
Online Clustering with Experts

A Appendix to Online Clustering
with Experts

Further discussion of experiments. Here we further
discuss experimental results reported in the paper. Inter-
estingly, we observe that OCE (and in particular Learn-↵)
tracks the best expert much more e↵ectively on all the real
data sets than on the 25 Gaussian experiment. This is
a simulated data set from a mixture of Gaussians that is
fixed, and where k is known to be 25. While OCE makes
a favorable showing on the 3-experts experiment, in the
6-expert experiment, experts 4.-6. incur loss that is orders
of magnitude lower than the remaining ones. We drilled
down on the performance of the OCE algorithms with low
↵ values, including Static-Expert, as well as Learn-↵, and
observed that the means were simply hurt by the algo-
rithms’ uniform priors over experts. That is, in a few early
iterations, OCE incurred costs from clusterings giving non-
trivial weights to all the experts’ predictions, so in those
iterations costs could be orders of magnitude higher than
those of experts 4.-6. Moreover, as mentioned above, our
regret bounds instead upper bound loss.

Additional experimental details. Experts 4.-6. are 3
variants of k-means# algorithm [3]. In particular they are:
4. k-means# that outputs 3 ·k · log k centers. 5. k-means#
that outputs 2.25 · k · log k centers. 6. k-means# that out-
puts 1.5 ·k · log k centers. Although OCE can start training
from the first observation, via our analysis treating smaller
window sizes (encountered at the beginning and the end of
the sequence), in the experiments we used the first batch
of 200 points as input to all the clustering algorithms, and
started training OCE variants after that. The parame-
ter R was not tuned but was set as follows: R2 = 10000
for all data sets except Intrusion and Spambase, in which
R2 = 1000000000.

Additional experimental results are provided in Section C.

Anna Choromanska, Claire Monteleoni

B Additional proofs

First we provide some lemmas that will be used in subsequent proofs. These follow the approach in [26]. We use the
short-hand notation L(i, t) for L(x

t

, ci
t

), which is valid since our loss is symmetric with respect to its arguments.

Lemma 6.
�
P

T

t=1

log
P

n

i=1

p
t

(i)e�
1

2

L(i,t) = � log[
P

i

1

,...,i

T

p
1

(i
1

)e�
1

2

L(i

1

,1)

Q
T

t=2

e�
1

2

L(i

t

,t)P (i
t

|i
t�1

,⇥)]

Proof. First note that following [25], we design the HMM such that we equate our loss function, L(i, t), with the negative
log-likelihood of the observation given that expert i is the current value of the hidden variable. In the unsupervised
setting, the observation is x

t

. Thus L(i, t) = � logP (x
t

|a
i

, x
1

, ..., x
t�1

). Therefore, we can expand the left hand side of
the claim as follows.
�
P

T

t=1

log
P

n

i=1

p
t

(i)e�
1

2

L(i,t) = �
P

T

t=1

log
P

n

i=1

p
t

(i)P (x
t

|a
i

, x
1

, ..., x
t�1

)

= �
TX

t=1

logP (x
t

|x
1

, ..., x
t�1

)

= � log p
1

(x
1

)
TY

t=2

P (x
t

|x
1

, ..., x
t�1

)

= � logP (x
1

, ..., x
T

)

= � log[
X

i

1

,...,i

T

P (x
1

, ..., x
T

|i
1

, ..., i
T

)P (i
1

, ..., i
T

|⇥)]

= � log[
X

i

1

,...,i

T

p
1

(i
1

)P (x
1

|i
1

, ..., i
T

)
TY

t=2

P (x
t

|i
1

, ..., i
T

, x
1

, ..., x
t�1

)P (i
t

|i
1

, ..., i
t�1

,⇥)]

= � log[
X

i

1

,...,i

T

p
1

(i
1

)P (x
1

|i
1

)
TY

t=2

P (x
t

|i
t

, x
1

, ..., x
t�1

)P (i
t

|i
t�1

,⇥)]

= � log[
X

i

1

,...,i

T

p
1

(i
1

)e�
1

2

L(i

1

,1)

TY

t=2

e�
1

2

L(i

t

,t)P (i
t

|i
t�1

,⇥)]

Lemma 7.
nX

i=1

⇢⇤
i

D(⇥⇤
i

k⇥
i

) = D(↵⇤k↵)

when ✓
ij

= 1� ↵ for i = j and ✓
ij

= ↵

n�1

for i 6= j, ↵ 2 [0, 1],
P

n

i=1

⇢⇤
i

= 1.

Proof.
nX

i=1

⇢⇤
i

D(⇥⇤
i

k⇥
i

) =
nX

i=1

⇢⇤
i

nX

j=1

✓⇤
ij

log
✓⇤
ij

✓
ij

=
nX

i=1

⇢⇤
i

[✓⇤
ii

log
✓⇤
ii

✓
ii

+
nX

j 6=i

✓⇤
ij

log
✓⇤
ij

✓
ij

]

=
nX

i=1

⇢⇤
i

[(1� ↵⇤) log
1� ↵⇤

1� ↵
+

nX

j 6=i

↵⇤

n� 1
log

↵

⇤

n�1

↵

n�1

] =
nX

i=1

⇢⇤
i

[(1� ↵⇤) log
1� ↵⇤

1� ↵
+ ↵⇤ log

↵⇤

↵
]

=
nX

i=1

⇢⇤
i

D(↵⇤k↵) = D(↵⇤k↵)
nX

i=1

⇢⇤
i

= D(↵⇤k↵)

B.1 Proof of Theorem 1

Proof. Using Definitions 3 and 4, we can express the loss of the algorithm on a point x
t

as

L(x
t

, clust(t)) =
k
P

n

i=1

p(i)(x
t

� ci
t

)k2

4R2

Online Clustering with Experts

Then the following chain of inequalities are equivalent to eachother.

L(x
t

, clust(t)) �2 log
nX

i=1

p(i)e�
1

2

L(x

t

,c

i

t

)

k
P

n

i=1

p(i)(x
t

� ci
t

)k2

4R2

 �2 log
nX

i=1

p(i)e�
1

2

kx
t

�c

i

t

k2

4R

2

e
k
P

n

i=1

p(i)(x

t

�c

i

t

)k2

4R

2

nX

i=1

p(i)e�
1

2

kx
t

�c

i

t

k2

4R

2

!�2

nX

i=1

p(i)e�
1

2

kx
t

�c

i

t

k2

4R

2 e�
1

2

k
P

n

i=1

p(i)(x

t

�c

i

t

)k2

4R

2 (2)

Let vi
t

=
x

t

�c

i

t

2R

. Since kx
t

k R and kci
t

k R then vi
t

2 [�1 1]d. Equation (2) is equivalent to

nX

i=1

p(i)e�
1

2

kvi

t

k2 e
�1

2

k
P

n

i=1

p(i)v

i

t

k2

This inequality holds by Jensen’s Theorem since the function f(vi
t

) = e�
1

2

kvi

t

k2 is concave when vi
t

2 [�1 1]d.

B.2 Proof of Theorem 2

Proof. We can proceed by applying Theorem 1 to bound the cumulative loss of the algorithm and then use Lemma 6. As
we proceed we follow the approach in the proof of Theorem 2.1.1 in [26].

L
T

(alg) =
TX

t=1

L(x
t

, clust(t))

 �
TX

t=1

2 log
nX

i=1

p
t

(i)e�
1

2

L(i,t)

= �2 logP (x
1

, ..., x
T

)

= �2 log
nX

i=1

P (x
1

, ..., x
T

|a
i,1

, ..., a
i,T

)P (a
i,1

, ..., a
i,T

)

= �2 log
nX

i=1

p
1

(i)P (x
1

|a
i,1

)
TY

t=2

P (x
t

|a
i

, x
1

, ..., x
t�1

)

= �2 log
1
n

nX

i=1

e�
1

2

L(i,1)

TY

t=2

e�
1

2

L(i,t)

= �2 log
1
n

nX

i=1

e�
1

2

P
T

t=1

L(i,t)

= �2 log
1
n
� 2 log

nX

i=1

e�
1

2

P
T

t=1

L(i,t)

 L
T

(a
i

) + 2 log n

The last inequality holds for any a
i

, so in particular for a⇤
i

.

B.3 Proof of Theorem 3

Proof. By applying first Theorem 1 and then Lemma 6 and following the proof of Theorem 3 (Main Theorem) in the [26]
we obtain:

L
T

(alg) =
TX

t=1

L
t

(alg)

TX

t=1

�2 log
nX

i=1

p
t

(i)e�
1

2

L(i,t)

Anna Choromanska, Claire Monteleoni

= �2 log[
X

i

1

,...,i

T

p
1

(i
1

)
TY

t=2

P (i
t

|i
t�1

,⇥)
TY

t=1

e�
1

2

L(i

t

,t)]

= �2 log[
X

i

1

,...,i

T

P (i
1

, ..., i
T

|⇥)
TY

t=1

e�
1

2

L(i

t

,t)]

where

P (i
1

, ..., i
T

|⇥) = p
1

(i
1

)
TY

t=2

P (i
t

|i
t�1

,⇥)

Notice that also:

P (i
1

, ..., i
T

|⇥) = p
1

(i
1

)
nY

i=1

nY

j=1

(✓
ij

)nij

(i

1

,...,i

T

)

where n
ij

(i
1

, ..., i
T

) is the number of transitions from state i to state j, in a sequence i
1

, ..., i
T

and
P

j

n
ij

(i
1

, ..., i
T

), is the
number of times the sequence was in state i, except at the final time-step. Thus

P
j

n
ij

(i
1

, ..., i
T

) = (T � 1)⇢̂
i

(i
1

, ..., i
T

),
where ⇢̂

i

(i
1

, ..., i
T

) is the empirical estimate, from the sequence i
1

, ..., i
T

, of the marginal probability of being in state i, at
any time-step except the final one. It follows that: n

ij

(i
1

, ..., i
T

) = (T � 1)⇢̂
i

(i
1

, ..., i
T

)✓̂ij(i
1

, ..., i
T

) where ✓̂
ij

(i
1

, ..., i
T

) =
n

ij

(i

1

,...,i

T

)P
j

n

ij

(i

1

,...,i

T

)

is the empirical estimate of the probability of that particular state transition, on the basis of i
1

, ..., i
T

.

Thus:

P (i
1

, ..., i
T

|⇥) = p
1

(i
1

)
nY

i=1

nY

j=1

(✓
ij

)(T�1)⇢̂

i

(i

1

,...,i

T

)

ˆ

✓

ij

(i

1

,...,i

T

)

= p
1

(i
1

)e(T�1)

P
n

i=1

P
n

j=1

⇢̂

i

(i

1

,...,i

T

)

ˆ

✓

ij

(i

1

,...,i

T

) log ✓

ij

Thus:

L
T

(alg) �2 log[
X

i

1

,...,i

T

P (i
1

, ..., i
T

|⇥)
TY

t=1

e�
1

2

L(i

t

,t)]

= �2 log[
X

i

1

,...,i

T

p
1

(i
1

)e(T�1)

P
n

i=1

P
n

j=1

⇢̂

i

(i

1

,...,i

T

)

ˆ

✓

ij

(i

1

,...,i

T

) log ✓

ij

TY

t=1

e�
1

2

L(i

t

,t)]

Let i
0
1

, ..., i
0
T

correspond to the best segmentation of the sequence into s segments meaning the s-partitioning with minimal
cumulative loss. Obviously then the hindsight-optimal (cumulative loss minimizing) setting of switching rate parameter

↵, given s, is: ↵
0
= s

T�1

and since we are in the fixed-share setting: ✓
0
ij

= 1 � ↵
0
for i = j and ✓

0
ij

= ↵

0

n�1

for i 6= j. We
can continue as follows:

 �2 log[p
1

(i
0
1

)e(T�1)

P
n

i=1

P
n

j=1

⇢̂

i

(i

0
1

,...,i

0
T

)

ˆ

✓

ij

(i

0
1

,...,i

0
T

) log ✓

ij

TY

t=1

e�
1

2

L(i

0
t

,t)]

= �2 log p
1

(i
0
1

)� 2(T � 1)
nX

i=1

nX

j=1

⇢̂
i

(i
0
1

, ..., i
0
T

)]✓̂
ij

(i
0
1

, ..., i
0
T

) log ✓
ij

+
TX

t=1

L(i
0
t

, t)

= 2 log n� 2(T � 1)
nX

i=1

nX

j=1

⇢̂
i

(i
0
1

, ..., i
0
T

)✓̂
ij

(i
0
1

, ..., i
0
T

) log ✓
ij

+
TX

t=1

L(i
0
t

, t)

=
TX

t=1

L(i
0
t

, t) + 2 log n� 2(T � 1)
nX

i=1,j=i

⇢̂
i

(i
0
1

, ..., i
0
T

)✓̂
ij

(i
0
1

, ..., i
0
T

) log ✓
ij

Online Clustering with Experts

�2(T � 1)
nX

i=1

nX

j=1,j 6=i

⇢̂
i

(i
0
1

, ..., i
0
T

)✓̂
ij

(i
0
1

, ..., i
0
T

) log ✓
ij

=
TX

t=1

L(i
0
t

, t) + 2 log n� 2(T � 1)(1� ↵
0
) log(1� ↵)

nX

i=1,j=i

⇢̂
i

(i
0
1

, ..., i
0
T

)

�2(T � 1)
↵

0

n� 1
log(

↵
n� 1

)
nX

i=1

nX

j=1,j 6=i

⇢̂
i

(i
0
1

, ..., i
0
T

)

=
TX

t=1

L(i
0
t

, t) + 2 log n� 2(T � 1)(1� ↵
0
) log(1� ↵)� 2(T � 1)↵

0
log(

↵
n� 1

)

=
TX

t=1

L(i
0
t

, t) + 2 log n� 2(T � 1)(1� ↵
0
) log(1� ↵)� 2(T � 1)↵

0
log↵+ 2(T � 1)↵

0
log(n� 1)

=
TX

t=1

L(i
0
t

, t) + 2 log n� 2(T � 1)(1� ↵
0
) log(1� ↵)� 2(T � 1)↵

0
log↵+ 2s log(n� 1)

=
TX

t=1

L(i
0
t

, t) + 2 log n+ 2s log(n� 1)� 2(T � 1)((1� ↵
0
) log(1� ↵) + ↵

0
log↵)

=
TX

t=1

L(i
0
t

, t) + 2 log n+ 2s log(n� 1) + 2(T � 1)(H(↵
0
) +D(↵

0
k↵))

B.4 Proof of Lemma 2

Proof. Given any b, it will su�ce to provide a sequence such that any b-approximation algorithm cannot output x
t

, the
current point in the stream, as one of its centers. We will provide a counter example in the setting where k = 2. Given
any b, consider a sequence such that the stream before the current point consists entirely of n

1

data points located at
some position A, and n

2

data points located at some position B, where n
2

> n
1

> b � 1. Let x
t

be the current point
in the stream, and let it be located at a position X that lies on the line segment connecting A and B, but closer to A.
That is, let kA�Xk = a and kB �Xk = c such that 0 < a < n

2

n

2

+1

c. This is reflected by the figure, which includes some
additional points D and E:

——–A———D————X—————E————————-B————-

where A,D,X,E,B are lying on the same line. Let D 2 [A,X] and E 2 [X,B]. Let for particular location of D and E,
kA�Dk = a

1

, kD �Xk = a
2

, kX � Ek = c
1

and kE �Bk = c
2

, such that a
1

+ a
2

= a and c
1

+ c
2

= c.

We will first reason about the optimal k-means clustering of the stream including x
t

. We will consider cases:
1) Case 1: optimal centers lie inside the interval (A,X). Any such set cannot be optimal since by mirror-reflecting the
center closest to X with respect to X (such that it now lies in the interval (B,X) and has the same distance to X as
before) we can decrease the cost. In particular the cost of points in B will only decrease, leaving the cost of points in A,
plus the cost of X, unchanged.
2) Case 2: optimal centers lie inside the interval (B,X). In this case we can alternately mirror-reflect the closest center
to X with respect to X and then with respect to A (reducing the cost with each reflection) until it will end up in
interval [A,X). The cost of the final solution is smaller than when both centers were lying in (B,X), because while
mirror-reflecting with respect to X, the cost of points in A can only decrease, leaving the cost of points in B and point X
unchanged and while mirror-reflecting with respect to A, the cost of point X can only decrease, leaving the cost of points
in A and in B unchanged.

Anna Choromanska, Claire Monteleoni

Thus the optimal set of centers (let’s call them: C
1

, C
2

) must be such that: C
1

2 [A,X] and C
2

2 [B,X]. The figure
above reflects this situation and is su�ciently general; thus D = C

1

and E = C
2

. We will now consider all possible
locations of such centers (C

1

, C
2

) and their costs:

1) (A,X): cost = n
2

(c
1

+ c
2

)2

2.1) (A,E) where E 2 (X,B): cost = (a
1

+ a
2

)2 + n
2

c2
2

when c
1

� a
2.2) (A,E) where E 2 (X,B): cost = c2

1

+ n
2

c2
2

when c
1

< a
3) (A,B): cost = (a

1

+ a
2

)2

4) (D,X) where D 2 (A,X): cost = n
1

a2

1

+ n
2

(c
1

+ c
2

)2

5.1) (D,E) where D 2 (A,X) and E 2 (X,B): cost = n
1

a2

1

+ a2

2

+ n
2

c2
2

when a
2

 c
1

5.2) (D,E) where D 2 (A,X) and E 2 (X,B): cost = n
1

a2

1

+ c2
1

+ n
2

c2
2

when a
2

> c
1

6) (D,B) where D 2 (A,X): cost = n
1

a2

1

+ a2

2

7) (X,E) where E 2 (X,B): cost = n
1

(a
1

+ a
2

)2 + n
2

c2
2

8) (X,B) where E 2 (X,B): cost = n
1

(a
1

+ a
2

)2

Notice:
cost(1) > cost(2.2) thus optimal configuration of centers can not be as in case 1)
cost(7) > cost(8) thus optimal configuration of centers can not be as in case 7)
cost(4) > cost(5.2) thus optimal configuration of centers can not be as in case 4)
cost(8) > cost(6) thus optimal configuration of centers can not be as in case 8)
cost(5.2) > cost(2.2) thus optimal configuration of centers can not be as in case 5.2)
cost(5.1) > cost(6) thus optimal configuration of centers can not be as in case 5.1)
cost(2.1) > cost(3) thus optimal configuration of centers can not be as in case 2.1)

Consider case (2.2): cost = c2
1

+ n
2

c2
2

= c2
1

+ n
2

(c� c
1

)2 and c
1

2 (0, a). Keeping in mind that 0 < a < n

2

n

2

+1

c, it is easy

to show that cost > a2 + n
2

(c � a)2 > n
2

a2 > n
1

a2 > a2 = cost(case(3)). Thus the optimal configuration of centers
can not be as in case 2.2). Therefore, the only cases we are left to consider are cases 3 and 6. In both cases, one of the
optimal centers lies at B. Let this center be C

2

. Since a < c, the remaining points (in A and X) are assigned to center
C

1

whose location can be computed as follows (please see figure below for notation simplicity):

A—C
1

———X———————–B = C
2

Let kA � C
1

k = � and kA � Xk = a (as defined above). Since we proved that C
2

must be fixed at B, the points at B
will contribute 0 to the objective, and we can solve for C

1

by minimizing the cost from points in A, plus the cost from
X: min

�

{n
1

�2 + (a� �)2}. The solution is � = a

n

1

+1

. Thus the total optimal cost is:

OPT = n
1

�2 + (a� �)2 =
n
1

a2

(n
1

+ 1)2
+

n2

1

a2

(n
1

+ 1)2

We will now consider any 2-clustering of set A,X,B when one cluster center is x
t

, which is therefore located at X. We
can lower bound the k-means cost of any two set of centers that contain X, as follows: cost({X, ĉ}) � n

1

a2 for any ĉ; the
minimal cost is achieved when the other center is located at B (when one of the centers is located in X, the location of
the other center that gives the smallest possible k-means cost can be either A (case 1), D (case 4), E (case 7) or B (case
8), where case 8 has the smallest cost from among them).

Violating the b-approximation assumption occurs when cost({X, ĉ}) > b⇤OPT . Given the above, it would su�ce to show
n
1

a2 > b ⇤OPT . That is:

n
1

a2 > b

✓
n
1

a2

(n
1

+ 1)2
+

n2

1

a2

(n
1

+ 1)2

◆
, b < (n

1

+ 1)

This holds, as we chose n
1

> b� 1 in the beginning. Therefore the b-approximation assumption is violated.

B.5 Proof of Lemma 4

Proof. For ease of notation, we denote by �
(t�W,t>

the k-means cost of algorithm a on the data seen in the window
(t�W, t > (omitting the argument, which is the set of centers output by algorithm a at time t). Since a is b-approximate
then:

8
W

�
(t�W,t>

 b ·OPT
(t�W,t>

(3)

For any W such that W < T , we can decompose T such that T = mW + r where m 2 N and r W . Notice then that

Online Clustering with Experts

for any j 2 {0, ...,W � 1} the following chain of inequalities holds as the direct consequence of Equation 3:

�
(T�W+j,T>

+ �
(T�2W+j,T�W+j>

+ �
(T�3W+j,T�2W+j>

+ . . .+ �
(T�mW+j,T�(m�1)W+j>

+ �
<1,T�mW+j>

 b ·OPT
(T�W+j,T>

+ b ·OPT
(T�2W+j,T�W+j>

+ b ·OPT
(T�3W+j,T�2W+j>

+...+ b ·OPT
(T�mW+j,T�(m�1)W+j>

+ b ·OPT
<1,T�mW+j>

 b ·OPT
<1,T>

(4)

where the last inequality is the direct consequence of Lemma 3.

Notice that di↵erent value of j refers to di↵erent partitioning of the time span < 1, T >. Figure 2 illustrates an example
when T = 10 and W = 3.

Figure 2: Di↵erent partitioning of time span T = 10 into time windows, W = 3, with respect to di↵erent values
of j.

Let W
t

refer to the data chunk seen in time span < max(1, t�W + 1), t >. We finish by showing that,

TX

t=1

�
W

t

W�1X

j=0

{�
(T�W+j,T>

(5)

+ �
(T�2W+j,T�W+j>

+ �
(T�3W+j,T�2W+j>

+ . . .+ �
(T�mW+j,T�(m�1)W+j>

+ �
<1,T�mW+j>

}
 b ·W ·OPT

<1,T>

The left hand side of the first inequality (5) sums the losses over only a subset of all the windows that are induced by
partitioning the time span T using all possible values of j. The final inequality follows by applying (4).

To illustrate some of the ideas used in this proof, Figures 2 and 3 provide schematics. Figure 3 shows the windows over
which the loss is computed on the left hand side of inequality (5), which is a subset of the set of all windows induced by
all possible partitioning of time span T using all possible values of j, which is shown in Figure 2.

Anna Choromanska, Claire Monteleoni

Figure 3: Illustration of the time spans over which the loss is being computed in Equation 5. T = 10, W = 3.
Colors red, blue and black correspond to di↵erent partitionings, with respect to j, of time span T illustrated in
Figure 2.

B.6 Proof of Lemma 5

Proof. The loss of expert i at time t is defined in Definition 3 as the scaled component of the k-means cost of algorithm a’s
clustering at time t. That is, �

t

(C
t

) =
P

x

0
t

2W

t

min
c2C

t

kx
t

0 � ck2 = min
c2C

t

kx
t

� ck2 +
P

x

0
t

2W

t

\x
t

min
c2C

t

kx
t

0 � ck2 =

4R2 · L
t

(C
t

) +
P

x

0
t

2W

t

\x
t

min
c2C

t

kx
t

0 � ck2.
Therefore, since all terms in the sum are positive, 4R2 · L

t

(C
t

) �
t

(C
t

), and L
t

(a) �

t

4R

2

. where in the second
inequality we substitute in our simplifying notation, where C

t

are the set of clusters generated by algorithm a at time
t, and �

t

is algorithm a’s k-means cost on W
t

. Now, summing over T iterations, and applying Lemma 4, we obtainP
T

t=1

L
t

(a) b·W
4R

2

OPT
<1,T>

.

B.7 Proof of Theorem 7

Proof. The theorem directly follows from Theorem 3, Lemma 4 and Lemma 5. Notice that both Lemma 4 and Lemma 5
hold in a more general setting when in each time window the identity of the expert (b-approximate algorithm) may change
in an arbitrarily way. However we did not provide the generalized proofs of those lemmas since it would only complicate
the notation.

B.8 Proof of Theorem 4, Corollary 1, and Theorem 8

Lemma 8.

Llog

T

(⇥) =
TX

t=1

Llog(p
t

, t) = � log

2

4
X

i

1

,...,i

T

p
1

(i
1

)e�
1

2

L(i

1

,1)

TY

t=2

e�
1

2

L(i

t

,1)P (i
t

|i
t�1

,⇥)

3

5

Proof. It follows directly from Lemma 6.

Lemma 9.

Llog

T

(⇥)� Llog

T

(⇥⇤) = � log

"
X

~s

Q(~s|✓⇤) exp
(
T

0
nX

i=1

nX

j=1

⇢̂
i

(~s)✓̂
ij

(~s) log(
✓
ij

✓⇤
ij

)

)#

where ~s = i
1

, ..., i
T

and Q(~s|⇥⇤) is the posterior probability over the choices of experts along the sequence, induced by
hindsight-optimal ⇥⇤.

Proof. It follows directly from applying proof of Lemma A.0.1 in [26] with redefined �(~s) such that �(~s) =
Q

T

t=1

e�
1

2

L(i

t

,t).

Online Clustering with Experts

Lemma 10.

Llog

T

(⇥)� Llog

T

(⇥⇤) (T � 1)
nX

i=1

⇢⇤
i

D(⇥⇤
i

k⇥
i

)

 (T � 1)max
i

D(⇥⇤
i

k⇥
i

)

Proof. It holds by Theorem 3 in [26].

Lemma 11.
Llog

T

(↵) Llog

T

(↵⇤) + (T � 1)D(↵⇤k↵)

Proof. It holds by Lemma 7, Lemma 10.

Lemma 12.
L

T

(↵) 2Llog

T

(↵⇤) + 2(T � 1)D(↵⇤k↵)

Proof. It holds by Lemma 11 and Lemma 1.

Lemma 13.

L
T

(✓) bW
2R2

OPT
T

+ 2(T � 1)
nX

i=1

⇢⇤
i

D(✓⇤
i

||✓
i

)

Proof.

Llog

T

(✓⇤) =
TX

t=1

Llog(p
t

, t)|✓⇤ = (
TX

t=1

� log
nX

i=1

p
t

(i)e�
1

2

L(i,t))|✓⇤ =

= (�
TX

t=1

log
nX

i=1

p
t

(i)e�
1

2

k x

t

�c

i

t

2R

k2)|✓⇤

Define as previously vi
t

=
x

t

�c

i

t

2R

and notice vi
t

2 [�1; 1]d.

Thus we continue:

= (�
TX

t=1

log
nX

i=1

p
t

(i)e�
1

2

kvi

t

k2)|✓⇤

By the proof of Lemma 4 kvi
t

k2 �

i

t

4R

2

where �i

t

is the k-means cost of algorithm ith clustering (ith expert) at time t.

Thus we can continue as follows (we omitt conditioning by ✓⇤ since it holds for any ~p
t

):

 �
TX

t=1

log
nX

i=1

p
t

(i)e�
1

2

�

i

t

4R

2 �
TX

t=1

log
nX

i=1

p
t

(i)e�
1

2

max

i

�

i

t

4R

2

 �
TX

t=1

log e�
1

2

max

i

�

i

t

4R

2 =
TX

t=1

1
2
max

i

�i

t

4R2

=
1

8R2

TX

t=1

max
i

�i

t

 bW
8R2

OPT
T

Anna Choromanska, Claire Monteleoni

The last inequality follows from the proof of Theorem 7. Thus finally:

L
T

(✓) 2Llog

T

(✓) 2Llog

T

(✓⇤) + 2(T � 1)
nX

i=1

⇢⇤
i

D(✓⇤
i

||✓
i

) bW
4R2

OPT
T

+ 2(T � 1)
nX

i=1

⇢⇤
i

D(✓⇤
i

||✓
i

)

B.9 Proof of Theorem 5

Proof. The logloss per time step of the top-level algorithm (for the ease of notation we skip index log), which updates its
distribution over ↵ - experts (Fixed-Share (↵

j

algorithms) is:

Ltop(ptop
t

, t) = � log
mX

j=1

ptop
t

(j)e�L

log

(j,t)

where

Llog(j, t) = � log
nX

i=1

p
j

(i)e�
1

2

L(i,t)

thus:

Ltop(ptop
t

, t) = � log
mX

j=1

ptop
t

(j)
nX

i=1

p
j

(i)e�
1

2

L(i,t)

The update is done via the Static Expert algorithm. When running Learn-↵(m), m possible values ↵
j

are tested.

Following [25, 26], the probabilistic “prediction” of the algorithm is defined as:

mX

j=1

ptop
t

(j)
nX

i=1

p
j

(i)e�
1

2

L(i,t)

Let us first show that this loss-prediction pair are (1, 1)-realizable, thus they satisfy:

Ltop(ptop
t

, t) � log
mX

j=1

p
top

(j)e�L

log

(j,t)

Thus we have to prove that following holds:

� log
mX

j=1

ptop
t

(j)
nX

i=1

p
j

(i)e�
1

2

L(i,t) � log
mX

j=1

ptop
t

(j)e�L

log

(j,t)

thus we have to prove:

� log
mX

j=1

ptop
t

(j)
nX

i=1

p
j

(i)e�
1

2

L(i,t) � log
mX

j=1

ptop
t

(j)elog
P

n

i=1

p

j

(i)e

� 1

2

L(i,t)

which is equivalent to

� log
mX

j=1

ptop
t

(j)
nX

i=1

p
j

(i)e�
1

2

L(i,t) � log
mX

j=1

ptop
t

(j)
nX

i=1

p
j

(i)e�
1

2

L(i,t)

where the last inequality holds. Now, since our logloss-prediction pair are (1,1)-realizable, by Lemma 1 in [19] we have:

Ltop

T

 min
{↵

j

}
Llog

T

(↵
j

) + logm

Online Clustering with Experts

where {↵
j

} is the discretization of the ↵ parameter that the Learn-↵ algorithm takes as input. Now, by applying
Corollary 1 we get:

Llog

T

(alg) Llog

T

(↵⇤) + (T � 1) min
{↵

j

}
D(↵⇤k↵

j

) + logm

C Additional Experimental Details

To provide qualitative results on OCE’s performance, in Figures 4-5 we show clustering analogs to learning curves from
our experiments in the predictive setting. These curves generated the statistics for Table 1. We plot the batch k-means
cost of each expert, and the OCE algorithms, on all the data seen so far, versus t. While Fixed-Share algorithms with
high values of ↵ su↵er large oscillations in cost, Learn-↵’s performance tracks, and often surpasses that of the Fixed-Share
algorithms.

We also demonstrate the evolution of the weights maintained by the Fixed-Share and Learn-↵ OCE algorithms. In
Figures 6-7 we show the evolution over time of the weights maintained by the OCE Fixed-Share algorithm over the
experts (clustering algorithms). For smaller values of ↵ we observe an inversion in the weight ordering between experts
4 and 5 at around iteration 48 for this particular experiment. For ↵ values closer to 1/2 and 1 there is a higher amount
of shifting of weights among experts. In Figure 8 we show the evolution over time of the weights maintained by the
OCE Learn-↵ algorithm over ↵-experts (Fixed-Share algorithms run with a di↵erent setting of the ↵ parameter). The
experiment was performed with 45 ↵-experts (Fixed-Share algorithms with di↵erent values of the ↵ parameter). Lower ↵
values received higher weights. One value of ↵ (the lowest) receives an increasing share of the weight, which is consistent
with the fact that the Static-Expert algorithm is used to update weights over ↵-experts.

Anna Choromanska, Claire Monteleoni

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 108

t

k−
m

ea
ns

 c
os

t

Cloud data

Expert 1
Expert 2
Expert 3
Static−Expert
Fixed−Share 1
Fixed−Share 2
Fixed−Share 3
Fixed−Share 4
Learn−alpha

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6
x 108

t

k−
m

ea
ns

 c
os

t

Spambase data

0 100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5
x 1010

t

k−
m

ea
ns

 c
os

t

Intrusion data

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5
x 107

t

k−
m

ea
ns

 c
os

t

Forest fires data

Figure 4: Clustering analogs to learning curves; k-means cost vs. t; Top to bottom: Cloud, Spambase, Intrusion,
Forest fires. Legend in upper left.

Online Clustering with Experts

0 100 200 300 400 500 600 700 800
0

1

2

3

4

5

6
x 104

t

k−
m

ea
ns

 c
os

t

Robot data

0 50 100 150 200 250 300
0

2

4

6

8

10

12

x 107

t

k−
m

ea
ns

 c
os

t

Mixture of 25 Gaussians

0 50 100 150 200 250 300
0

1

2

3

4

5

6

7

8

9

10
x 106

t

k−
m

ea
ns

 c
os

t

Mixture of 25 Gaussians

Figure 5: Clustering analogs to learning curves; k-means cost vs. t; Top to bottom: Robot data, 25 Gaussians
data, Zooming in on y-axis of 25 Gaussians. Legend in Figure 5.

Anna Choromanska, Claire Monteleoni

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t

Ex
pe

rts
 w

ei
gh

ts

Forest fires data. Fixed share. alpha = 0.0015711

expert1
expert2
expert3
expert4
expert5
expert6

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

Ex
pe

rts
 w

ei
gh

ts

Forest fires data. Fixed share. alpha = 0.011293

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

t

Ex
pe

rts
 w

ei
gh

ts

Forest fires data. Fixed share. alpha = 0.027622

Figure 6: Evolution of weights over experts for Fixed-Share algorithms using di↵erent (low) values of the ↵
parameter; Forest fires data. 6-experts. Legend in top left.

Online Clustering with Experts

0 50 100 150 200 250 300
0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

t

Ex
pe

rts
 w

ei
gh

ts

Forest fires data. Fixed share. alpha = 0.45325

0 50 100 150 200 250 300
0.13

0.14

0.15

0.16

0.17

0.18

0.19

0.2

t

Ex
pe

rts
 w

ei
gh

ts

Forest fires data. Fixed share. alpha = 0.99843

Figure 7: Evolution of weights over experts for Fixed-Share algorithms using di↵erent values of the ↵ parameter
(Top: close to 1/2; Bottom: close to 1); Forest fires data. 6-experts. Legend in Figure 6.

0 50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

t

Ex
pe

rts
 w

ei
gh

ts

Forest fires data. Learn alpha. W = 200.k = 15

Figure 8: Evolution of weights maintained by Learn-↵, over its ↵-experts, in the 6-expert Forest-Fires experiment.
Lowest values of ↵ receive highest weight.

