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ABSTRACT
We consider supervised learning with random decision trees,
where the tree construction is completely random. The
method is popularly used and works well in practice de-
spite the simplicity of the setting, but its statistical mech-
anism is not yet well-understood. In this paper we pro-
vide strong theoretical guarantees regarding learning with
random decision trees. We analyze and compare three dif-
ferent variants of the algorithm that have minimal mem-
ory requirements: majority voting, threshold averaging and
probabilistic averaging. The random structure of the tree
enables us to adapt these methods to a differentially-private
setting thus we also propose differentially-private versions
of all three schemes. We give upper-bounds on the general-
ization error and mathematically explain how the accuracy
depends on the number of random decision trees. Further-
more, we prove that only logarithmic (in the size of the
dataset) number of independently selected random decision
trees suffice to correctly classify most of the data, even when
differential-privacy guarantees must be maintained. We em-
pirically show that majority voting and threshold averaging
give the best accuracy, also for conservative users requiring
high privacy guarantees. Furthermore, we demonstrate that
a simple majority voting rule is an especially good candi-
date for the differentially-private classifier since it is much
less sensitive to the choice of forest parameters than other
methods.

Categories and Subject Descriptors
[Security and privacy]: Security services—Privacy-
preserving protocols; [Security and privacy]: Database
and storage security—Data anonymization and sanitization;
[Machine learning]: Machine learning approaches—Clas-
sification and regression trees

General Terms
Theory, Algorithms, Security

Keywords
Random decision trees, differential privacy, supervised learn-
∗equal contribution

ing, classification, generalization bounds, error bounds, ma-
jority voting, threshold averaging, probabilistic averaging,
non-differentially-private random decision trees, differentially-
private random decision trees

1. INTRODUCTION
Decision tree is one of the most fundamental structures

used in machine learning. Constructing a tree of good qual-
ity is a hard computational problem though. Needless to say,
the choice of the optimal attribute according to which the
data partitioning should be performed in any given node
of the tree requires nontrivial calculations involving data
points located in that node. Nowadays, with an increasing
importance of the mechanisms preserving privacy of the data
handled by machine learning algorithms, the need arises to
construct these algorithms with strong privacy guarantees
(see e.g. [1], [2], [3], [4], [5]). One of the strongest currently
used notions of privacy is the so-called differential privacy
that was introduced [6] in a quest to achieve the dual goal of
maximizing data utility and preserving data confidentiality.
A differentially-private database access mechanism preserves
the privacy of any individual in the database, irrespectively
of the amount of auxiliary information available to an adver-
sarial database client. Differential-privacy techniques add
noise to perturb data (such as Laplacian noise). Its mag-
nitude depends on the sensitivity of the statistics that are
being output. Even though the overall scheme looks sim-
ple, in practice it is usually very difficult to obtain a rea-
sonable level of differential privacy and at the same time
maintain good accuracy. This is the case since usually too
big perturbation error needs to be added. In particular, this
happens when machine learning computations access data
frequently during the entire execution of the algorithm and
output structures that are very sensitive to the data. This
is also an obstacle for proposing a scheme that computes an
optimal decision tree in a differentially-private way. In such
a scenario the attribute chosen in every node and any ad-
ditional information stored there depends on the data and
that is why it must be perturbed in order to keep the de-
sired level of differential privacy. Big perturbation added in
this setting leads to the substantially smaller quality of the
constructed tree.

Instead of constructing one differentially-private decision



tree, in this paper we consider constructing a random for-
est. Random forests [7] constitute an important member of
the family of the decision tree-based algorithms due to their
effectiveness and excellent performance. They are also the
most accurate general-purpose classifiers available [8, 7]. In
this paper we construct a forest consisting of O(log(n)) ran-
dom decision trees (n is the size of the dataset, e.g. number
of data samples). An attribute according to which the se-
lection is performed in any given node is chosen uniformly
at random from all the attributes, independently from the
dataset in that node. In the continuous case, the threshold
value for the chosen attribute is then also chosen uniformly
at random from the range of all possible values. That sim-
ple rule enables us to construct each decision tree very fast
since the choice of nodes’ attributes does not depend on
the data at all. The obtained algorithm is therefore fast
and scalable with minimal memory requirements. It also
takes only one pass over the data to construct the classifier.
Since most of the structure of each random decision tree
is constructed without examining the data, the algorithm
suits the differentially-private scenario very well. After a
sufficient number of random decision trees is constructed,
the classification of every point from a dataset takes place.
Classification is done according to one of the three schemes:
majority voting ([7]), threshold averaging or probabilistic
averaging ([9]). In the differentially-private setting we add
perturbation error to the counters in leaves, but no pertur-
bation error is added to the inner nodes. This leads to a
much more accurate learning mechanism. Performing vot-
ing/averaging (see: [10] for applications of the voting meth-
ods) instead of just taking the best tree for a given dataset
is important since it enables us to add smaller perturbation
error to obtain the same level of differential privacy.

In this paper we analyze both non-differentially-private
and differentially-private setting in all three variants: ma-
jority voting, threshold averaging, and probabilistic aver-
aging. To the best of our knowledge, we are the first to
give a comprehensive and unified theoretical analysis of all
three models in both settings, where in case of differentially-
private setting no theoretical analysis was ever provided in
the context of random decision trees. The differentially-
private setting is especially difficult to analyze since increas-
ing the number of trees does not necessarily decrease the
training (and test) error in this setting. Having more ran-
dom decision trees require adding bigger perturbation error
that may decrease the efficiency of the learning algorithm.
In this paper we thoroughly investigate this phenomenon.
The dependence of the quality of the random decision tree
methods on the chosen level of differential privacy, the height
of the tree and the number of trees in the forest is in the cen-
tral focus of our theoretical and empirical analysis. Under-
standing these dependencies is crucial while applying these
methods in practice. Our theoretical analysis relate the em-
pirical error and the generalization error of the classifier to
the average tree accuracy and explain quantitatively how
the quality of the system depends on the number of chosen
trees. Furthermore, we show that the random forest need
not many trees to achieve good accuracy. In particular, we
prove both theoretically and empirically that in practice the
logarithmic in the size of the dataset number of random de-
cision trees1 suffices to achieve good performance. We also

1Further in the paper by ”logarithmic number of random
decision trees” we always mean ”logarithmic (in the size of
the dataset) number of random decision trees”.

show that not only do there exist parameters of the set-
ting (such as: the number of random trees in the forest,
the height of the tree, etc.) under which one can effectively
learn, but the setting is very robust. To be more precise, we
empirically demonstrate that the parameters do not need to
be chosen in the optimal way, in example one can choose far
fewer trees to achieve good performance. We also show that
majority voting and threshold averaging are good candidates
for the differentially-private classifiers. Our experiments re-
veal that a simple majority voting rule is competitive with
the threshold averaging rule and simultaneously they both
outperform the probabilistic averaging rule. Furthermore,
majority voting rule is much less sensitive to the choice of
the parameters of the random forest (such as the number of
the trees and the height of the tree) than the remaining two
schemes.

This article is organized as follows. In Section 2 we de-
scribe previous work regarding random decision trees. We
then introduce our model and the notion of differential pri-
vacy in Section 3. In Section 4 we present a differentially-
private supervised algorithm that uses random decision trees.
Section 5 contains our theoretical analysis. We conclude the
paper with experiments (Section 6) and a brief summary of
our results (Section 7).

2. PRIOR WORK
Random decision trees are considered as important meth-

ods in machine learning often used for supervised learning
due to their simplicity, excellent practical performance and
somewhat unreasonable effectiveness in practice. They be-
came successful in a number of practical problems, e.g. [11,
12, 13, 14, 15, 16, 17, 18, 19, 20] (there exist many more
examples). The original random forests [7] were ensemble
methods combining many CART-type [21] decision trees us-
ing bagging [22] (a convenient review of random forests can
for instance be found in [19]). They were inspired by some
earlier published random approaches [12, 23, 24, 25]. De-
spite their popularity, the statistical mechanism of random
forests is difficult to analyze [8, 26] and to these days re-
mains largely ununderstood [26, 27, 28]. Next we review the
existing theoretical results in the literature.

A notable line of works provide an elegant analysis of the
consistency of random forests [26, 27, 28, 8, 29, 30, 31, 32,
29, 33]. Among these works, one of the most recent stud-
ies [26] proves that the previously proposed random forest
approach [32] is consistent and achieves the rate of conver-
gence which depends only on the number of strong features
and not on the number of noise variables. Another recent
paper [27] provides the first consistency result for online vari-
ant of random forests. The predecessor of this work [34] pro-
poses the Hoeffding tree algorithm and prove that with high
probability under certain assumptions the online Hoeffding
tree converges to the offline tree. In our paper we focus on
error bounds rather than the consistency analysis of random
decision trees.

It has been noted [27] that the most famous theoretical
result concerning random forests provides an upper-bound
on the generalization error of the forest in terms of the corre-
lation and strength of trees [7]. Simultaneously, the authors
show that the generalization error converges almost surely
to a limit as the number of trees in the forest becomes large.
It should be noted however that the algorithm considered
by the authors has data-dependent tree structure opposite
to the algorithms in our paper. To be more specific, the orig-
inal ”random forests” method [7] selects randomly a subset



of features and then it chooses the best splitting criteria
from this feature subset. This affects efficiency since com-
puting the heuristics (the best splitting criteria) is expen-
sive [9]. Furthermore, it also causes the tree structure to be
data-dependent (another approach where the tree structure
is data-dependent is presented in example in [35]) rather
than fully random which poses a major problem when ex-
tending the method to the differentially-private setting since
data-independent tree structure is important for preserving
differential-privacy [36]. Opposite to this approach, in our
algorithms we randomly draw the attribute in each tree node
according to which we split and then we randomly choose a
threshold used for splitting. This learning model is therefore
much simpler. Our fully random approach is inspired by a
methodology already described before in the literature [9]
(this work however has no theoretical analysis). Our theo-
retical results consider error bounds similarly to the original
work on random forests [7]. The difference of approaches
however does not allow to use the theoretical results from
[7] in our setting. Finally, note that in either [7] or [9] only
a single voting rule is considered, majority voting or prob-
abilistic averaging respectively. In this paper we consider a
wider spectrum of different voting approaches.

Next, we briefly review some additional theoretical results
regarding random forests. A simplified analysis of random
forests in one-dimensional settings was provided in the liter-
ature in the context of regression problems where minimax
rate of convergence were proved [37, 38]. Another set of
results explore the connection of random forests with a spe-
cific framework of adaptive nearest-neighbor methods [39].
Finally, for completeness we emphasize that there also exist
some interesting empirical studies regarding random deci-
sion trees in the literature, e.g. [40], [41] and [23], which
however are not directly related to our work.

Privacy preserving data mining has emerged as an effec-
tive method to solve the problem of data sharing in many
fields of computer science and statistics. One of the strongest
currently used notions of privacy is the so-called differential
privacy [6] (some useful tutorial material on differential pri-
vacy research can be found in [42]). In this paper we are
interested in the differentially-private setting in the context
of random decision trees. It was first observed in [36] that
random decision trees may turn out to be an effective tool
for constructing a differentially-private decision tree clas-
sifier. The authors showed a very efficient heuristic that
averages over random decision trees and gives good prac-
tical results. Their work however lacks theoretical results
regarding the quality of the differentially-private algorithm
that is using random decision trees. In another published
empirical study [43] the authors develop protocols to imple-
ment privacy-preserving random decision trees that enable
efficient parallel and distributed privacy-preserving knowl-
edge discovery. The very recent work [44] on differentially-
private random forests shows experimental results demon-
strating that quality functions such as information gain,
max operator and gini index gives almost equal accuracy re-
gardless of their sensitivity towards the noise. Furthermore,
they show that the accuracy of the classical random for-
est and its differentially-private counterpart is almost equal
for various size of datasets. To the best of our knowledge
none of the published works on differentially-private ran-
dom decision trees provide any theoretical guarantees. Our
paper provides strong theoretical guarantees of both non-
differentially-private and differentially-private random deci-
sion trees. This is a major contribution of our work. We

simultaneously develop a unified theoretical framework for
analyzing both settings.

3. PRELIMINARIES

3.1 Differential privacy
Differential privacy is a model of privacy for database

access mechanism. It guarantees that small changes in a
database (removal or addition of an element) does not change
substantially the output of the mechanism.

Definition 3.1. (See [45].) A randomized algorithm K
gives ε-differential-privacy if for all datasets D1 and D2 dif-
fering on at most one element, and all S ⊆ Range(K),

P(K(D1) ∈ S) ≤ exp(ε) · P(K(D2) ∈ S). (1)

The probability is taken over the coin tosses of K.

The smaller ε, the stronger level of differential privacy
is obtained. Assume that the non-perturbed output of the
mechanism can be encoded by the function f . A mechanism
K can compute a differentially-private noisy version of f over
a database D by adding noise with magnitude calibrated to
the sensitivity of f .

Definition 3.2. (See [6].) The global sensitivity S(f) of
a function f is the smallest number s such that for all D1 and
D2 which differ on at most one element, |f(D1)− f(D2) | ≤
s.

Let Lap(0, λ) denote the Laplace distribution with mean 0
and standard deviation λ. In other words, this is a random
variable with probability density function given by the fol-
lowing formula: λ

2
e−|x|λ. We will denote shortly by g(λ) an

independent copy of the Lap(0, λ)-random variable.

Theorem 3.1. (See [6].) Let f be a function on databases
with range Rm, where m is the number of rows of databases
2. Then, the mechanism that outputs f(D) + (Y1, . . . , Ym),
where Yi are drawn i.i.d from Lap(0, S(f)/ε), satisfies ε-
differential-privacy.

Stronger privacy guarantees and more sensitive functions
need bigger variance of the Laplacian noise being added.
Differential privacy is preserved under composition, but with
an extra loss of privacy for each conducted query.

Theorem 3.2. (See [6].) (Composition Theorem)
The sequential application of mechanisms Ki, each giving
εi-differential privacy, satisfies

∑
i εi-differential-privacy.

More information about differential privacy can be found in
the work of [46] and [47].

3.2 The model
All data points are taken from Fm, where m is the number

of the attributes and F is either a discrete set or the set of
real numbers. We assume that for every attribute attr its
smallest (min(attr)) and largest possible value (max(attr))
are publicly available and that the labels are binary. We
consider only binary decision trees (all our results can be
easily translated to the setting where inner nodes of the tree
have more than two children). Therefore, if F is discrete

2Number of rows of databases is the number of attributes of
any data point from the databases.



then we will assume that F = {0, 1}, i.e. each attribute is
binary. In the continuous setting for each inner node of the
tree we store the attribute according to which the selection is
done and the threshold value of this attribute. All decision
trees considered in this paper are complete and of a fixed
height h that does not depend on the data. Let T be a
random decision tree and let l be one of its leaves. We
denote by θl the fraction of all training points in l with label
+. If l does not contain any of the training points we choose
the value of θl uniformly at random from [0, 1]. The set M

of all possible decision trees is of size |M | = m2h+1−1 in the
binary setting. It should be emphasized that it is true also
in the continuous case. In that setting the set of all possible
threshold values for a node is infinite but needless to say,
the set of all possible partitionings in the node is still finite.
Thus without loss of generality, we assume M is finite. It
can be very large but it does not matter since we will never
need the actual size of M in our analysis. For a given tree T
and given data point d denote by wTd the fraction of points
(from the training set if d is from this set and from the test
set otherwise) with the same label as d that end up in the
same leaf of T as d. We call it the weight of d in T . Notice
that a training point d is classified correctly by T in the
single-tree setting iff its weight in T is larger than 1

2
(for a

single decision tree we consider majority voting model for
points classification).

The average value of wTd over all trees ofM will be denoted
as wd and called the weight of d in M . We denote by σ(d)
the fraction of trees from M with the property that most of
the points of the leaf of the tree containing d have the same
label as d (again, the points are taken from the training set
if d is from it and from the test set otherwise). We call σ(d)
the goodness of d in M . For a given dataset D the average
tree accuracy e(D) of a random decision tree model is an
average accuracy of the random decision tree from M , where
the accuracy is the fraction of data points that a given tree
classifies correctly (accuracy is computed under assumption
that the same distribution D was used in both: the training
phase and test phase).

4. ALGORITHMS
Algorithm 1 captures the non-differentially-private algo-

rithm for supervised learning with random decision trees
(RDT). Its differentially-private counterpart is captured in
Algorithm 2. We consider three versions of each algorithm:

• majority voting

• threshold averaging

• probabilistic averaging.

Only variables n+
l , n

−
l stored in leaves depend on the data.

This fact will play crucial role in the analysis of the differen-
tially-private version of the algorithm where Laplacian error
is added to the point counters at every leaf with variance
calibrated to the number of all trees used by the algorithm.

5. THEORETICAL RESULTS
In this section we derive the upper-bounds on the em-

pirical error (the fraction of the training data misclassified
by the algorithm) and the generalization error (the fraction
of the test data misclassified by the algorithm where the
test data is taken from the same distribution as the training
data) for all methods in Algorithm 1 and 2.

Input: Train, Test: train and test sets,
h: height of the tree

Random forest construction:
construct k = θ(log(n)) random decision trees by
choosing for each inner node of the tree
independently at random its attribute (uniformly
from the set of all the attributes);

in the continuous case for each chosen attribute
attr choose independently at random a threshold
value uniformly from [min(attr),max(attr)]

Training:
For d ∈ Train {

add d to the forest by updating θl for every leaf
corresponding to d }

Testing:
For d ∈ Test {

if (majority voting) {
compute numd - the number of the trees

classifying d as +;
classify d as + iff numd > k

2
}

if (threshold averaging) {
compute θd = 1

k

∑
l∈L θl, where L is a set of all

leaves of the forest that correspond to d;
classify d as + iff θd > 1

2
}

if (probabilistic averaging) {
compute θd = 1

k

∑
l∈L θl, where L is a set of all

leaves of the forest that correspond to d;
classify d as + with probability θd

/*random tosses here are done independently

from all other previously conducted*/ } }
Output: Classification of all d ∈ Test

Algorithm 1: Non-differentially-private RDT classifier

Input: Train, Test: train and test sets,
h: height of the tree, η: privacy parameter

Random forest construction: as in Algorithm 1
Training:

For d ∈ Train {
find the leaf l for d in every tree and
update n+

l , n−l , where:
n+
l - the number of training points with

label + belonging to that leaf;
n−l - the number of training points with

label − belonging to that leaf }
For every leaf l {

calculate np,+l =n+
l + g( η

k
) and np,−l =n−l + g( η

k
)

if (np,+l <0 or np,−l <0 or (np,+l =0 and np,−l =0))
choose θpl uniformly at random from [0, 1];

else let θpl =
n
p,+
l

n
p,+
l

+n
p,−
l

;

publish θpl for every leaf }
Testing: as in Algorithm 1 but replace θl with θpl
Output: Classification of all d ∈ Test
Algorithm 2: η-Differentially-private RDT classifier

We also show how to find the number of random deci-
sion trees to obtain good accuracy and, in the differentially-
private setting, good privacy guarantees.

We start with two technical results which, as we will see
later, give an intuition why the random decision tree ap-



proach works very well in practice.

Theorem 5.1. Assume that the average tree accuracy of
the set M of all decision trees of height h on the training/test
set D is e = 1 − ε for some 0 < ε ≤ 1

2
. Then the average

goodness σ(d) of a training/test point d in M is at least
e ≥ 1

2
.

Theorem 5.2. Assume that the average tree accuracy of
the set M of all decision trees of height h on the training/test
set D is e = 1 − ε for some 0 < ε ≤ 1

2
. Then the average

weight wd of a training/test point d in M is at least e2 +
(1− e)2 ≥ 1

2
.

The theorems above imply that if the average accuracy
of the tree is better than random, then this is also reflected
by the average values of wd and σd. This fact is crucial for
the theoretical analysis since we will show that if the average
values of wd and σd are slightly better than random then this
implies very small empirical and generalization error. Fur-
thermore, for most of the training/test points d their values
of σd and wd are well concentrated around those average
values and that, in a nutshell, explains why the random de-
cision trees approach works well. Notice that Theorem 5.1
gives better quality guarantees than Theorem 5.2.

We are about to propose several results regarding differen-
tially-private learning with random decision trees. They are
based on careful structural analysis of the bipartite graph
between the set of decision trees and datapoints. Edges
of that bipartite graph connect datapoints with trees that
correctly classified given datapoints. In the differentially-
private setting the key observation is that under relatively
weak conditions one can assume that the sizes of the sets
of datapoints residing in leaves of the trees are substantial.
Thus adding the Laplacian noise will not perturb the statis-
tics to an extent that would affect the quality of learning.
All upper-bounds regarding the generalization error were ob-
tained by combining this analysis with concentration results
(such as Azuma’s inequality).

5.1 Non-differentially-private setting
We start by providing theoretical guarantees in the non-

differentially-private case. Below we consider majority vot-
ing and threshold averaging. The results for the probabilistic
averaging are stated later in this subsection.

Theorem 5.3. Let K > 0. Assume that the average tree
accuracy of the set M of all decision trees of height h on the
training/test set D is e = 1 − ε for some 0 < ε ≤ 1

2
. Let µ

be: the fraction of training/test points with goodness in M
at least σ = 1

2
+ δ / σ = 1

2
+ δ + 1

K
for 0 < δ < 1

2
(in

the majority version) or: the fraction of training/test points
with weight in M at least w = 1

2
+ δ / w = 1

2
+ δ + 1

K

for 0 < δ < 1
2

(in the threshold averaging version). Then

Algorithm 1 for every C > 0 and k = (1+C) log(n)

2δ2
selected

random decision trees gives empirical error err1 ≤ 1−µ with
probability p1 ≥ 1− 1

nC
. The generalization error err2 ≤ 1−

µ will be achieved for k = (1+C) log(n)

2( δ
2
)2

trees with probability

p2 ≥ p1 − 2h+3ke−2nφ2

, where φ = δ
2(4+δ)2hK

. Probabilities

p1 and p2 are under random coin tosses used to construct
the forest and the test set.

Note that parameter e is always in the range [ 1
2
, 1]. The

more decision trees that classify data in the nontrivial way

(i.e. with accuracy greater than 1
2
), the larger the value of e

is. The result above in particular implies that if most of the
points have goodness/weight in M a little bit larger than
1
2

then both errors are very close to 0. This is indeed the
case - the average point’s goodness/weight in M , as Theo-
rem 5.1 and Theorem 5.2 say, is at least e / e2 + (1 − e)2.
The latter expression is greater than 1

2
if the average tree

accuracy is slightly bigger than the worst possible. Besides
goodness/weight of most of the points, as was tested exper-
imentally, is well concentrated around that average good-
ness/weight. We conclude that if the average accuracy of
the decision tree is separated from 1

2
(but not necessarily

very close to 1) then it suffices to classify most of the data
points correctly. The intuition behind this result is as fol-
lows: if the constructed forest of the decision trees contains
at least few ”nontrivial trees” giving better accuracy than
random then they guarantee correct classification of most of
the points.

If we know that the average tree accuracy is big enough
then techniques used to prove Theorem 5.3 give us more
direct bounds on the empirical and generalization errors
captured in Theorem 5.4. No assumptions regarding good-
ness/weight are necessary there.

Theorem 5.4. Let K > 0. Assume that the average tree
accuracy of the set M of all decision trees of height h on the
training/test set D is e = 1 − ε for some 0 < ε ≤ 1

2
. Then

Algorithm 1 for every C > 0, 0 < δ < 1
2

and k = (1+C) log(n)

2δ2

selected random decision trees gives empirical error: err1 ≤
ε

1
2
−δ (in the majority version) or: err1 ≤ 2ε−2ε2

0.5−δ (in the

threshold averaging version) with probability p1 ≥ 1 − 1
nC

.

The generalization error: err2 ≤
ε+ 1

K
1
2
−δ (in the majority ver-

sion) or: err2 ≤
2(ε+ 1

K
)−2(ε+ 1

K
)2

0.5−δ (in the threshold averag-

ing version) will be achieved for k = (1+C) log(n)

2( δ
2
)2

trees with

probability p2 ≥ p1 − 2h+3ke−2nφ2

, where φ = δ
2(4+δ)2hK

.

Probabilities p1 and p2 are under random coin tosses used
to construct the forest and the test set.

Theorems 5.3 and 5.4 show that logarithmic number of
random decision trees in practice suffices to obtain high pre-
diction accuracy with a very large probability. In particular,
the upper-bound on the generalization error is about two
times the average error of the tree. The existence of the
tree with lower accuracy in the forest does not harm the en-
tire scheme since all trees of the forest play role in the final
classification.

We now state our results (analogous to Theorem 5.4) for
the probabilistic averaging setting. The following is true.

Theorem 5.5. Let K > 0. Assume that the average tree
accuracy of the set M of all decision trees of height h on the
training/test set D is e = 1 − ε for some 0 < ε ≤ 1

2
. Let

C > 0 be a constant. Let 0 < δ, c < 1. Then with probability

at least p1 = (1− 1
nC

)(1−e−2nc2) the probabilistic averaging
version of Algorithm 1 gives empirical error err1 ≤ 2ε −
2ε2 + δ + c and with probability p2 ≥ p1 − 2h+3ke−2nφ2

,
where φ = δ

2(4+δ)2hK
, it gives generalization error err2 ≤

2(ε+ 1
K

)− 2(ε+ 1
K

)2 + δ + c. Probabilities p1, p2 are under
random tosses used to construct the forest and the test set.

Notice that this result is nontrivial for almost the entire
range [0, 1

2
] of ε, and δ and c close to 0, and large K. This



is the case since note that 1− 2ε+ 2ε2 ≥ 1
2

and the equality

holds only for ε = 1
2
.

5.2 Differentially-private setting
We begin this section with the proof that all three meth-

ods captured in Algorithm 2, where the Laplacian noise is
added to certain counts, are indeed η-differentially-private.

Proof. Notice that in every method to obtain the forest
of random decision trees with perturbed counters in leaves
we need k queries to the private data (this is true since the
structure of the inner nodes of the trees does not depend at
all on the data and data subsets corresponding to leaves are
pairwise disjoint). Furthermore, the values that are being
perturbed by the Laplacian noise are simple counts of global
sensitivity 1. Thus we can use use Theorem 3.1 and The-
orem 3.2 to conclude that in order to obtain η-differential
privacy of the entire system we need to add a Lap(0, k

η
) to

every count in the leaf. This proves that our algorithms are
indeed η-differentially-private.

Next we show the theoretical guarantees we obtained in
the differentially-private setting. As in the previous section,
we first focus on the majority voting and threshold averag-
ing, and then we consider the probabilistic averaging.

Theorem 5.6. Assume that we are given a parameter η >
0. Let K > 0. Assume that the average tree accuracy of the
set M of all decision trees of height h on the training/test
set D is e = 1 − ε for some 0 < ε ≤ 1

2
. Let µ be the frac-

tion of training/test points with: goodness in M at least σ =
1
2
+δ+ 1

K
/ σ = 1

2
+δ+ 2

K
(in the majority version) or: weight

in M at least w = 1
2

+δ+ 1
K

/ w = 1
2

+δ+ 2
K

(in the thresh-

old averaging version) for 0 < δ < 1
2

. Then Algorithm 2 for
k selected random decision trees and differential privacy pa-
rameter η gives empirical error err1 ≤ 1−µ with probability

p1 ≥ 1−n(e−
kδ2

2 + e−
k
2 + ke−

λnη
k ) and generalization error

err2 ≤ 1−µ with probability p2 ≥ p1− 2h+3ke−2nφ2

, where:
λ = δ

24K·2h and φ = δ
2(4+δ)2hK

. Probabilities p1 and p2 are

under random coin tosses used to construct the forest and the
test set. Furthermore, we always have: µ ≥ 1 − ε

1
2
−δ− 1

K

/

µ ≥ 1− ε
1
2
−δ− 2

K

in the majority version and: µ ≥ 1− 2ε−2ε2

1
2
−δ− 1

K

/ µ ≥ 1− 2ε−2ε2

1
2
−δ− 2

K

in the threshold averaging version.

Notice that if the number of trees k in the forest is loga-
rithmic in n then p1 is close to one and so is p2.

Again, as in the non-differentially-private case, we see that
if there are many points of goodness/weight inM close to the
average goodness/weight then empirical and generalization
error are small. Notice also that increasing the number of
the trees too much has an impact on the empirical error

(term ke−
λnη
k in the lower bound on p1). More trees means

bigger variance of the single Laplacian used in the leaf of the
tree. This affects tree quality. The theorem above describes
this phenomenon quantitatively.

If the average tree accuracy is big enough then the follow-
ing result becomes of its own interest. This result considers
in particular the empirical error (similar result holds for the
generalization error) of the threshold averaging version of
Algorithm 2 (and also similar result holds for majority vot-
ing version of Algorithm 2).

Theorem 5.7. Assume that we are given a parameter η >
0. Assume besides that the average tree accuracy of the set

M of all decision trees of height h on the training set D is
is e = 1 − ε for some 0 < ε ≤ 1

2
. Let 0 < δ < 1

2
. Let

γ = 1
2h·9600 and let kopt be the integer value for which the

value of the function f(k) = e−
k

200 + 2ke−
γ
√
nη
k is smallest

possible. Then with probability at least p = 1 − n(e−
kopt
200 +

2kopte
− γ
√
nη

kopt +e−
n
2 ) the η-differentially-private threshold av-

eraging version of Algorithm 2 gives empirical error at most
1
8

+ 9
2
ε − 5ε2 for the forest with kopt randomly chosen deci-

sion trees. Probability p is under random coin tosses used to
construct the forest.

Both theorems show that logarithmic number of random
decision trees in practice suffices to obtain good accuracy
and high level of differential privacy.

The next theorem considers the differentially-private prob-
abilistic averaging setting.

Theorem 5.8. Assume that we are given a parameter η >
0. Let K, c > 0 and 0 < δ < 1. Assume that the av-
erage tree accuracy of the set M of all decision trees of
height h on the training/test set D is e = 1 − ε for some
0 < ε ≤ 1

2
. Let λ = δ

24K·2h . Then for k selected random
decision trees the η-differentially-private probabilistic aver-
aging version of Algorithm 2 gives empirical error err1 ≤
2(ε + 1

K
) − 2(ε + 1

K
)2 + δ + c with probability p1 ≥ (1 −

n(e−
kδ2

2 + e−
k
2 + ke−

λnη
k ))(1 − e−2nc2) and generalization

error err2 ≤ 2(ε + 2
K

) − 2(ε + 2
K

)2 + δ + c with probability

p2 ≥ p1−2h+3ke−2nφ2

, where: φ = δ
2(4+δ)2hK

. Probabilities

p1 and p2 are under random coin tosses used to construct
the forest and the test set.

As in the two previous settings, information about the
average accuracy of just a single tree gives strong guar-
antees regarding the classification quality achieved by the
differentially-private version of the forest. The next result
(analogous to Theorem 5.7) shows how to choose the opti-
mal number of trees and that this number is again at most
logarithmic in the data size.

Theorem 5.9. Assume that we are given a parameter η >
0. Assume besides that the average tree accuracy of the set
M of all decision trees of height h on the training set D is
e = 1−ε for some 0 < ε ≤ 1

2
. Let γ = 1

2h·9600 and let kopt be

the integer value for which the value of the function f(k) =

e−
k

200 +2ke−
γ
√
nη
k is smallest possible. Then with probability

at least p = 1− n(e−
kopt
200 + 2kopte

− γ
√
nη

kopt + e−
n
2 )(1− e−

n
200 )

the η-differentially-private probabilistic averaging version of
Algorithm 2 gives empirical error at most 1

5
+ 19

10
ε− 2ε2 for

the forest with kopt randomly chosen decision trees. Prob-
ability p is under random coin tosses used to construct the
forest.

6. EXPERIMENTS
The experiments were performed on the benchmark data-

sets3: Banknote Authentication (Ban Aut), Blood Transfu-
sion Service Center (BTSC ), Congressional Voting Records
(CVR), Mammographic Mass (Mam Mass), Mushroom, Adult,
Covertype and Quantum. 90% of each dataset was used for

3downloaded from http://osmot.cs.cornell.edu/kddcup/,
http://archive.ics.uci.edu/ml/datasets.html, and
http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets



Table 1: Comparison of the performance of random forests and rpart.
Method

Dataset n m
rpart n-dpRFMV n-dpRFTA dpRFMV dpRFTA
Error Error k h Error k h Error k h Error k h

Ban Aut 1372 5 3.65±0.99 3.09±0.92 21 15 3.46±0.97 17 9 5.44±1.20 21 11 5.22±1.18 7 12
BTSC 748 5 18.92±2.81 22.19±2.98 1 14 22.47±2.99 1 14 23.42±3.03 1 14 23.42±3.03 1 13
CVR 435 16 9.30±2.73 9.05±2.70 19 6 5.95±2.22 13 9 8.10±2.56 15 9 6.90±2.38 15 9

Mam Mass 961 6 21.88±2.61 16.95±2.37 9 12 16.21±2.33 19 15 16.95±2.37 5 12 17.37±2.40 9 8
Mushroom 8124 22 3.33±0.39 0.83±0.20 21 15 0.26±0.11 13 14 4.69±0.46 3 13 4.16±0.43 3 15

Adult 32561 123 17.75±0.42 21.70±0.45 3 14 21.58±0.45 3 14 22.18±0.45 3 11 21.72±0.45 7 11
Covertype 581012 54 26.90±0.11 33.39±0.12 21 15 30.80±0.12 21 15 38.75±0.13 3 13 37.82±0.12 3 13
Quantum 50000 78 32.08±0.41 34.81±0.42 21 15 33.06±0.41 19 14 39.91±0.43 21 13 39.01±0.43 13 9

training and the remaining part for testing. Furthermore,
10% of the training dataset was used as a validation set. All
code for our experiments is publicly released.

We first compare the test error (%) obtained using five
different methods: open-source implementation of CART
called rpart [48], non-differentially-private (n-dp) and diffe-
rentially-private (dp) random forest with majority voting
(RFMV ) and threshold averaging (RFTA). For all meth-
ods except rpart we also report the number of trees in the
forest (k) and the height of the tree (h) for which the small-
est validation error was obtained, where we explored: h ∈
{1, 2, 3, . . . , 15} and k ∈ {1, 3, 5, . . . , 21}. In all the ex-
periments the differential privacy parameter η was set to
η = 1000/ntr, where ntr is the number of training exam-
ples. Table 1 captures the results. For each experiment we
report average test error over 10 runs. We also show the bi-
nomial symmetrical 95% confidence intervals for our results.
The performance of random forest with probabilistic aver-
aging (RFPA) was significantly worse than the competitive
methods (RFMV, RFTA, rpart) and is not reported in the
table. The performance of RFPA will however be shown in
the next set of results.

Next set of results4 (Figure 1 and 2) is reported for an ex-
emplary datasets (Banknote Authentication, Congressional
Voting Records, Mammographic Mass and Mushroom) and
for the following methods: dpRFMV, dpRFTA and dpRFPA.
Note that similar results were obtained for the remaining
datasets. In Figure 1a we report the test error vs. h for
selected settings of k5. In Figure 1b we also show minimal,
average and maximal test error vs. h for dpRFMV, whose
performance was overall the best. Similarly, in Figure 1c we
report the test error vs. k for two selected settings of h and
in Figure 1d we also show minimal, average and maximal
test error vs. k for dpRFMV.

Finally, in Figure 2a we report test error for various set-
tings of η and two selected settings of h. For each experiment
k was chosen from the set {1, 2, . . . , 101} to give the smallest
validation error. Additionally, in Figure 2b we show how the
test error changes with k for a fixed h and various levels of
η.

Figure 2a shows that in most cases dpRFTA outperforms
remaining differentially-private classifiers, however it requires
careful selection of the forest parameters (h and k) in order
to obtain the optimal performance as is illustrated on Fig-

4All figures in this section should be read in color.
5Recall that in case when the forest contains only one tree
(k = 1) majority voting and threshold averaging rules are
equivalent thus the blue curve overlaps with the green curve
on the plot then.

ure 1c and 2b. This problem can be overcome by using
dpRFMV which has comparable performance to dpRFTA
but is much less sensitive to the setting of the forest pa-
rameters. Therefore dpRFMV is much easier to use in the
differentially-private setting.

7. CONCLUSIONS
In this paper we first provide novel theoretical analysis of

supervised learning with non-differentially-private random
decision trees in three cases: majority voting, threshold av-
eraging and probabilistic averaging. Secondly we show that
the algorithms we consider here can be easily adapted to
the setting where high privacy guarantees must be achieved.
We furthermore provide both theoretical and experimental
evaluation of the differentially-private random decision trees
approach. To the best of our knowledge, the theoretical
analysis of the differentially-private random decision trees
was never done before. Our experiments reveal that major-
ity voting and threshold averaging are good differentially-
private classifiers and that in particular majority voting ex-
hibits less sensitivity to forest parameters.
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Differentially- and non-differentially-private random
decision trees

(Supplementary Material)

9. EMPIRICAL AND GENERALIZATION ERRORS

9.1 Preliminaries
We will prove here results regarding empirical and generalization errors of all the variants of the algorithm mentioned in

the paper as well as Theorem 5.1 and Theorem 5.2. Without loss of generality we will assume that all attributes are binary
(taken from the set {0, 1}). It can be easily noticed that the proofs can be directly translated to the continuous case. We
leave this simple exercise to the reader.

Let us introduce first some useful notation that will be very helpful in the proofs we present next.
We denote by n the size of the dataset (training or test) T . Let us remind that m is the number of attributes of any given

data point, h is the height of the random decision tree and M is the set of all random decision trees under consideration.
We focus first on classifying with just one decision tree. Fix some decision tree Tj and one of its leaves. Assume that it

contains a points with label: − and b points with label: +. We associate label − with that leaf if a > b and label 1 otherwise.
To classify a given point using that tree we feed our tree with that point and assign to a point a label of the corresponding leaf.

Denote by mi the number of data points that were correctly classified by a tree Ti. Denote ei = mi

n
. We call ei the quality

(or accuracy) of the tree Ti. Note that obviously we always have: ei ≥ 1
2
, since for every leaf of any given tree the majority

of the data points from that leaf are classified correctly. Denote: e = 1
|M|

∑|M|
i=1 e

i. We call e the average tree accuracy. This

parameter measures how well data points are classified on average by a complete decision tree of a given height h. Note that
e ≥ 1

2
. Denote t = 2h. Parameter t is the number of leaves of the decision tree.

For i = 1, 2, ..., |M | and j = 1, 2, ..., t denote by nij the number of points from the dataset in the jth leaf of a decision tree

Ti. Denote by mi
j the number of points from the dataset in the jth leaf of the decision tree Ti that were classified correctly.

Denote eij =
mij

nij
for nij > 0 and eij = 1 for nij = 0. Note that eij ≥ 1

2
for every i, j. Note also that we have: n = ni1 + ...+ nit

and mi = mi
1 + ... + mi

t. Denote by aij the number of data points in the jth leaf of the decision tree Ti that are of label 0.

Denote by bij the number of data points in the jth leaf of the decision tree Ti that are of label 1.
We will use frequently the following structure in the proofs. Let G be a bipartite graph with color classes: A, B and weighted

edges. Color class A consists of n points from the dataset. Color class B consists of 2t|M | elements of the form yi,bj , where

i ∈ {1, 2, ..., |M |}, b ∈ {0, 1} and j ∈ {1, 2, ..., t}.
Data point x ∈ A is adjacent to yi,1j iff it belongs to larger of the two groups (these with labels: 0 and 1) of the data points

that are in the jth leaf of the decision tree Ti. An edge joining x with yi,1j has weight eij . Data point x ∈ A is adjacent to yi,0j
iff it belongs to smaller of the two groups of the data points that are in the jth leaf of the decision tree Ti. An edge joining x
with yi,0j has weight 1− eij . Note that the degree of a vertex yi,1j is mi

j and the degree of a vertex yi,0j is nij −mi
j .

In the proofs we will refer to the size of the set of decision trees under consideration as: |M | or k (note that k is used in
the main body of the paper).

We are ready to prove Theorem 5.1 and Theorem 5.2.

Proof. We start with the proof of Theorem 5.2. Note that from the definition of wd we get:

∑
d∈T

wd =
1

|M |

|M|∑
i=1

t∑
j=1

(mi
je
i
j + (nij −mi

j)(1− eij)).

Therefore, using formula on mi
j , we get:

∑
d∈T

wd =
1

|M |

|M|∑
i=1

t∑
j=1

(nij(e
i
j)

2 + nij(1− eij)2).

Note that we have:
∑|M|
i=1

∑t
j=1 n

i
j = n|M |. From Jensen’s inequality, applied to the function f(x) = x2, we get:

∑|M|
i=1

∑t
j=1

nij
|M|n (eij)

2 ≥

(
∑|M|
i=1

∑t
j=1

nije
i
j

|M|n )2 = (
∑|M|
i=1

∑t
j=1m

i
j

|M|n )2 = ( en|M|
n|M| )2 = e2, where e is the average quality of the system of all complete decision

trees of height h (the average tree accuracy). Similarly,
∑|M|
i=1

∑t
j=1

nij
|M|n (1− eij)2 ≥ (1− e)2. Thus we get:∑

d∈T

wd ≥ n(e2 + (1− e)2).



That completes the proof of Theorem 5.2. The proof of Theorem 5.1 is even simpler. Notice that for any data point d
the expression σ(d) · |M | counts the number of decision trees from M that classified d correctly (follows directly from the

definition of θ). Thus we have:
∑
d∈T σ(d) · |M | =

∑|M|
i=1 m

i. Therefore 1
n

∑
d∈T σ(d) = 1

|M|
∑|M|
i=1 e

i and we are done.

We need one more technical result, the Azuma’s inequality:

Lemma 9.1. Let {Wn, n ≥ 1} be a martingale with mean 0 and suppose that for some non-negative constants: αi, βi we
have: −αi ≤Wi −Wi−1 ≤ βi for i = 2, 3, .... Then for any n ≥ 0, a > 0:

P(Wn ≥ a) ≤ e
− 2a2∑n

i=1
(αi+βi)

2
and P(Wn ≤ −a) ≤ e

− 2a2∑n
i=1

(αi+βi)
2
.

9.2 Majority voting and threshold averaging setting - empirical error
We will now prove parts of theorems: 5.3 and 5.4 regarding empirical errors.

Proof. Again, we start with the analysis of the threshold averaging. Take ith random decision tree TRi , where i ∈
{1, 2, ..., k}. For a given data point d from the training set let Xd

i be a random variable defined as follows. If d does not belong
to any leaf of TRi then let Xd

i = 0. Otherwise let aRi be the number of points from the training set with label 0 in that leaf

and let bRi be the number of points from the training set with label 1 in that leaf. If d has label 0 then we take Xd
i =

aRi
aRi +bRi

.

Otherwise we take Xd
i =

bRi
aRi +bRi

. Denote Xd =
Xd1+...+Xdk

k
. When from the context it is clear to which data point we refer to

we will skip upper index and simply write X or Xi respectively.
Fix some point d from the training set. Note that if X > 1

2
then point d is correctly classified. Notice that the weight of the

point d denoted as wd is nothing else but the sum of weights of all the edges of G incident to d divided by the number of all
trees (or the average weight of an edge indecent to d if we consider real-valued attributes). Note that we have EX = wd and
that from Theorem 5.2 we get: ∑

d∈T

wd ≥ n(e2 + (1− e)2).

Take 0 < δ < 1
2
. Denote by µ the fraction of points d from the training data such that wd ≥ 1

2
+ δ. From the lower bound

on
∑
d∈T wd, we have just derived, we get: ( 1

2
+ δ)(1− µ)n+ µn ≥ n(e2 + (1− e)2), which gives us:

µ ≥ 1− 2ε− 2ε2

0.5− δ ,

where ε = 1− e.
Take point d from the training set such that wd ≥ 1

2
+ δ. Denote by pd the probability that d is misclassified. We have:

pd ≤ P(
X1 + ...+Xk

k
≤ wd − δ).

Denote: Zi = Xi − wd for i = 1, 2, ..., k. We have:

pd ≤ P(Z1 + ...+ Zk ≤ −kδ).

Note that, since wd = EX and random variables Xi are independent, we can conclude that {Z1, Z1 +Z2, ..., Z1 +Z2 + ...+Zk}
is a martingale. Note also that −αi ≤ Zi ≤ βi for some αi, βi > 0 such that αi + βi = 1.

Using Lemma 9.1, we get:

P(Z1 + ...+ Zk ≤ −kδ) ≤ e−
2(kδ)2

k .

Therefore the probability that at least one of µn points d for which wd ≥ 1
2

+ δ will be misclassified by the set of k random

decision trees is, by union bound, at most: µne−2kδ2 ≤ ne−2kδ2 . That, for k = (1+C) log(n)

2δ2
, completes the proof of the upper

bound on the empirical error from theorems: 5.3 and 5.4 since we have already proved that µ ≥ 1− 2ε−2ε2

0.5−δ . The proof of the
majority voting version goes along exactly the same lines. This time, instead of Theorem 5.2, we use Theorem 5.1. We know
that

∑
d∈T σ(d) ≥ ne, where e = 1− ε. Denote the fraction of points d with σ(d) ≥ 1

2
+ x for 0 < x < 1

2
by µx. Then, by the

argument similar to the one presented above,we have:

µx ≥ 1− ε

0.5− x . (2)

All other details of the proof for the majority voting are exactly the same as for the threshold averaging scheme.

Next we prove parts of Theorem 5.6 regarding empirical error and Theorem 5.7.

Proof. Let K > 0 be a constant. We first consider the threshold averaging scheme. Take a decision tree Ti. Denote by STi
the set of points d from the training set with the following property: point d belongs in Ti do the leaf that contains at least
n

K2h
points. Note that since each Ti has exactly 2h leaves, we can conclude that |STi | ≥ n(1− 1

K
). In this proof and proof of

theorems: 5.8 and 5.8 (presented in the next section) we will consider graph GD that is obtained from G by deleting edges



adjacent to those vertices of the color class B that correspond to leaves containing less than n
K2h

points from the training set.

Take point d from the training set with wtd ≥ 1
2

+ δ, where wtd is the average weight of an edge incident to d in GD. Notice

that wd ≥ 1
2

+ δ+ 1
K

implies: wtd ≥ 1
2

+ δ. We say that a decision tree Ti is d-good if the leaf of Ti to which d belongs contains

at least n
K2h

points from the training set. Let us now define Xd
i . If ith chosen random decision tree is d-good then Xd

i is

defined as in the proof of Theorem 5.3. Otherwise we put Xd
i = 0. Denote Zi = Xd

i − wtd. Note that the probability pd that

point d is misclassified by selected random decision trees is pd ≤ P(Z1+...+Zk
k

+
∑
j∈I Rj
|I| ≤ −δ), where I is the set of indices

corresponding to those chosen random decision trees that are d-good and random variables Rj are correction terms for d-good
random decision trees that must be introduced in order to take into account added Laplacians (if I = ∅ then we assume that

the value of the expression
∑
j∈I Rj
|I| is 0). Note also that set {Rj , Zj : j = 1, 2, ..., k} is a set of independent random variables.

We get:

pd ≤ P(
Z1 + ...+ Zk

k
≤ − δ

2
) + P(

∑
j∈I Rj

|I| ≤ − δ
2

).

Since from the Azuma’s inequality we get: P(Z1+...+Zk
k

≤ − δ
2
) ≤ e−

kδ2

2 , we have:

pd ≤ e−
kδ2

2 + P(

∑
j∈I Rj

|I| ≤ − δ
2

) (3)

We will now estimate the expression pr = P(
∑
j∈I Rj
|I| ≤ − δ

2
).

For i ∈ I denote by Ai an event that each of the two perturbation errors added to the leaf containing point d was

of magnitude at most
√
n

K2h
δ1, where δ1 = δ

24
. Denote A =

⋂
i∈I Ai. Denote by Ac the complement of A. We have:

P(
∑
j∈I Rj
|I| ≤ − δ

2
) = P(

∑
j∈I Rj
|I| ≤ − δ

2
|A)P(A) + P(

∑
j∈I Rj
|I| ≤ − δ

2
|Ac)(1− P(A)). Thus we get:

pr ≤ P(

∑
j∈I Rj

|I| ≤ − δ
2
|A) + (1− P(A)). (4)

Now take one of the chosen random decision trees Ti with i ∈ I. Take its leaf that contains given point d from the training
set. Assume that this leaf contains r points from the training set with some fixed label l ∈ {−,+} and that it altogether
contains na points. Note that from the definition of I we have: na ≥ n

K2h
. Let g1, g2 be two independent Laplacian random

variables, each of density function η
2k
e−
|x|η
k . We would like to estimate the following random variable Θ = r+g1

na+g1+g2
− r

na
for

an event A. Note that in particular we know that |g1|, |g2| ≤ δ1na√
n

. Simple calculation gives us:

|Θ| ≤ δ

4
√
n
. (5)

Now consider truncated probability space Ω|A and truncated random variables Rti = Ri|A for i ∈ I. We have: P(
∑
i∈I Ri ≤

− |I|δ
2
|A) = P(

∑
i∈I R

t
i ≤ − |I|δ2 ). Using inequality 5, we get:

|Rti| ≤
δ

4
√
n
,E|Rti| ≤

δ

4
√
n
. (6)

Thus we can use Azuma’s inequality once more, this time to find the upper bound on the expression: P(
∑
i∈I R

t
i ≤ − |I|δ2 )

(we assume here that the random decision trees have been selected thus I is given). Without loss of generality we can assume

that I 6= ∅. We have: P(
∑
i∈I R

t
i ≤ − |I|δ2 ) = P(

∑
i∈A(Rti − ERti) ≤ −Iδ2 −

∑
i∈I ER

t
i) ≤ P(

∑
i∈I(Rti − ERti) ≤ − |I|δ4 ) ≤

e
−

2|I|( δ
4
)2

( δ
4
√
n

+ δ
4
√
n

)2

. Therefore we get:

pr ≤ e−
n
2 + (1− P(A)). (7)

It remains to bound the expression: (1−P(A)). Let g be a Laplacian random variable with density function η
2k
e−
|x|η
k . Note

that from the union bound we get: 1 − P(A) ≤ 2kP(|g| >
√
nδ

24K2h
), where factor 2 in the expression 2kP(g >

√
nδ

24K2h
) comes

from the fact that for a given data point d we need to add perturbation error in two places in the leaf of the chosen random
decision tree corresponding to d.
Denote γ = δ

24K2h
. We have:

pr ≤ e−
n
2 + 4k

∞∫
γ
√
n

η

2k
e−

xη
k dx. (8)

Evaluation of the RHS-expression gives us:

pr ≤ e−
n
2 + 2ke−

λ
√
nη
k , where λ =

δ

24K2h
. (9)



Thus we can conclude that the probability pd that the fixed point d from the training set will be misclassified by the set of
k randomly chosen random decision trees satisfies:

pd ≤ e−
kδ2

2 + e−
n
2 + 2ke−

γ
√
nη
k . (10)

Note that by the similar argument to the one presented in the proof of Theorem 5.3 and Theorem 5.4, we can conclude

that at least n(1− 2(ε+ 1
K

)−2(ε+ 1
K

)2

0.5−δ ) points d from the training data satisfy: wtd ≥ 1
2

+ δ. Let µt be a fraction of points with

this property. As we observed earlier, if the points d satisfies: wd ≥ 1
2

+ δ+ 1
K

then it also satisfies: wtd ≥ 1
2

+ δ. Thus µ ≥ µt.
We also have: µt ≥ 1− 2(ε+ 1

K
)−2(ε+ 1

K
)2

0.5−δ . Thus µ ≥ 1− 2(ε+ 1
K

)−2(ε+ 1
K

)2

0.5−δ . We replace ε by ε+ 1
K

in the formula derived in the
proof of Theorem 5.3 since now for any fixed decision tree we do not take into account points that belong to leaves with less
that n

K2h
points from the training set. For every given decision tree Ti there are at most n

K
points d from the training set

such that Ti is not d-good. Note that, by union bound, the probability that at least one from the nµ points d with wtd ≥ 1
2

+ δ
is misclassified is at most nµpd ≤ npd. To see how Theorem 5.7 and the part of Theorem 5.6 regarding empirical error follow
now, take K = 40 and δ = 1

10
. The proof of the majority voting version is very similar. We use inequality 2 (that was derived

from Theorem 5.1) but all other details are exactly the same. Therefore we will not give it in details here since it would
basically mean copying almost exactly the proof that we have just showed.

9.3 Probabilistic averaging setting - empirical error
Let us switch now to the probabilistic averaging setting. In practice, as was shown in the experimental section, it is the

least effective method. However for the completeness of our theoretical analysis and since for very large datasets theoretical
guarantees regarding also this setting can be obtained, we focus on it now.

We will first focus on the part of Theorem 5.5 regarding empirical error.

Proof. We already know that:
∑
d∈T wd ≥ n(e2 + (1 − e)2), where e is the average quality. Assume that k random

decision trees have been selected. Denote by Yd the indicator of the event that a fixed data point d from the training set will
be correctly classified. We have:

Yd =

{
1 with probability Xd

0 with probability 1−Xd,

where Xd is random variable defined in the proof of theorems: 5.3 and 5.4. Note that after random decision trees have been
selected, Xd has a deterministic value. Note also that random variables Yd are independent and EYd = Xd. Thus, we can
use Lemma 9.1 in the very similar way as in the proof of theorems: 5.3 and 5.4 to get that for any given c > 0:

P(
∑
d∈T

(Yd −Xd) ≤ −nc) ≤ e−2nc2 . (11)

Let us focus now on the process of choosing random decision trees. Fix parameter δ > 0. Fix some point d from the training
set. Using Lemma 9.1 in exactly the same way as in the proof of theorems: 5.3 and 5.4, we conclude that P(Xd < wd − δ) ≤
e−2kδ2 . Therefore, by the union bound, with probability at least (1 − ne−2kδ2) we have:

∑
d∈T X

d ≥
∑
d∈T (wd − δ). Thus,

according to the lower bound for
∑
d∈T wd we presented at the beginning of the proof, we get that with probability at least

(1−ne−2kδ2) the following holds:
∑
d∈T X

d ≥ n(1−2ε+2ε2−δ), where ε = 1−e. Note that random variables Yd are independent

from random variables Xd. We can conclude, using inequality 11, that with probability at least (1 − ne−2kδ2)(1 − e−2nc2)

at least n(1 − 2ε + 2ε2 − δ − c) points will be correctly classified. Now we can take k = (1+C) log(n)

2δ2
and that completes the

proof. Again, as in the previous proof, the majority voting scheme requires only minor changes in the presented proof so we
will leave to the reader.

Lets focus now on parts of theorems: 5.8 and 5.9 regarding empirical errors.

Proof. Proofs of statements regarding empirical errors go along exactly the same lines as presented proof of the part of
Theorem 5.5 (regarding empirical error). The changes in the statement, due to the added perturbation error, follow from the
proof of bounds on the empirical error from theorems: 5.6 and 5.7 . Therefore we will not give the entire proof but only
mention few things.

In comparison with the statement of Theorem 5.5, in the expression on the upper bound on empirical error the term ε is
replaced by ε + 1

K
. This is, as explained in the proof of Theorem 5.6 (regarding empirical error), due to the fact that while

dealing with weights of edges in graph GD we do not take into account points from the training set corresponding to leaves
with too few data points. To see how Theorem 5.9 can be derived, take K = 40, δ = 1

10
, c = 1

20
. Again, as for Theorem 5.7,

Theorem 5.9 follows now by simple calculations.

9.4 Generalization error
We will now prove upper bounds regarding generalization error for all the theorems presented in the previous paragraphs.

We do it for all of them in the same section since all the proofs are very similar. Besides, right now, when we have already
developed tools for obtaining upper bounds on the empirical error, we can use them to simplify our analysis regarding
generalization error. Random decision trees give strong bounds on the generalization error since they do not lead to data



overfitting. The internal structure of each constructed tree (i.e. the set of its inner nodes) does not depend at all on the data.
This fact is crucial in obtaining strong guarantees on the generalization error. All the experiments presented in the main
body of the paper measured generalization error of the random tree approach and stand for the empirical verification that
this method is a good learning technique in the setting requiring high privacy guarantees. Below is the proof of the presented
upper bounds on the generalization error.

Proof. Consider test set of n points. Whenever we refer to the weight or goodness of the test point d, this is in respect
to the test set (see: definition of goodness and other terms in the description of the model). Let φ > 0 be a small constant
and denote by Eφ an event that for the selected forest F of random decision trees the non-perturbed counts in all leafs (for
each leaf we count points with label + and − in that leaf) for the test set and training set differ by at most 2φn. We start by
finding a lower bound on P(Eφ). Let us fix a forest, a particular tree of that forest and a particular leaf of that tree. Denote
by Xi a random variable that takes value 1 if ith point of the training set corresponds to that leaf and 0 otherwise. Similarly,
denote by Yi a random variable that takes value 1 if ith point of the test set corresponds to that leaf and 0 otherwise. Denote
by X+

i a random variable that takes value 1 if ith point of the training set corresponds to that leaf and has label + and is 0

otherwise. Similarly, denote by Y +
i a random variable that takes value 1 if ith point of the test set corresponds to that leaf

and has label + and is 0 otherwise. Denote by p1 the probability that ith point of the training/test set corresponds to that leaf
and by p2 the probability that ith point of the training/test set corresponds to that leaf and has label +. Notice that p1, p2
are the same for the training and test set since we assume that training and test set are taken from the same distribution.
Since all the random variables introduced above are independent, we can conclude using Azuma’s inequality that

P(X1 + ...+Xn ∈ [n(p1 − φ), n(p1 + φ)]) ≥ 1− 2e−2nφ2

.

Similarly,

P(Y1 + ...+ Yn ∈ [n(p1 − φ), n(p1 + φ)]) ≥ 1− 2e−2nφ2

.

Therefore, by the union bound

P(|(X1 + ...+Xn)− (Y1 + ...+ Yn)| ≤ 2φn) ≥ 1− 4e−2nφ2

.

By the same analysis we can show that

P(X+
1 + ...+X+

n ∈ [n(p2 − φ), n(p2 + φ)]) ≥ 1− 2e−2nφ2

and

P(Y +
1 + ...+ Y +

n ∈ [n(p2 − φ), n(p2 + φ)]) ≥ 1− 2e−2nφ2

.

Thus we also have

P(|(X+
1 + ...+X+

n )− (Y +
1 + ...+ Y +

n )| ≤ 2φn) ≥ 1− 4e−2nφ2

.

We can conclude that the probability of the following event:

|(X1 + ...+Xn)− (Y1 + ...+ Yn)| ≤ 2φn and |(X+
1 + ...+X+

n )− (Y +
1 + ...+ Y +

n )| ≤ 2φn

is at least 1−8e−2nφ2

. If we now take the union bound over all 2hk leafs of the forest then we obtain: P(Eφ) ≥ 1−2h+3ke−2nφ2

.
We will now consider average weights wd of the test points. The analysis for the majority voting uses σ(d) and is completely
analogous. Assume now that all the counts for all the leaves for the test and training set differ by at most 2φ. As in the
analysis of the empirical error in the differentially-private setting, lets focus on those leaves of the forest that contain at least
n

2hK
of the test points each, for a constant K > 0. Take a leaf l with this property. Denote by x1 the number of test points

corresponding to that leaf and with label +. Denote by x2 the number of training points corresponding to that leaf and
with label +. Denote by y1 the number of all test points corresponding to that leaf and by y2 the number of all training

points corresponding to that leaf. We want to find an upper bound on the expression q = |x
1

y1
− x2

y2
|. Simple algebra gives us:

q ≤ 2φn(x1+y1)

y1(y1−2φn)
. If we now take ζ = 2φ

θ
, where θ = 1

2hK
then we get: q ≤ 2ζ

1−ζ . Let us take ζ such that: 2ζ
1−ζ ≤

δ
2
, where δ > 0

is a positive constant. Thus we want: ζ ≤ δ
4+δ

, i.e. φ ≤ δθ
2(4+δ)

. Take φ = δθ
2(4+δ)

. We can conclude that with probability at

least P(Eφ) the difference between ratios of counts in leaves containing at least n
θ

test points for the test and training set is

at most δ
2
. This in particular implies that if we consider test point d and a truncated bipartite graph Gd (but this time with

respect to the test set, not training set) then weights of d in Gd and its corresponding version for the training set differ by at
most δ

2
.

We are almost done. Consider first majority voting/threshold averaging scheme. The only changes we need to introduce in
the statement of Theorem 5.3 for the empirical error is to subtract from p1 the probability that Eφ does not hold to obtain a
lower bound on p2, add factor 1

K
to the expression on w (since we are using the truncated model) and change δ by δ

2
in the

expression on number of random decision trees used. Similarly, in the statement of Theorem 5.4 we need to replace ε in the
expression on err1 by ε+ 1

K
to obtain an upper bound on err2 (again, because we are using truncation argument) and make

the same change in the number of decision trees as the one above. To obtain a lower bound on p2 it suffices to subtract the
probability that Eφ does not hold. Let us focus now on Theorem 5.6. Again we need to add extra factor 1

K
to the expression

on w and subtract probability that Eφ does not hold to obtain a lower bound on p2.



Now lets consider probabilistic averaging scheme. Take the statement of Theorem 5.5 first. We make similar correction to
those mentioned earlier to get a lower bound on p2. Besides in the upper bound on err1 we need to replace ε by ε + 1

K
to

obtain an upper bound on err2. In Theorem 5.8 we need to add one extra term 1
K

in the upper bound on err1 to obtain an
upper bound on err2 and again modify p1 in the same way as before to obtain a lower bound on p2.

10. EXPERIMENTS ON THE REMAINING DATASETS
In this section we enclose the experimental results we obtained for all the remaining benchmark datasets. The plots have

similar form to the ones shown in the main body of the paper.

Figure 3: adult dataset. Comparison of dpRFMV, dpRFTA and dpRFPA. η = 1000/ntr. Test error resp. vs.
a) h across various settings of k and vs. c) k across various settings of h; Minimal, average and maximal test
error resp. vs. h (b)) and vs. k (d)) for dpRFMV.

Figure 4: adult dataset. Comparison of dpRFMV, dpRFTA and dpRFPA. a) Test error vs. η for two settings
of h. b) Test error vs. k for fixed h and across different settings of η.



Figure 5: BTSC dataset. Comparison of dpRFMV, dpRFTA and dpRFPA. η = 1000/ntr. Test error resp. vs.
a) h across various settings of k and vs. c) k across various settings of h; Minimal, average and maximal test
error resp. vs. h (b)) and vs. k (d)) for dpRFMV.

Figure 6: BTSC dataset. Comparison of dpRFMV, dpRFTA and dpRFPA. a) Test error vs. η for two
settings of h. b) Test error vs. k for fixed h and across different settings of η.

center

Figure 7: Covertype dataset. Comparison of dpRFMV, dpRFTA and dpRFPA. η = 1000/ntr. Test error resp.
vs. a) h across various settings of k and vs. c) k across various settings of h; Minimal, average and maximal
test error resp. vs. h (b)) and vs. k (d)) for dpRFMV.



Figure 8: Covertype dataset. Comparison of dpRFMV, dpRFTA and dpRFPA. a) Test error vs. η for two
settings of h. b) Test error vs. k for fixed h and across different settings of η.

Figure 9: Quantum dataset. Comparison of dpRFMV, dpRFTA and dpRFPA. η = 1000/ntr. Test error resp.
vs. a) h across various settings of k and vs. c) k across various settings of h; Minimal, average and maximal
test error resp. vs. h (b)) and vs. k (d)) for dpRFMV.

Figure 10: Quantum dataset. Comparison of dpRFMV, dpRFTA and dpRFPA. a) Test error vs. η for two
settings of h. b) Test error vs. k for fixed h and across different settings of η.


