence, it is possible to
2
find an ¢ with the property that [ [ #)()\) - §n()\)} d)\ < €/2 and the claim is proven.

Note that the arguments of the proof apply for a general spectral density, not necessarily
the spectral density of fGn.
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