
Accepted as a workshop contribution at ICLR 2015

DEEP LEARNING WITH ELASTIC AVERAGING SGD

Sixin Zhang
Courant Institute of Mathematical Sciences
New York, NY, USA
zsx@cims.nyu.edu

Anna Choromanska
Courant Institute of Mathematical Sciences
New York, NY, USA
achoroma@cims.nyu.edu

Yann LeCun
Courant Institute of Mathematical Sciences
New York, NY, USA
yann@cims.nyu.edu

ABSTRACT

We study the problem of stochastic optimization for deep learning in the paral-
lel computing environment under communication constraints. A new algorithm
is proposed in this setting where the communication and coordination of work
among concurrent processes (local workers), is based on an elastic force which
links the parameter vectors they compute with a center variable stored by the
parameter server (master). The algorithm enables the local workers to perform
more exploration, i.e. the algorithm allows the local variables to fluctuate further
from the center variable by reducing the amount of communication between lo-
cal workers and the master. We empirically demonstrate that in the deep learning
setting, due to the existence of many local optima, allowing more exploration can
lead to the improved performance. We propose synchronous and asynchronous
variants of the new algorithm. We provide the theoretical analysis of the syn-
chronous variant in the quadratic case and prove it achieves the highest possible
asymptotic rate of convergence for the center variable. We additionally propose
the momentum-based version of the algorithm that can be applied in both syn-
chronous and asynchronous settings. An asynchronous variant of the algorithm
is applied to train convolutional neural networks for image classification on the
CIFAR and ImageNet datasets. Experiments demonstrate that the new algorithm
accelerates the training of deep architectures compared to DOWNPOUR and other
common baseline approaches and furthermore is very communication efficient.

1 INTRODUCTION

One of the most challenging problems in large-scale machine learning is how to parallelize the
training of large models that use a form of stochastic gradient descent (SGD) Bottou (1998). There
have been attempts to parallelize SGD-based training for large-scale deep learning models on large
number of CPUs, including the Google’s Distbelief system Dean et al. (2012). But practical image
recognition systems consist of large-scale convolutional neural networks trained on one GPU card
(or a small number of GPU cards) sitting in a single computer Krizhevsky et al. (2012); Sermanet
et al. (2013). The main challenge is to devise parallel SGD algorithms to train large-scale deep
learning models (particularly convolutional networks) that yield a significant speedup when run on
multiple GPU cards (modern machines can host four, or even eight, high-end GPU cards). This
optimization problem remains very open in deep learning and to the best of our knowledge there
exists only one successful approach in the literature Dean et al. (2012).

1

ar
X

iv
:1

41
2.

66
51

v5
 [

cs
.L

G
]

 2
9

A
pr

 2
01

5

Accepted as a workshop contribution at ICLR 2015

In this paper we introduce the Elastic Averaging SGD method (EASGD) and its variants. EASGD is
motivated by quadratic penalty method Nocedal & Wright (2006), but is re-interpreted as a paral-
lelized extension of the averaging SGD algorithm Polyak & Juditsky (1992). The basic idea is to let
each worker, i.e. a GPU card, maintain its own local parameter vector, and the communication and
coordination of work among the local workers is based on an elastic force which links the parameter
vectors they compute with a center variable stored by the master. The center variable is updated as
a moving average where the average is taken in time and also in space over the parameter vectors
computed by local workers. The main contribution of this paper is a new algorithm that provides fast
convergent minimization while outperforming DOWNPOUR method Dean et al. (2012) and other
baseline approaches in practice. Simultaneously it reduces the communication overhead between the
master and the local workers while at the same time it maintains high-quality performance measured
by the test error. The new algorithm applies to deep learning settings such as parallelized training of
convolutional neural networks.

The article is organized as follows. Section 2 explains the problem setting more in details. Sec-
tion 3, 4 and 5 presentes the EASGD algorithm and its variants (asynchronous variant in Section 4
and momentum-based variant in Section 5). Section 6 shows the theoretical analysis of the conver-
gence of the synchronous variant of EASGD. Section 7 provides experimental results and Section 8
concludes. The Supplement contains proofs and additional material.

2 PROBLEM SETTING

Consider minimizing a function F (x) in a parallel computing environment Bertsekas & Tsitsiklis
(1989) with p ∈ N workers (each worker uses a single GPU processor) and a master. In this paper
we focus on the stochastic optimization problem of the following form

minxF (x) := E[f(x, ξ)], (1)
where x is the model parameter to be estimated and ξ is a random disturbance that follows the prob-
ability distribution P on the sample space Ω such that F (x) =

∫
Ω
f(x, ξ)P(dξ). The optimization

problem in Equation 1 can be reformulated as follows

minxi,x̃

p∑
i=1

E[f(xi, ξi)] +
ρ

2
‖xi − x̃‖2 s.t. xi = x̃, i = 1, 2, . . . , p, (2)

where each ξi follows the same distribution P. In the paper we refer to xi’s as local variables and we
refer to x̃ as a center variable. The equivalence of both problems comes from the fact that for any
feasible solution the term added to the objective is zero. The problem in Equation 2 appears in the
literature as a global variable consensus optimization problem Boyd et al. (2011); Bertsekas & Tsit-
siklis (1989). The quadratic penalty term in Equation 2 is expected to ensure that local workers will
not fall into different local optima that are far away from the center variable. Note that we do not use
Lagrangian multipliers in the objective function1 and we focus on how fast the center variable con-
verges to the local optimum. As opposed to other methods used for solving the consensus problem,
which split the data among the workers, we assume each worker has access to the entire dataset. This
paper focuses on the problem of reducing the parameter communication overhead Shamir (2014) in
the stochastic deep learning setting Dean et al. (2012); Yadan et al. (2013); Paine et al. (2013). The
problem of data communication when the data is distributed among the workers Bekkerman et al.
(2011); Bertsekas & Tsitsiklis (1989) is a more general problem and is not addressed in this work
(we explain the details of sampling the entire dataset in parallel in Section 7). We however empha-
size that to the best of our knowledge the problem of stochastic optimization in the parallel deep
learning setting under the communication constraints was never addressed in the literature before
(and thus as well a more general problem when the data is distributed).

3 EASGD UPDATE RULE

Note that we focus on a stochastic setting as shown in Equation 2. The standard methods for solving
the consensus problem such as ADMM Boyd et al. (2011); Zhang & Kwok (2014); Wei & Ozdaglar

1It will be shown that despite not using Lagrangian multipliers the algorithm we obtain for minimizing
this objective achieves asymptotically optimal convergence rate of the center variable in a quadratic case. It is
furthermore unclear if this optimal rate could be achieved when using Lagrangians.

2

Accepted as a workshop contribution at ICLR 2015

(2012) therefore no longer apply. Let us introduce the following notation

Φ(xi, x̃) := E[f(xi, ξi)] +
ρ

2
‖xi − x̃‖2.

To obtain the EASGD algorithm we linearize Φ(xi, x̃) as follows

Lρt (x
i, x̃)=

[
〈git(xit)+ρ(xit−x̃t), xi−xit〉+

1

2η
‖xi−xit‖2

]
+

[
ρ〈x̃t−xit, x̃−x̃t〉+

1

2η
‖x̃−x̃t‖2

]
, (3)

where the first component of the summand captured in the first squared brackets in Equation 3 comes
from linearizing Φ(xi, x̃) with respect to xi and the second one comes from linearizing Φ(xi, x̃) with
respect to x̃. t is the iteration index, git(x

i
t) denotes the stochastic gradient of f with respect to xi

evaluated at iteration t, xit and x̃t denote respectively the value of variables xi and x̃ at iteration
t, and η is the learning rate. Linearization directly leads to the update rule used by the EASGD
algorithm of the following form

xit+1 = xit − η(git(x
i
t) + ρ(xit − x̃t)), (4)

x̃t+1 = x̃t + η

p∑
i=1

ρ(xit − x̃t). (5)

The above update2 can be easily implemented in the parallel computing environment with one master
and p workers where the updates performed by the workers, each one having the form captured
in Equation 4, can be carried out independently, in parallel, and the master performs the update
captured in Equation 5. Note that as opposed to stochastic ADMM Azadi & Sra (2014); Ouyang
et al. (2013) we also linearize the term ρ

2‖x
i − x̃‖2. The linearization of the penalty term leads to

the update rule for the center x̃ of the form of moving average where the average is taken over both
space and time. To see this note that if α = ηρ (in the paper we refer to α as a moving rate) then

x̃t+1 = (1− pα)x̃t + pα

(
1

p

p∑
i=1

xit

)
. (6)

The magnitude of ρ represents the amount of exploration we allow in the model. In particular,
small ρ allows for more exploration as it allows xi’s to fluctuate further from the center x̃. In the
non-convex setting, e.g. deep learning setting, due to the existence of local optima we want to
allow for more exploration (small ρ). In particular we demonstrate in the experimental section that
EASGD and its momentum-based variant allow to increase the amount of exploration by reducing
the communication between local workers and the master. Note that standard approaches in the
literature, like stochastic ADMM Azadi & Sra (2014), use the original squared penalty term (without
linearizing it) and typically explore large values of ρ to heavily push local xi’s to the center x̃
preventing exploration. This is because these approaches care how fast the local variables converge
to the local optimum. In our setting we instead focus on how fast the center variable converges.
Thus our goal is the same as for the DOWNPOUR method Dean et al. (2012). To summarize, the
distinctive feature of EASGD is that it allows the local workers for significantly more exploration as
opposed to ADMM-like methods, DOWNPOUR and many others Borkar (1998); Nedić et al. (2001);
Langford et al. (2009); Agarwal & Duchi (2011); Recht et al. (2011); Zinkevich et al. (2010).

Finally note that we use the same learning rate η when linearizing Φ(xi, x̃) with respect to xi and x̃.
This leads to a simple algorithm where there exists an elastic force equal to α(xit − x̃t) between the
update of each xit and x̃. Note that using different η’s in Equation 3 may lead to more complicated
update rules with preconditioning of the gradients of Φ(xi, x̃). This is a more complicated approach
that we do not analyze in this paper. We emphasize however that our algorithm can still achieve the
asymptotic optimal convergence rate of the center variable as will be shown in Section 6.

4 ASYNCHRONOUS EASGD

In Section 3 we showed the synchronous version of the EASGD algorithm, where the workers update
the local variables in parallel such that the ith worker reads the current value of the center variable

2In the literature the update for the master involves xit+1 instead of xit. However we obtained better experi-
mental performance in the asynchronous case when having xit in the update rule for the master.

3

Accepted as a workshop contribution at ICLR 2015

and use it to update local variable xi using Equation 4. All workers share the same global clock. The
master has to wait for the xi updates from all p workers before being allowed to update the value of
the center variable x̃ according to Equation 5.

In this section we instead show the asynchronous variant of the EASGD algorithm. The local workers
are still responsible for updating the local variables xi’s, whereas the master is updating the center
variable x̃. Since the algorithm is fully asynchronous, every worker has its own clock ti, which starts
from 0 and is incremented by 1 after each stochastic gradient update of xi as shown in Algorithm 1.
The master performs an update whenever the local workers finished τ steps of their gradient updates,
where we refer to τ as the communication period. As can be seen in Algorithm 1, whenever τ
divides the local clock of the ith worker, the ith worker communicates with the master and requests
the current value of the center variable x̃. The worker then waits until the master sends back the
requested parameter value, and computes the elastic difference α(x − x̃) (this entire procedure is
captured in step a) in Algorithm 1). The elastic difference is then sent back to the master (step b) in
Algorithm 1) who then updates x̃.

The communication period τ controls the frequency of the communication between every local
worker and the master. In this paper we are interested in reducing the communication overhead
in the parallel computing environment where the parameter vector is very large. As will be seen
in the experimental section, the EASGD algorithm and its momentum-based variant achieve good
performance with large τ (less frequent communication).

Algorithm 1: Asynchronous EASGD:
Processing by worker i and the master

Input: learning rate η, moving rate α,
communication period τ ∈ N

Initialize: x̃ is initialized randomly, xi = x̃,
ti = 0

Repeat
x← xi

if (τ divides ti) then
a) xi ← xi − α(x− x̃)
b) x̃ ← x̃ + α(x− x̃)

end
xi ← xi − ηgiti(x)
ti ← ti + 1

Until forever

Algorithm 2: Asynchronous EAMSGD:
Processing by worker i and the master

Input: learning rate η, moving rate α,
communication period τ ∈ N,
momentum term δ

Initialize: x̃ is initialized randomly, xi = x̃,
vi = 0, ti = 0

Repeat
x← xi

if (τ divides ti) then
a) xi ← xi − α(x− x̃)
b) x̃ ← x̃ + α(x− x̃)

end
vi ← δvi − ηgiti(x+ δvi)
xi ← xi + vi

ti ← ti + 1
Until forever

5 MOMENTUM EASGD

The momentum EASGD (EAMSGD) is a variant of our Algorithm 1 and is captured in Algorithm 2.
It is based on the Nesterov’s momentum scheme Nesterov (2005); Lan (2012); Sutskever et al.
(2013), where the update of the local worker of the form captured in Equation 4 is replaced by the
following update

vit+1 = δvit − ηgit(xit + δvit) (7)

xit+1 = xit + vit+1 − ηρ(xit − x̃t),

where δ is the momentum term. Note that when δ = 0 we recover the original EASGD algorithm.

6 CONVERGENCE ANALYSIS OF SYNCHRONOUS EASGD

In this section we provide the convergence analysis of the synchronous EASGD algorithm for the
quadratic case, i.e. where the function f is assumed to have a quadratic form. The style of our
analysis resembles the convergence analysis of ASGD Polyak & Juditsky (1992) and is focused on
the convergence of the center variable to the local optimum. Since, as opposed to other popular
approaches focusing on distributed optimization (e.g. Azadi & Sra (2014); Nedić et al. (2001)), we

4

Accepted as a workshop contribution at ICLR 2015

allow the workers to fluctuate further from the center performing the exploration of the space (as
we do not split the data among the workers), the form of our theoretical results is fundamentally
different from the existing guarantees for these other approaches.

Assume each of the p local workers xit ∈ Rn observes a noisy gradient at (discrete) time t ≥ 0 of
the linear form given in Equation 8.

git(x
i
t) = Axit − b− ξit, i ∈ {1, . . . , p}, (8)

where the matrix A is positive-definite (each eigenvalue is strictly positive) and {ξit}’s are i.i.d.
random variables, with zero mean and positive-definite covariance Σ. Let x∗ denote the optimum
solution, where x∗ = A−1b ∈ Rn. In this section we analyze the behavior of the mean squared
error (MSE) of the center x̃t, where this error is denoted as E[‖x̃t − x∗‖2], as a function of t, p,
η, α and β, where β = pα. Note that the MSE error can be decomposed as (squared) bias and
variance3: E[‖x̃t − x∗‖2] = ‖E[x̃t − x∗]‖2 + V[x̃t − x∗]. We first provide Lemma 6.1 and 6.2 for
one-dimensional case (n = 1), where A = h > 0 and Σ = σ2 > 0. Lemma 6.3 generalizes our
results to multidimensional case. All the proofs are deferred to the Supplementary material.
Lemma 6.1. Let x̃0, and {xi0}i=1,...,p be arbitrary constants. Then

E[x̃t − x∗] = γt(x̃0 − x∗) +
γt − φt

γ − φ
αu0, (9)

V[x̃t − x∗] =
p2α2η2

(γ − φ)2

(
γ2 − γ2t

1− γ2
+
φ2 − φ2t

1− φ2
− 2

γφ− (γφ)t

1− γφ

)
σ2

p
, (10)

where u0 =
∑p
i=1(xi0−x∗− α

1−pα−φ (x̃0−x∗)), a = ηh+(p+1)α, c2 = ηhpα, γ = 1− a−
√
a2−4c2

2 ,

and φ = 1− a+
√
a2−4c2

2 .

It follows from Equations 9 and 10 that for the MSE to converge the following condition has to hold

−1 < φ < γ < 1. (11)
Note that φ and γ are the two zero-roots of the polynomial in λ of the form: λ2 − (2− a)λ+ (1−
a+ c2). Recall that φ and λ are the functions of η and β. Thus condition in Equation 11 implies that

• γ < 1 iff c2 > 0 (i.e. η > 0 and β > 0).
• φ > −1 iff (2− ηh)(2− β) > 2β/p and (2− ηh) + (2− β) > β/p.
• φ = γ iff a2 = 4c2 (i.e. ηh = β = 0).

In particular, the necessary condition for Equation 11 to hold is that η ∈ (0, 2/h) and β ∈ (0, 2), i.e.
α ∈ (0, 2/p). For the purpose of the following analysis recall that β = pα.
Corollary 6.1. When β is fixed then the following holds

lim
p→∞

lim
t→∞

pE[(x̃t − x∗)2] =
βηh

(2− β)(2− ηh)
· 2− β − ηh+ βηh

β + ηh− βηh
· σ

2

h2
.

The crucial point of Corollary 6.1 is that the MSE in the limit t → ∞ is in the order of 1/p which
implies that as the number of processors p grows, the MSE will decrease for the EASGD algorithm.
Also note that the smaller the β is (recall that β = pα = pηρ), the more exploration is allowed
(small ρ) and simultaneously the smaller the MSE is. The next lemma (Lemma 6.2) shows that
EASGD algorithm achieves the highest possible rate of convergence when we consider the double
averaging sequence (similarly to Polyak & Juditsky (1992)) {z1, z2, . . . } defined as below

zt+1 =
1

t+ 1

t∑
k=0

x̃k. (12)

Lemma 6.2 (Weak convergence). If the condition in Equation 11 holds, then the normalized double
averaging sequence defined in Equation 12 converges weakly to the normal distribution with zero
mean and variance σ2/ph2,

√
t(zt − x∗) ⇀ N (0,

σ2

ph2
), t→∞. (13)

3In our notation, V denotes the variance.

5

Accepted as a workshop contribution at ICLR 2015

The asymptotic variance in the Lemma 6.2 is optimal with any fixed η and β for which Equation 11
holds. The next lemma (Lemma 6.3) extends the result in Lemma 6.2 to the multi-dimensional
setting.

Lemma 6.3 (Weak convergence). Let h denotes the largest eigenvalue of A. If (2− ηh)(2− β) >
2β/p, (2 − ηh) + (2 − β) > β/p, η > 0 and β > 0, then the normalized double averaging
sequence converges weakly to the normal distribution with zero mean and the covariance matrix
V = A−1Σ(A−1)T ,

√
tp(zt − x∗) ⇀ N (0, V), t→∞. (14)

As before, the asymptotic covariance in the Lemma 6.3 is optimal, i.e. meets the Fisher information
lower-bound, when the conditions of the lemma are satisfied. The fact that this asymptotic covari-
ance matrix V does not contain any term involving ρ is quite remarkable, since the penalty term ρ
does have an impact on the condition number of the Hessian in Equation 2.

7 EXPERIMENTS

In this section we compare the performance of EASGD and EAMSGD with various competitor meth-
ods listed below:

• DOWNPOUR Dean et al. (2012): the pseudo-code of the implementation of DOWNPOUR
used in this paper is enclosed in the Supplementary material.

• Momentum DOWNPOUR (MDOWNPOUR)4, where the Nesterov’s momentum scheme is
applied to the master’s update (note it is unclear how to apply it to the local workers). The
pseudo-code is in the Supplementary material.

• A method that we call ADOWNPOUR, where we compute the average over time of the
center variable x̃ as follows:

zt+1 = αt+1zt + (1− αt+1)x̃t,

and αt+1 = t
t+1 is a moving rate, and z0 = x̃. t denotes the master clock, which is

initialized to 0 and incremented every time the center variable x̃ gets updated.
• A method that we call MVADOWNPOUR, where we compute the moving average of the

center variable x̃ as follows:

zt+1 = αzt + (1− α)x̃t,

and the moving rate α was chosen to be constant, and z0 = x̃. t denotes the master clock
and is defined in the same way as for the ADOWNPOUR method.
• SGD Bottou (1998) with constant learning rate η.
• Momentum SGD (MSGD) Sutskever et al. (2013) with constant momentum term.
• ASGD Polyak & Juditsky (1992) with moving rate αt+1 = t

t+1 .
• MVASGD Polyak & Juditsky (1992) with moving rate α set to a constant.

SGD, MSGD, ASGD and MVASGD are run on a single GPU processor (p = 1). Remaining methods
are run on multiple GPU processors with different settings of p as will be shown later. We perform
experiments in a deep learning setting on two benchmark datasets: CIFAR-10 (we refer to it as
CIFAR) 5 and ImageNet ILSVRC 2013 (we refer to it as ImageNet) 6. We focus on the classification
task with deep convolutional neural networks. We next explain the experimental setup and details
regarding data sampling.

7.1 EXPERIMENTAL SETUP

For all our experiments we use 4 computing nodes interconnected with InfiniBand. Each node has
4 Titan GPU processors where each local worker corresponds to one GPU processor. The center

4It is implemented for the case when τ = 1 as it is unclear how to apply it otherwise.
5Downloaded from http://www.cs.toronto.edu/∼kriz/cifar.html.
6Downloaded from http://image-net.org/challenges/LSVRC/2013.

6

Accepted as a workshop contribution at ICLR 2015

variable of the master is stored and updated on the centralized parameter server, which keeps the
current state of center variable sharded across p CPU’s (p is the number of local workers). This
concept of a centralized sharded parameter server is identical to the common implementation of
DOWNPOUR Dean et al. (2012). All the methods we use are implemented in Torch77. The Message
Passing Interface (MPI) implementation MVAPICH28 is used for the GPU-CPU communication.

For the ImageNet experiment we use the similar approach to Sermanet et al. (2013). To be more
precise, we re-size each RGB image so that the smallest dimension is 256 pixels. We also re-scale
each pixel value to the interval [0, 1]. We then extract random crops (and their horizontal flips) of
size 3 × 221 × 221 pixels and present these to the network in mini-batches of size 128. We will
now explain the details of the network architecture. In all our experiments we use the cross-entropy
error criterion with a network having a softmax output non-linearity. All layers use rectified linear
units. To provide the details of the architecture of the network we will first introduce some notation.
Let (c, y) denotes the sizes of the input to each layer, where c is the number of color channels and y
is the horizontal and, at the same time, vertical dimension of the input (thus the input size is really
c × y × y). Let C(a, b) denotes the fully-connected convolutional layer with the filter size a × a
and stride b × b and let P (a, b) denotes the max pooling layer with the pool size a × a and stride
b × b. DO(a) is a shortcut for the fully connected layer with dropout rate equal to a and SMax
is the shortcut for the fully connected layer with softmax output non-linearity. For the ImageNet
experiment we then use the following network architecture

Input: (3,221) → C(7, 2) → (96, 108) → P (3, 3) → (96, 36) → C(5, 1) → (256, 32) →
P (2, 2) → (256, 16) → C(3, 1) → (384, 14) → C(2, 1) → (384, 13) → C(2, 1) → (256, 12) →
P (2, 2)→ (256, 6)→ DO(0.5)→ (4096, 1)→ DO(0.5)→ (4096, 1)→ SMax→ (1000, 1).

For the CIFAR experiment we use the similar approach to Wan et al. (2013). We use the original
RGB image of size 3 × 32 × 32. As before, we re-scale each pixel value to the interval [0, 1]. We
then extract random crops (and their horizontal flips) of size 3 × 28 × 28 pixels and present these
to the network in mini-batches of size 128. The network architecture that we use for the CIFAR
experiment can then be summarized as follows

Input: (3,28) → C(5, 1) → (64, 24) → P (2, 2) → (64, 12) → C(5, 1) → (128, 8) →
P (2, 2)→ (128, 4)→ C(3, 1)→ (64, 2)→ DO(0.5)→ (256, 1)→ SMax→ (10, 1).

In our experiments all the methods we run use the same initial parameter vector chosen randomly,
except that we set all the biases to zero for CIFAR case and to 0.1 for ImageNet case. This parameter
is used to initialize the master and all the local workers. We also use l2-regularization for the loss
function with the regularization parameter λ. For ImageNet we use λ = 10−5 and for CIFAR we use
λ = 10−4. We will next explain precisely how the dataset is sampled by each local worker.

7.2 SAMPLING THE DATASET BY THE LOCAL WORKERS

The general parallel data loading scheme on a single machine is as follows: we use k CPUs, where
k = 8, to load the data in parallel. Each data loader reads from the memory-mapped (mmap) file
a chunk of c raw images (preprocessing was described in the previous subsection) and their la-
bels (for CIFAR c = 512 and for ImageNet c = 64). For the CIFAR, the mmap file of each data
loader contains the entire dataset whereas for ImageNet, each mmap file of each data loader con-
tains different 1/k fractions of the entire dataset. A chunk of data is always sent by one of the
data loaders to the first worker who requests the data. The next worker requesting the data from
the same data loader will get the next chunk. Each worker requests in total k data chunks from k
different data loaders and then process them before asking for new data chunks. Notice that each
data loader cycles through the data in the mmap file, sending consecutive chunks to the workers
in order in which it receives requests from them. When the data loader reaches the end of the
mmap file, it selects the address in memory uniformly at random from the interval [0, s], where
s = (number of images in the mmap file modulo mini-batch size), and uses this address to
start cycling again through the data in the mmap file. After the local worker receives the k data
chunks from the data loaders, it shuffles them and divides it into mini-batches of size 128.

7http://torch.ch
8http://mvapich.cse.ohio-state.edu

7

http://torch.ch
http://mvapich.cse.ohio-state.edu

Accepted as a workshop contribution at ICLR 2015

7.3 EXPERIMENTAL RESULTS

For all experiments in this section we use EASGD with β = 0.99, for all momentum-based methods
we use the momentum term δ set to δ = 0.99 and finally for MVADOWNPOUR we use the moving
rate α set to α = 0.999. We start with the experiment on CIFAR dataset with p = 4 local workers
running on the one computing node. For all the methods, except MDOWNPOUR, we examined the
communication periods from the following set τ = {1, 4, 16, 64} (recall that for MDOWNPOUR τ
is equal to τ = 1). For comparison we also report the performance of MSGD which outperformed
SGD, ASGD and MVASGD as shown in Figure 6 in the Supplementary material (all figures should be
read in color). For each method we examined a wide range of learning rates (those are summarized
in Table 1 in the Supplementary material). The experiment was re-run 3 times independently and
for each method we report its best performance measured by the smallest achievable test error.

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ=1

MSGD
DOWNPOUR
ADOWNPOUR
MVADOWNPOUR
MDOWNPOUR
EASGD
EAMSGD

50 100 150

1

1.5

2

wallclock time (min)

te
st

 lo
ss

 (
n

ll)

τ=1

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

τ=1

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ=4

50 100 150

1

1.5

2

wallclock time (min)

te
st

 lo
ss

 (
n

ll)

τ=4

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

τ=4

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ=16

50 100 150

1

1.5

2

wallclock time (min)

te
st

 lo
ss

 (
n

ll)

τ=16

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

τ=16

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

τ=64

50 100 150

1

1.5

2

wallclock time (min)

te
st

 lo
ss

 (
n

ll)

τ=64

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

τ=64

Figure 1: Convergence of the training and test loss (negative log-likelihood) and the test error com-
puted for the center variable as a function of wallclock time for different values of τ on the CIFAR
experiment. p = 4.

Figure 1 captures the convergence of the training and test loss (negative log-likelihood) and the
test error10 computed for the center variable as a function of wallclock time for different values

9Intuitively one can think of the ’effective β’ as being proportional to β/τ in the asynchronous setting. Also
recall that β = pα.

10The training and test loss and the test error are computed from the center patch 28 × 28 for the CIFAR
experiment and the center patch 221 × 221 for the ImageNet experiment. For the ImageNet experiment, the
training loss is measured on a fixed subset of the training data of size 50,000.

8

Accepted as a workshop contribution at ICLR 2015

of τ . We conclude that all DOWNPOUR-based methods, i.e. DOWNPOUR, ADOWNPOUR,
MVADOWNPOUR and MDOWNPOUR, achieve their best performance (test error) for small τ (τ ∈
{1, 4}). Also DOWNPOUR and ADOWNPOUR become highly instable for τ ∈ {16, 64} whereas
in this case MVADOWNPOUR has stable but very slow convergence. Simultaneously, EAMSGD
significantly outperforms comparator methods for all values of τ by having faster convergence.
It also finds better-quality solution measured by the test error and this advantage becomes more
significant for τ ∈ {16, 64}. For τ = 1 and τ = 4 we observe a pronounced overfitting effect for
the EAMSGD method. We conjecture that these values of τ are too small to allow local workers
to perform exploration which hurts the test performance of the algorithm. Note that the tendency
to achieve worst test performance with smaller τ is also characteristic for the EASGD algorithm
which simultaneously outperforms all DOWNPOUR-based methods for higher values of τ (τ ∈
{16, 64}).

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

p=4

MSGD
DOWNPOUR
MDOWNPOUR
EASGD
EAMSGD

50 100 150

1

1.5

2

wallclock time (min)

te
st

 lo
ss

 (
n

ll)

p=4

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

p=4

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

p=8

50 100 150

1

1.5

2

wallclock time (min)

te
st

 lo
ss

 (
n

ll)

p=8

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

p=8

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

p=16

50 100 150

1

1.5

2

wallclock time (min)

te
st

 lo
ss

 (
n

ll)

p=16

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

p=16

Figure 2: Convergence of the training and test loss (negative log-likelihood) and the test error com-
puted for the center variable as a function of wallclock time for different values of p on the CIFAR.

We next explore different number of local workers p from the set p = {4, 8, 16} for the CIFAR ex-
periment, and p = {4, 8} for the ImageNet experiment. The CIFAR experiment was again re-run 3
times independently whereas for the ImageNet experiment we report the results of one run. We com-
pared EASGD, EAMSGD, DOWNPOUR and MDOWNPOUR methods for the CIFAR experiment,
and we compared EASGD, EAMSGD and DOWNPOUR methods for the ImageNet experiment. We
also show the best performer MSGD from among the following methods: SGD, MSGD, ASGD and
MVASGD (see Figure 6 and Figure 7 in the Supplementary material). EASGD and EAMSGD were
run with τ = 10 whereas DOWNPOUR and MDOWNPOUR were run with τ = 1. Table 2 and 3 in
the Supplementary material summarizes the learning rates explored for respectively the CIFAR and
ImageNet experiments. For the ImageNet experiment we used the rule of the thumb to decrease the
initial learning rate twice, first time we divided it by 5 and the second time by 2, when we observed
that the decrease of the training loss saturates.

Figure 2 captures the convergence of the training and test loss and the test error computed for the
center variable as a function of wallclock time for different values of p on the CIFAR experiment.
Analogous results are captured in Figure 3 for the ImageNet experiment. From the CIFAR ex-
periment we conclude that EASGD converges faster than DOWNPOUR and MDOWNPOUR while
EAMSGD significantly outperforms competitor methods for p = 8 and p = 16. Also the lowest

9

Accepted as a workshop contribution at ICLR 2015

achievable test error by either EASGD or EAMSGD decreases with larger p which again can po-
tentially be explained by the fact that larger p allows for more exploration of the parameter space.
The results obtained for the ImageNet experiment again shows the advantage of EAMSGD over the
competitor methods. To make sense of the wallclock time, we report in the Table 4 of Supplemen-
tary material its breakdown into computation time, data loading time and parameter communication
time. We also summarize in the Supplementary material (Figure 8 and 9) the wall clock time needed
to achieve the same level of the test error for all the methods.

0 50 100 150
1

2

3

4

5

6

wallclock time (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

p=4

MSGD
DOWNPOUR
EASGD
EAMSGD

0 50 100 150
2

3

4

5

6

wallclock time (hour)
te

st
 lo

ss
 (

n
ll)

p=4

0 50 100 150
42

44

46

48

50

52

54

wallclock time (hour)

te
st

 e
rr

o
r

(%
)

p=4

0 50 100 150

1

2

3

4

5

6

wallclock time (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

p=8

0 50 100 150
2

3

4

5

6

wallclock time (hour)

te
st

 lo
ss

 (
n

ll)

p=8

0 50 100 150
42

44

46

48

50

52

54

wallclock time (hour)

te
st

 e
rr

o
r

(%
)

p=8

Figure 3: Convergence of the training and test loss (negative log-likelihood) and the test error com-
puted for the center variable as a function of wallclock time for different values of p on the ImageNet.

The results showed so far suggest that more exploration lead to better test performance. It should
be remembered however that there exists a trade-off between exploration and exploitation. Figure 4
shows this trade-off. We compare the performance of respectively EAMSGD and EASGD for differ-
ent learning rates η when p = 16 and τ = 10. We observe from Figure 4 that higher learning rates η
lead to better test performance for the EAMSGD algorithm which potentially can be justified by the
fact that they sustain higher fluctuations of the local workers. We conjecture that higher fluctuations
lead to more exploration and simultaneously they also impose higher regularization. This picture
however seems to be opposite for the EASGD algorithm for which larger learning rates hurt the
performance of the method and lead to overfitting. Interestingly in this experiment for both EASGD
and EAMSGD algorithm, the learning rate for which the worst training performance was achieved
simultaneously led to the best test performance.

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

EAMSGD

0.01
0.005
0.001

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

EAMSGD

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

EASGD

0.05
0.01
0.005

50 100 150
16

18

20

22

24

26

28

wallclock time (min)

te
st

 e
rr

o
r

(%
)

EASGD

Figure 4: Convergence of the training loss (negative log-likelihood) and the test error computed
for the center variable as a function of wallclock time for EAMSGD and EASGD run with different
values of η on the CIFAR experiment. p = 16, τ = 10.

8 CONCLUSION

In this paper we describe a new algorithm called EASGD and its variants for training deep neural
networks in the stochastic setting when the computations are parallelized over multiple GPUs. Ex-
periments demonstrate that this new algorithm quickly achieves improvement in test error compared
to more common baseline approaches such as DOWNPOUR and its variants. We show that our
approach is plausible under communication constraints. The different behavior of the EASGD algo-

10

Accepted as a workshop contribution at ICLR 2015

rithm from its momentum-based variant EAMSGD is intriguing and will be a subject of our future
studies.

ACKNOWLEDGMENTS

The authors thank R. Power, J. Bruna and O. Henaff and the referees for valuable feedback.

REFERENCES

Agarwal, A. and Duchi, J. Distributed delayed stochastic optimization. In NIPS. 2011.

Azadi, S. and Sra, S. Towards an optimal stochastic alternating direction method of multipliers. In
ICML, 2014.

Bekkerman, R., Bilenko, M., and Langford, J. Scaling up machine learning: Parallel and distributed
approaches. Camridge Universityy Press, 2011.

Bertsekas, D. P. and Tsitsiklis, J. N. Parallel and Distributed Computation. Prentice Hall, 1989.

Borkar, V. Asynchronous stochastic approximations. SIAM Journal on Control and Optimization,
36(3):840–851, 1998.

Bottou, L. Online algorithms and stochastic approximations. In Online Learning and Neural Net-
works. Cambridge University Press, 1998.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. Distributed optimization and statistical
learning via the alternating direction method of multipliers. Found. Trends Mach. Learn., 3(1):
1–122, 2011.

Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Le, Q., Mao, M., Ranzato, M., Senior, A.,
Tucker, P., Yang, K., and Ng, A. Large scale distributed deep networks. In NIPS. 2012.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems 25, pp. 1106–1114,
2012.

Lan, G. An optimal method for stochastic composite optimization. Mathematical Programming,
133(1-2):365–397, 2012.

Langford, J., Smola, A., and Zinkevich, M. Slow learners are fast. In NIPS, 2009.

Nedić, A., Bertsekas, D.P., and Borkar, V.S. Distributed asynchronous incremental subgradient
methods. In Inherently Parallel Algorithms in Feasibility and Optimization and their Applications,
volume 8 of Studies in Computational Mathematics, pp. 381 – 407. 2001.

Nesterov, Y. Smooth minimization of non-smooth functions. Math. Program., 103(1):127–152,
2005.

Nocedal, J. and Wright, S.J. Numerical optimization, second edition. Numerical optimization, pp.
497–528, 2006.

Ouyang, Hua, He, Niao, Tran, Long, and Gray, Alexander. Stochastic alternating direction method
of multipliers. In Proceedings of the 30th International Conference on Machine Learning, pp.
80–88, 2013.

Paine, T., Jin, H., Yang, J., Lin, Z., and Huang, T. Gpu asynchronous stochastic gradient descent to
speed up neural network training. In Arxiv. 2013.

Polyak, B. T. and Juditsky, A. B. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30(4):838–855, 1992.

Recht, B., Re, C., Wright, S. J., and Niu, F. Hogwild: A Lock-Free Approach to Parallelizing
Stochastic Gradient Descent. In NIPS, 2011.

11

Accepted as a workshop contribution at ICLR 2015

Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus, R., and LeCun, Y. OverFeat: Integrated
Recognition, Localization and Detection using Convolutional Networks. ArXiv, 2013.

Shamir, O. Fundamental limits of online and distributed algorithms for statistical learning and
estimation. In NIPS. 2014.

Sutskever, I., Martens, J., Dahl, G., and Hinton, G. On the importance of initialization and momen-
tum in deep learning. In ICML, 2013.

Wan, L., Zeiler, M. D., Zhang, S., LeCun, Y., and Fergus, R. Regularization of neural networks
using dropconnect. In ICML, 2013.

Wei, Ermin and Ozdaglar, Asuman. Distributed alternating direction method of multipliers. In
Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, pp. 5445–5450. IEEE,
2012.

Yadan, O., Adams, K., Taigman, Y., and Ranzato, MA. Multi-gpu training of convnets. In Arxiv.
2013.

Zhang, R. and Kwok, J. Asynchronous distributed admm for consensus optimization. In ICML,
2014.

Zinkevich, M., Weimer, M., Smola, A., and Li, L. Parallelized stochastic gradient descent. In NIPS,
2010.

12

Accepted as a workshop contribution at ICLR 2015

Deep learning with Elastic Averaging SGD
(Supplementary Material)

9 THEORETICAL PROOFS

9.1 PROOF OF LEMMA 6.1

Proof. Substituting the gradient from Equation 8 into the update rule used by each local worker in
the synchronous EASGD algorithm (Equation 4) we obtain

xit+1 = xit − η(Axit − b− ξit)− α(xit − x̃t), (15)

x̃t+1 = x̃t +

p∑
i=1

α(xit − x̃t), (16)

where η is the learning rate, and α is the moving rate. Recall that α = ηρ and A = h.

For the ease of notation we redefine x̃t and xit as follows:

x̃t , x̃t − x∗ and xit , xit − x∗.
We prove the lemma by explicitly solving the linear equations 15 and 16. Let xt =
(x1
t , . . . , x

p
t , x̃t)

T . We rewrite the recursive relation captured in Equation 15 and 16 as simply

xt+1 = Mxt + bt,

where the drift matrix M is defined as

M =


1− α− ηh 0 ... 0 α

0 1− α− ηh 0 ... α
... 0 ... 0 ...
0 ... 0 1− α− ηh α
α α ... α 1− pα

 ,
and the (diffusion) vector bt = (ηξ1

t , . . . , ηξ
p
t , 0)T .

Note that one of the eigenvalues of matrixM , that we call φ, satisfies (1−α−ηh−φ)(1−pα−φ) =
pα2. The corresponding eigenvector is (1, 1, . . . , 1,− pα

1−pα−φ)T . Let ut be the projection of xt onto
this eigenvector. Thus ut =

∑p
i=1(xit − α

1−pα−φ x̃t). Let furthermore ξt =
∑p
i=1 ξ

i
t . Therefore we

have

ut+1 = φut + ηξt. (17)

By combining Equation 16 and 17 as follows

x̃t+1 = x̃t +

p∑
i=1

α(xit − x̃t) = (1− pα)x̃t + α(ut +
pα

1− pα− φ
x̃t)

= (1− pα+
pα2

1− pα− φ
)x̃t + αut = γx̃t + αut,

where the last step results from the following relations: pα2

1−pα−φ = 1 − α − ηh − φ and φ + γ =

1− α− ηh+ 1− pα. Thus we obtained

x̃t+1 = γx̃t + αut. (18)

Based on Equation 17 and 18, we can then expand ut and x̃t recursively,

ut+1 = φt+1u0 + φt(ηξ0) + . . .+ φ0(ηξt), (19)

x̃t+1 = γt+1x̃0 + γt(αu0) + . . .+ γ0(αut). (20)

13

Accepted as a workshop contribution at ICLR 2015

Substituting u0, u1, . . . , ut, each given through Equation 19, into Equation 20 we obtain

x̃t = γtx̃0 +
γt − φt

γ − φ
αu0 + αη

t−1∑
l=1

γt−l − φt−l

γ − φ
ξl−1. (21)

To be more specific, the Equation 21 is obtained by integrating by parts,

x̃t+1 = γt+1x̃0 +

t∑
i=0

γt−i(αui)

= γt+1x̃0 +

t∑
i=0

γt−i(α(φiu0 +

i−1∑
l=0

φi−1−lηξl))

= γt+1x̃0 +

t∑
i=0

γt−iφi(αu0) +

t−1∑
l=0

t∑
i=l+1

γt−iφi−1−l(αηξl)

= γt+1x̃0 +
γt+1 − φt+1

γ − φ
(αu0) +

t−1∑
l=0

γt−l − φt−l

γ − φ
(αηξl).

Since the random variables ξl are i.i.d, we may sum the variance term by term as follows
t−1∑
l=0

(
γt−l − φt−l

γ − φ

)2

=

t−1∑
l=0

γ2(t−l) − 2γt−lφt−l + φ2(t−l)

(γ − φ)2

=
1

(γ − φ)2

(
γ2 − γ2(t+1)

1− γ2
− 2

γφ− (γφ)t+1

1− γφ
+
φ2 − φ2(t+1)

1− φ2

)
. (22)

Note that E[ξt] =
∑p
i=1 E[ξit] = 0 and V[ξt] =

∑p
i=1 V[ξit] = pσ2. These two facts, the equality in

Equation 21 and Equation 22 can then be used to compute E[x̃t] and V[x̃t] as given in Equation 9
and 10 in Lemma 6.1.

9.2 PROOF OF COROLLARY 6.1

Proof. Note that when β is fixed, limp→∞ a = ηh+ β and c2 = ηhβ. Then limp→∞ φ = min(1−
β, 1− ηh) and limp→∞ γ = max(1− β, 1− ηh). Also note that using Lemma 6.1 we obtain

lim
t→∞

Ex̃2
t =

β2η2

(γ − φ)2

(
γ2

1− γ2
+

φ2

1− φ2
− 2γφ

1− γφ

)
σ2

p

=
β2η2

(γ − φ)2

(
γ2(1− φ2)(1− φγ) + φ2(1− γ2)(1− φγ)− 2γφ(1− γ2)(1− φ2)

(1− γ2)(1− φ2)(1− γφ)

)
σ2

p

=
β2η2

(γ − φ)2

(
(γ − φ)2(1 + γφ)

(1− γ2)(1− φ2)(1− γφ)

)
σ2

p

=
β2η2

(1− γ2)(1− φ2)
· 1 + γφ

1− γφ
· σ

2

p
.

Corollary 6.1 is obtained by plugining in the limiting values of φ and γ.

9.3 VISUALIZING THE LEMMA 6.1

In Figure 5, we illustrate the dependence of MSE on β, η and the number of processors p over
time t. We consider the large-noise setting where x̃0 = xi0 = 1, h = 1 and σ = 10. The MSE
error is color-coded such that the deep blue color corresponds to the MSE equal to 10−3, the green
color corresponds to the MSE equal to 1, the red color corresponds to MSE equal to 103 and the
dark red color corresponds to the divergence of algorithm EASGD (condition in Equation 11 is
then violated). The plot shows that we can achieve more significant variance reduction effect by
increasing the number of local workers p.

14

Accepted as a workshop contribution at ICLR 2015

eta

b
e

ta

t=1,p=1

0 1 2
0

1

2

eta

b
e

ta

t=1,p=10

0 1 2
0

1

2

eta

b
e

ta

t=1,p=100

0 1 2
0

1

2

eta

b
e

ta

t=1,p=1000

0 1 2
0

1

2

eta

b
e

ta

t=1,p=10000

0 1 2
0

1

2

eta

b
e

ta

t=2,p=1

0 1 2
0

1

2

eta
b

e
ta

t=2,p=10

0 1 2
0

1

2

eta

b
e

ta

t=2,p=100

0 1 2
0

1

2

eta

b
e

ta

t=2,p=1000

0 1 2
0

1

2

eta

b
e

ta

t=2,p=10000

0 1 2
0

1

2

eta

b
e

ta

t=10,p=1

0 1 2
0

1

2

eta

b
e

ta

t=10,p=10

0 1 2
0

1

2

eta

b
e

ta

t=10,p=100

0 1 2
0

1

2

eta

b
e

ta

t=10,p=1000

0 1 2
0

1

2

eta

b
e

ta

t=10,p=10000

0 1 2
0

1

2

eta

b
e

ta

t=100,p=1

0 1 2
0

1

2

eta

b
e

ta

t=100,p=10

0 1 2
0

1

2

eta

b
e

ta

t=100,p=100

0 1 2
0

1

2

eta

b
e

ta

t=100,p=1000

0 1 2
0

1

2

eta

b
e

ta

t=100,p=10000

0 1 2
0

1

2

eta

b
e

ta

t=inf,p=1

0 1 2
0

1

2

eta

b
e

ta

t=inf,p=10

0 1 2
0

1

2

eta

b
e

ta

t=inf,p=100

0 1 2
0

1

2

eta

b
e

ta

t=inf,p=1000

0 1 2
0

1

2

eta

b
e

ta

t=inf,p=10000

0 1 2
0

1

2

Figure 5: Theoretical mean squared error (MSE) of the center x̃ in the quadratic case, with various
choices of the learning rate η (horizontal within each block), and the moving rate β = pα (vertical
within each block), the number of processors p = {1, 10, 100, 1000, 10000} (vertical across blocks),
and the time steps t = {1, 2, 10, 100,∞} (horizontal across blocks). The MSE is plotted in log scale,
ranging from 10−3 to 103 (from deep blue to red). The dark red (i.e. on the upper-right corners)
indicates divergence.

9.4 PROOF OF LEMMA 6.2

Proof. As in the proof of Lemma 6.1, for the ease of notation we redefine x̃t and xit as follows:

x̃t , x̃t − x∗ and xit , xit − x∗.
Also recall that {ξit}’s are i.i.d. random variables (noise) with zero mean and the same covariance
Σ � 0. We are interested in the asymptotic behavior of the double averaging sequence {z1, z2, . . . }
defined as

zt+1 =
1

t+ 1

t∑
k=0

x̃k. (23)

Recall the Equation 21 from the proof of Lemma 6.1 (for the convenience it is provided below):

x̃k = γkx̃0 + αu0
γk − φk

γ − φ
+ αη

k−1∑
l=1

γk−l − φk−l

γ − φ
ξl−1,

where ξt =
∑p
i=1 ξ

i
t . Therefore

t∑
k=0

x̃k =
1− γt+1

1− γ
x̃0 + αu0

1

γ − µ

(
1− γt+1

1− γ
− 1− φt+1

1− φ

)
+ αη

t−1∑
l=1

t∑
k=l+1

γk−l − φk−l

γ − φ
ξl−1

= O(1) + αη

t−1∑
l=1

1

γ − φ

(
γ

1− γt−l

1− γ
− φ1− φt−l

1− φ

)
ξl−1

15

Accepted as a workshop contribution at ICLR 2015

Note that the only non-vanishing term (in weak convergence) of 1/
√
t
∑t
k=0 x̃k as t→∞ is

1√
t
αη

t−1∑
l=1

1

γ − φ

(
γ

1− γ
− φ

1− φ

)
ξl−1. (24)

Also recall that V[ξl−1] = pσ2 and

1

γ − φ

(
γ

1− γ
− φ

1− φ

)
=

1

(1− γ)(1− φ)
=

1

ηhpα
.

Therefore the expression in Equation 24 is asymptotically normal with zero mean and variance
σ2/ph2.

9.5 PROOF OF LEMMA 6.3

Proof. SinceA is symmetric, one can use the proof technique of Lemma 6.2 to prove Lemma 6.3 by
diagonalizing the matrix A. We will not go into the details of this proof as we will provide a more
general way to look at the system. As in the proof of Lemma 6.1 and Lemma 6.2, for the ease of
notation we redefine x̃t and xit as follows:

x̃t , x̃t − x∗ and xit , xit − x∗.

Let the spatial average of the local parameters at time t be denoted as yt where yt = 1
p

∑p
i=1 x

i
t,

and let the average noise be denoted as ξt, where ξt = 1
p

∑p
i=1 ξ

i
t . Equations 15 and 16 can then be

reduced to the following

yt+1 = yt − η(Ayt − ξt) + α(x̃t − yt), (25)
x̃t+1 = x̃t + β(yt − x̃t). (26)

We focus on the case where the learning rate η and the moving rate α are kept constant over time.
Recall β = pα and α = ηρ11

Let’s introduce the block notation Ut = (yt, x̃t), Ξt = (ηξt, 0), M = I − ηL and

L =

(
A+ α

η I −αη I
−βη I

β
η I

)
.

From Equations 25 and 26 it follows that Ut+1 = MUt + Ξt. Note that this linear system has a
degenerate noise Ξt which prevents us from directly applying results of Polyak & Juditsky (1992).
Expanding this recursive relation and summing by parts, we have

t∑
k=0

Uk = M0U0 +

M1U0 +M0Ξ0 +

M2U0 +M1Ξ0 +M0Ξ1 +

...

M tU0 +M t−1Ξ0 + · · ·+M0Ξt−1.

By Lemma 9.1, ‖M‖2 < 1 and thus

M0 +M1 + · · ·+M t + · · · = (I −M)−1 = η−1L−1.

11As a side note, notice that the center parameter x̃t is tracking the spatial average yt of the local parameters
with a non-symmetric spring. To be more precise note that the update on yt+1 contains (x̃t − yt) scaled by α,
whereas the update on x̃t+1 contains −(x̃t − yt) scaled by β. Since α = β/p the impact of the center x̃t+1 on
the spatial local average yt+1 becomes more negligible as p grows.

16

Accepted as a workshop contribution at ICLR 2015

Since A is invertible, we get

L−1 =

(
A−1 α

βA
−1

A−1 η
β + α

βA
−1

)
,

thus

1√
t

t∑
k=0

Uk =
1√
t
U0 +

1√
t
ηL−1

t∑
k=1

Ξk−1 −
1√
t

t∑
k=1

Mk+1Ξk−1.

Note that the only non-vanishing term (in weak convergence) of 1√
t

∑t
k=0 Uk is

1√
t
(ηL)−1

∑t
k=1 Ξk−1 thus we have

1√
t
(ηL)−1

t∑
k=1

Ξk−1 ⇀ N
((

0
0

)
,

(
V V
V V

))
, (27)

where V = A−1Σ(A−1)T .

Lemma 9.1. If the following conditions hold:

(2− ηh)(2− pα) > 2α

(2− ηh) + (2− pα) > α

η > 0

α > 0

then ‖M‖2 < 1.

Proof. The eigenvalue λ of M and the (non-zero) eigenvector (y, z) of M satisfy

M

(
y
z

)
= λ

(
y
z

)
. (28)

Recall that

M = I − ηL =

(
I − ηA− αI αI

βI I − βI

)
. (29)

From the Equations 28 and 29 we obtain{
y − ηAy − αy + αz = λy
βy + (1− β)z = λz

. (30)

Since y and z are assumed to be non-zero, we can write z = βy/(λ+ β− 1). Then the Equation 30
can be reduced to

ηAy = (1− α− λ)y +
αβ

λ+ β − 1
y. (31)

Thus note that y is the eigenvector of A as well. Let λA be the eigenvalue of matrix A such that
Ay = λAy. Thus based on Equation 31 it follows that

ηλA = (1− α− λ) +
αβ

λ+ β − 1
. (32)

Equation 32 is equivalent to

λ2 − (2− a)λ+ (1− a+ c2) = 0, (33)

where a = ηλA + (p + 1)α, c2 = ηλApα. It follows from the condition in Equation 11 that
−1 < λ < 1 iff η > 0, β > 0, (2 − ηλA)(2 − β) > 2β/p and (2 − ηλA) + (2 − β) > β/p.
Let h denote the maximum eigenvalue of A and note that 2− ηλA ≥ 2− ηh. This implies that the
condition of our lemma is sufficient.

17

Accepted as a workshop contribution at ICLR 2015

9.6 CONDITION IN EQUATION 11

We are going to show that

• γ < 1 iff c2 > 0 (i.e. η > 0 and β > 0).
• φ > −1 iff (2− ηh)(2− β) > 2β/p and (2− ηh) + (2− β) > β/p.
• φ = γ iff a2 = 4c2 (i.e. ηh = β = 0).

Recall that a = ηh+ (p+ 1)α, c2 = ηhpα, γ = 1− a−
√
a2−4c2

2 , φ = 1− a+
√
a2−4c2

2 , and β = pα.
We have

• γ < 1⇔ a−
√
a2−4c2

2 > 0⇔ a >
√
a2 − 4c2 ⇔ a2 > a2 − 4c2 ⇔ c2 > 0.

• φ > −1⇔ 2 > a+
√
a2−4c2

2 ⇔ 4− a >
√
a2 − 4c2 ⇔ 4− a > 0, (4− a)2 > a2 − 4c2 ⇔

4− a > 0, 4− 2a+ c2 > 0⇔ 4 > ηh+ β + α, 4− 2(ηh+ β + α) + ηhβ > 0.

• φ = γ ⇔
√
a2 − 4c2 = 0⇔ a2 = 4c2.

10 ADDITIONAL PSEUDO-CODES OF THE ALGORITHMS

10.1 DOWNPOUR PSEUDO-CODE

Algorithm 3 captures the pseudo-code of the implementation of the DOWNPOUR used in this paper.

Algorithm 3: DOWNPOUR: Processing by worker i and the master

Input: learning rate η, communication period τ ∈ N
Initialize: x̃ is initialized randomly, xi = x̃, vi = 0, ti = 0
Repeat

if (τ divides ti) then
x̃ ← x̃ + vi

xi ← x̃
vi ← 0

end
xi ← xi − ηgiti(x

i)
vi ← vi − ηgiti(x

i)
ti ← ti + 1

Until forever

10.2 MDOWNPOUR PSEUDO-CODE

Algorithms 4 and 5 capture the pseudo-codes of the implementation of momentum DOWNPOUR
(MDOWNPOUR) used in this paper. Algorithm 4 shows the behavior of each local worker and
Algorithm 5 shows the behavior of the master.

Algorithm 4: MDOWNPOUR: Processing by worker i

Initialize: xi = x̃
Repeat

Receive x̃ from the master: xi ← x̃
Compute gradient gi = gi(xi)
Send gi to the master

Until forever

18

Accepted as a workshop contribution at ICLR 2015

Algorithm 5: MDOWNPOUR: Processing by the master

Input: learning rate η, momentum term δ
Initialize: x̃ is initialized randomly, vi = 0,
Repeat

Receive gi
v ← δv − ηgi
x̃← x̃+ δv

Until forever

11 EXPERIMENTS - ADDITIONAL MATERIAL

11.1 LEARNING RATES

In Table 1 we summarize the learning rates η explored for each method shown in Figure 1. For all
values of τ the same set of learning rates was explored for each method.

Table 1: Learning rates explored for each method shown in Figure 1 (CIFAR experiment).

η
EASGD {0.05, 0.01, 0.005}

EAMSGD {0.01, 0.005, 0.001}
DOWNPOUR

ADOWNPOUR {0.005, 0.001, 0.0005}
MVADOWNPOUR

MDOWNPOUR {0.00005, 0.00001, 0.000005}
SGD, ASGD, MVASGD {0.05, 0.01, 0.005}

MSGD {0.001, 0.0005, 0.0001}

In Table 2 we summarize the learning rates η explored for each method shown in Figure 2. For all
values of p the same set of learning rates was explored for each method.

Table 2: Learning rates explored for each method shown in Figure 2 (CIFAR experiment).

η
EASGD {0.05, 0.01, 0.005}

EAMSGD {0.01, 0.005, 0.001}
DOWNPOUR {0.005, 0.001, 0.0005}

MDOWNPOUR {0.00005, 0.00001, 0.000005}
SGD, ASGD, MVASGD {0.05, 0.01, 0.005}

MSGD {0.001, 0.0005, 0.0001}

In Table 3 we summarize the initial learning rates η we use for each method shown in Figure 3. For
all values of p the same set of learning rates was explored for each method.

19

Accepted as a workshop contribution at ICLR 2015

Table 3: Learning rates explored for each method shown in Figure 3 (ImageNet experiment).

η
EASGD 0.1

EAMSGD 0.001
DOWNPOUR for p = 4: 0.02

for p = 8: 0.01

SGD, ASGD, MVASGD 0.05
MSGD 0.0005

11.2 COMPARISON OF SGD, ASGD, MVASGD AND MSGD

For all CIFAR experiments we always start the averaging for the ADOWNPOUR and ASGD
methods from the very beginning of each experiment. For all ImageNet experiments we start the
averaging for the ASGD at the same time when we first reduce the initial learning rate.

Figure 6 shows the convergence of the training and test loss (negative log-likelihood) and the test
error computed for the center variable as a function of wallclock time for SGD, ASGD, MVASGD
and MSGD (p = 1) on the CIFAR experiment.

50 100 150

0.5

1

1.5

2

wallclock time (min)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

SGD
ASGD
MVASGD
MSGD

50 100 150

1

1.5

2

wallclock time (min)

te
st

 lo
ss

 (
n

ll)

50 100 150
20

30

40

50

60

70

80

90

wallclock time (min)

te
st

 e
rr

o
r

(%
)

50 100 150
17

18

19

20

21

22

wallclock time (min)

te
st

 e
rr

o
r

(%
)

Figure 6: Convergence of the training and test loss (negative log-likelihood) and the test error (orig-
inal and zoomed) computed for the center variable as a function of wallclock time for SGD, ASGD,
MVASGD and MSGD (p = 1) on the CIFAR experiment.

Figure 7 shows the convergence of the training and test loss (negative log-likelihood) and the test
error computed for the center variable as a function of wallclock time for SGD, ASGD, MVASGD
and MSGD (p = 1) on the ImageNet experiment.

0 50 100 150

2

3

4

5

6

wallclock time (hour)

tr
ai

n
in

g
 lo

ss
 (

n
ll)

SGD
ASGD
MVASGD
MSGD

0 50 100 150

3

4

5

6

wallclock time (hour)

te
st

 lo
ss

 (
n

ll)

0 50 100 150

50

60

70

80

90

wallclock time (hour)

te
st

 e
rr

o
r

(%
)

0 50 100 150
42

44

46

48

50

52

54

wallclock time (hour)

te
st

 e
rr

o
r

(%
)

Figure 7: Convergence of the training and test loss (negative log-likelihood) and the test error (orig-
inal and zoomed) computed for the center variable as a function of wallclock time for SGD, ASGD,
MVASGD and MSGD (p = 1) on the ImageNet experiment.

11.3 BREAKDOWN OF THE WALLCLOCK TIME

In addition, we report in the Table 4 the breakdown of the total running time for EASGD when
τ = 10 (the time breakdown for EAMSGD is almost identical) and DOWNPOUR when τ = 1 into
computation time, data loading time and parameter communication time. For the CIFAR experiment
the reported time corresponds to processing 400 × 128 data samples whereas for the ImageNet
experiment it corresponds to processing 1024 × 128 data samples. For τ = 1 and p ∈ {8, 16}
we observe that the communication time accounts for significant portion of the total running time
whereas for τ = 10 the communication time becomes negligible compared to the total running time
(recall that based on previous results EASGD and EAMSGD achieve best performance with larger
tau which is ideal in the setting when communication is time-consuming).

20

Accepted as a workshop contribution at ICLR 2015

p = 1 p = 4 p = 8 p = 16
τ = 1 12/1/0 11/2/3 11/2/5 11/2/9

τ = 10 NA 11/2/1 11/2/1 12/2/1

p = 1 p = 4 p = 8
τ = 1 1248/20/0 1323/24/173 1239/61/284

τ = 10 NA 1254/58/7 1266/84/11

Table 4: Approximate computation time, data loading time and parameter communication time [sec]
for DOWNPOUR (top line for τ = 1) and EASGD (the time breakdown for EAMSGD is almost
identical) (bottom line for τ = 10). Left time corresponds to CIFAR experiment and right table
corresponds to ImageNet experiment.

11.4 TIME SPEED-UP

In the next two figures (Figure 8 and 9) the wall clock time needed to achieve the same level of
the test error for all the methods (EASGD, EAMSGD, DOWNPOUR and respectively MSGD and
MDOWNPOUR for the CIFAR experiment and MSGD for the ImageNet experiment as a function
of the number of local workers p. For the CIFAR (Figure 8) we examined the following levels:
{21%, 20%, 19%, 18%} and for the ImageNet (Figure 9) we examined: {49%, 47%, 45%, 43%}. If
some method does not appear on the figure for a given test error level, it indicates that this method
never achieved this level. For the CIFAR experiment we observe that from among EASGD, DOWN-
POUR and MDOWNPOUR methods, the EASGD method needs less time to achieve a particular
level of test error. We observe that with higher p each of these methods does not necessarily need
less time to achieve the same level of test error. This seems counter intuitive though recall that
the learning rate for the methods is selected based on the smallest achievable test error. For larger
p smaller learning rates were selected than for smaller p which explains our results. Meanwhile,
the EAMSGD method achieves significant speed-up over other methods for all the test error levels.
For the ImageNet experiment we observe that all methods outperform MSGD and furthermore with
p = 4 or p = 8 each of these methods requires less time to achieve the same level of test error.
The EAMSGD consistently needs less time than any other method, in particular DOWNPOUR, to
achieve any of the test error levels.

 1 4 8 16
0

50

100

150

p

w
al

lc
lo

ck
 t

im
e

(m
in

)

level 21%

MSGD
EAMSGD
EASGD
DOWNPOUR
MDOWNPOUR

 1 4 8 16
0

50

100

150

level 20%

p

w
al

lc
lo

ck
 t

im
e

(m
in

)

 1 4 8 16
0

50

100

150

level 19%

p

w
al

lc
lo

ck
 t

im
e

(m
in

)

 1 4 8 16
0

50

100

150

level 18%

p

w
al

lc
lo

ck
 t

im
e

(m
in

)

Figure 8: The wall clock time needed to achieve the same level of the test error thr as a func-
tion of the number of local workers p on the CIFAR experiment. From left to right: thr =
{21%, 20%, 19%, 18%}.

.

1 4 8
0

50

100

150

p

w
al

lc
lo

ck
 t

im
e

(h
o

u
r)

level 49%

MSGD
EAMSGD
EASGD
DOWNPOUR

1 4 8
0

50

100

150

level 47%

p

w
al

lc
lo

ck
 t

im
e

(h
o

u
r)

1 4 8
0

50

100

150

level 45%

p

w
al

lc
lo

ck
 t

im
e

(h
o

u
r)

1 4 8
0

50

100

150

level 43%

p

w
al

lc
lo

ck
 t

im
e

(h
o

u
r)

Figure 9: The wall clock time needed to achieve the same level of the test error thr as a func-
tion of the number of local workers p on the ImageNet experiment. From left to right: thr =
{49%, 47%, 45%, 43%}.

.

21

	1 Introduction
	2 Problem setting
	3 EASGD update rule
	4 Asynchronous EASGD
	5 Momentum EASGD
	6 Convergence analysis of synchronous EASGD
	7 Experiments
	7.1 Experimental setup
	7.2 Sampling the dataset by the local workers
	7.3 Experimental results

	8 Conclusion
	9 Theoretical proofs
	9.1 Proof of Lemma ??
	9.2 Proof of Corollary ??
	9.3 Visualizing the Lemma ??
	9.4 Proof of Lemma ??
	9.5 Proof of Lemma ??
	9.6 Condition in Equation ??

	10 Additional pseudo-codes of the algorithms
	10.1 DOWNPOUR pseudo-code
	10.2 MDOWNPOUR pseudo-code

	11 Experiments - additional material
	11.1 Learning rates
	11.2 Comparison of SGD, ASGD, MVASGD and MSGD
	11.3 Breakdown of the wallclock time
	11.4 Time speed-up

