
Online Clustering with Experts

Anna Choromanska Claire Monteleoni

Columbia University George Washington University

Abstract

Approximating the k-means clustering objec-
tive with an online learning algorithm is an
open problem. We introduce a family of on-
line clustering algorithms by extending algo-
rithms for online supervised learning, with
access to expert predictors, to the unsuper-
vised learning setting. Instead of computing
prediction errors in order to re-weight the ex-
perts, the algorithms compute an approxima-
tion to the current value of the k-means ob-
jective obtained by each expert.

When the experts are batch clustering algo-
rithms with b-approximation guarantees with
respect to the k-means objective (for ex-
ample, the k-means++ or k-means# algo-
rithms), applied to a sliding window of the
data stream, our algorithms obtain approx-
imation guarantees with respect to the k-
means objective. The form of these online
clustering approximation guarantees is novel,
and extends an evaluation framework pro-
posed by Dasgupta as an analog to regret.
Notably, our approximation bounds are with
respect to the optimal k-means cost on the
entire data stream seen so far, even though
the algorithm is online. Our algorithm’s em-
pirical performance tracks that of the best
clustering algorithm in its expert set.

1 Introduction

Practical algorithms for clustering data streams would
be useful in a wide range of applications, such as topic
detection in streaming media, and clustering weather
patterns to detect extreme events such as cyclones and
heat waves.

Appearing in Proceedings of the 15th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2012, La Palma, Canary Islands. Volume 22 of JMLR:
W&CP 22. Copyright 2012 by the authors.

The online learning setting is applicable to a variety
of data stream problems including forecasting, real-
time decision making, and resource-constrained learn-
ing. Data streams can take many forms, such as stock
prices, weather measurements, and internet transac-
tions, or any data set so large compared to compu-
tational resources, that algorithms must access it se-
quentially. In the online learning model, an algorithm
makes only one pass of an endless data stream.

Most data sources produce raw data (e.g. speech sig-
nal, or images on the web), that is not yet labeled
for any classification task, which motivates the study
of unsupervised learning. Clustering refers to a broad
class of unsupervised learning tasks aimed at partition-
ing the data into clusters that are appropriate to the
specific application. Clustering techniques are widely
used in practice, in order to summarize large quantities
of data (e.g. aggregating similar online news stories),
however their outputs can be hard to evaluate. For
any particular application, a domain expert may be
useful in judging the quality of a resulting clustering,
however having a human in the loop may be undesir-
able. Probabilistic assumptions have often been em-
ployed to analyze clustering algorithms, for example
i.i.d. data, or further, that the data is generated by a
well-separated mixture of Gaussians.

Without any distributional assumptions on the data,
one way to analyze clustering algorithms is to formu-
late some objective function, and then to prove that
the clustering algorithm either optimizes it, or is an
approximation algorithm. Approximation guarantees,
with respect to some reasonable objective, are there-
fore desirable. The k-means objective is a simple, in-
tuitive, and widely-cited clustering objective, however
few algorithms provably approximate it, even in the
batch setting. In this work, inspired by an open prob-
lem posed by Dasgupta [15], our goal is to approximate
the k-means objective in the online setting.

1.1 The k-means clustering objective

One of the most widely-cited clustering objectives for
data in Euclidean space is the k-means objective. For
a finite set, S, of n points in Rd, and a fixed positive

Online Clustering with Experts

integer, k, the k-means objective is to choose a set of
k cluster centers, C in Rd, to minimize:

�
X

(C) =
X

x2S

min
c2C

kx� ck2

which we refer to as the “k-means cost” of C on X.
This objective formalizes an intuitive measure of good-
ness for a clustering of points in Euclidean space. Opti-
mizing the k-means objective is known to be NP-hard,
even for k = 2 [4]. Therefore the goal is to design ap-
proximation algorithms.

Definition 1. A b-approximate k-means clustering
algorithm, for a fixed constant b, on any input data
set X, returns a clustering C such that: �

X

(C)
b ·OPT

X

, where OPT
X

is the optimum of the k-means
objective on data set X.

Definition 2. An (a, b)-approximate k-means clus-
tering algorithm, is a b-approximation algorithm that
returns at most a · k centers.

Surprisingly few algorithms have approximation guar-
antees with respect to k-means, even in the batch set-
ting. Even the algorithm known as “k-means” does
not have an approximation guarantee.

Our contribution is a family of online clustering algo-
rithms, with regret bounds, and approximation guar-
antees with respect to the k-means objective, of a novel
form for the online clustering setting. Notably, our
approximation bounds are with respect to the optimal
k-means cost on the entire data stream seen so far,
even though the algorithm is online.

We extend algorithms from [19] and [25] to the un-
supervised learning setting and introduce a flexible
framework in which our algorithms take a set of can-
didate clustering algorithms, as experts, and track the
performance of the “best” expert, or best sequence
of experts, for the data. Instead of computing pre-
diction errors in order to re-weight the experts, the
algorithms compute an approximation to the current
value of the k-means objective obtained by each ex-
pert. Our approach lends itself to settings in which
the user is unsure of which clustering algorithm to use
for a given data stream, and exploits the performance
advantages of any batch clustering algorithms used as
experts. Our algorithms vary in their models of the
time-varying nature of the data; we demonstrate en-
couraging performance on a variety of data sets.

1.2 Related work

The widely used “k-means algorithm,” is a batch
clustering algorithm that can be viewed as a
hard-assignment variant of Expectation-Maximization
(EM). To avoid confusion with the k-means objective,

we refer to it as Lloyd’s algorithm [23]. While it typi-
cally (but not always [28]) converges quickly, its solu-
tion has not been shown to approximate the k-means
objective. Much clustering research involves assump-
tions on the data to be clustered, such as i.i.d. data,
or data that admits a clustering with well separated
means e.g. [14, 13].1 Another analysis model assumes
a “target” clustering for the specific application and
data set, that is close to any constant approximation
of the clustering objective [7]. In contrast, our analy-
ses require no distributional assumptions.

There exist some batch clustering algorithms with ap-
proximation guarantees with respect to the k-means
objective; part of our analysis exploits this. Some ex-
amples include k-means++, an algorithm that approx-
imates the k-means objective, by a factor of O(log k)
[5]. Constant approximations have been shown for a
local search technique [20], the k-means# algorithm
[3], which outputs O(k log k) centers, and the work of
[2], which outputs O(k) centers. Several works have
studied clustering finite data streams [17, 3, 1]. Work
by [3] does so with respect to the k-means objective,
and extends a streaming clustering algorithm ([17])
for the k-medoid objective (also known as k-median),
which is to minimize the sum of distances, in a gen-
eral metric space, of the points to their closest centers,
using a subset of the input points. Facility location, a
problem related to k-medoid, has also been studied in
the online setting [24].

A number of techniques for online clustering have en-
joyed success in practice, such as [21], and variants of
EM (e.g. [22]), and some have been analyzed under
stochastic assumptions on the data, e.g. [11]. Several
online clustering algorithms have approximation guar-
antees with respect to clustering objectives other than
k-means. A doubling algorithm due to [12], and the
cover tree algorithm of [9], both provide a constant
approximation to the k-center objective, which mini-
mizes the maximum distance from an input point to
its closest cluster center, in a general metric space.2

There has also been some work on ensemble methods
for clustering, in a batch setting, e.g. [16, 27].

We are not aware of previous regret analyses for clus-
tering, other than an analysis of randomized PCA [30],
which could be viewed as clustering for the case k = 1.

2 Online k-means approximation

Specifying an evaluation framework for online cluster-
ing is a challenge. One cannot use a similar analysis

1[8] provides an algorithm for an arbitrarily small sep-
aration, when the clusters are spherical Gaussians.

2Intuitively, this objective is less robust to outliers than
k-means, for data in Euclidean space.

Anna Choromanska, Claire Monteleoni

setting to [5, 3] in the finite data stream case. With
no assumptions on the data, one can always design a
sequence of observations that will fool a seeding al-
gorithm (that picks a set of centers and does not up-
date them) into choosing seeds that are arbitrarily bad
(with respect to the k-means objective) for some fu-
ture observations, or else into simply abstaining from
choosing seeds.

Our analysis is inpired, in part, by an evaluation
framework proposed by Dasgupta as an analog to re-
gret [15]. The regret framework, for the analysis of
supervised online learning algorithms, evaluates algo-
rithms with respect to their additional prediction loss
relative to a hindsight-optimal comparator method.
With the goal of analyzing online clustering algo-
rithms, Dasgupta proposed bounding the di↵erence
between the cumulative clustering loss since the first
observation:

L
T

(alg) =
X

tT

min
c2C

t

kx
t

� ck2 (1)

where the algorithm outputs a clustering, C
t

, before
observing the current point, x

t

, and the optimal k-
means cost on the points seen so far.

Our approach, also inspired by regret analyses, is to
instead evaluate the performance of an online cluster-
ing algorithm relative to a finite set of batch cluster-
ing algorithms, with respect to Equation 1. In our
model, the online clustering algorithm has access to a
set of (batch) clustering algorithms as “experts.” We
provide clustering variants of predictors with expert
advice from [19] and [25], and analyze them by first
bounding this quantity in terms of regret with respect
to the cumulative clustering loss of the best expert,
or best sequence of experts, computed in hindsight.
Then, adding assumptions that the batch clustering
algorithms are b-approximate with respect to the k-
means objective, we extend our regret bounds to ob-
tain bounds on this quantity with respect to the opti-
mal k-means cost on the points seen so far.

3 Online clustering with experts

Here we extend algorithms from [19] and [25] to the
unsupervised learning setting. These supervised on-
line learning algorithms form their predictions on the
basis of a set of n “expert” predictors, i, subject to
a probability distribution over experts, p

t

(i), which is
updated dynamically with time, t. In [25], algorithms
in [19] were derived as Bayesian updates of an ap-
propriately defined generalized Hidden Markov Model
(HMM). The identity of the best performing expert
at a given time is the hidden variable. Di↵erent up-
date rules for p

t

(i) correspond to di↵erent transition

dynamics, modeling di↵erent levels of non-stationarity.

In our setting, the experts output clusterings, and in-
stead of computing prediction errors in order to re-
weight the experts, we compute an approximation to
the k-means objective obtained by each expert, in-
spired by Equation 1. We define “loss” and “clus-
tering” functions, unsupervised analogs to “prediction
loss,” and “prediction.” In the clustering setting, the
algorithm is not “predicting” the current observation
x
t

; x
t

is in fact used in the clusterings of each of the
experts, that inform the current clustering. This is
a real-time analog to the standard clustering task, in
which the action of the algorithm is not to predict,
but to assign x

t

to a (dynamic) cluster center. We
show that our choice of loss and clustering functions
satisfies (c, ⌘)-realizability, a condition that allows us
to extend regret analyses from [19, 25], for a family of
algorithms.

3.1 Preliminaries

Here we define notation. Let k be the desired number
of clusters. We index time by t, and let x

t

be the
most recent observation in the stream. There are n
experts, which we index by i. Let Ci

t

denote the set
of centers output by the ith expert at time t. We
denote the center in Ci

t

closest to the data point x
t

as ci
t

= argmin
c2C

i

t

kx
t

� ck2. We use the notation
D(·k·) for the Kullback-Leibler divergence, and H(·)
for the entropy.

Definition 3. The loss of a center, c
t

, output by
a clustering algorithm, at time t, is L(x

t

, c
t

) =��x

t

�c

t

2R

��2. The normalization factor takes some R �
kx

t

k for all t.

The bound, kx
t

k R, is justified by the fact that any
algorithm that can store points, x

t

, in memory, has a
physical constraint on the size of a word in memory.
We assume that R also upper bounds kci

t

k for all i and
t. Given the bound on kxk, this would certainly hold
for any reasonable centers. L

t

with a single argument
computes loss of any clustering algorithm or set of cen-
ters, and evaluates to our loss function computed on
the closest center to x

t

. We refer to cumulative loss
over time (from the first observation) of any clustering

algorithm as: L
T

=
P

T

t=1

L
t

. For the loss on a se-
quence indexed from time s to t, we use the notation:
L
<s,t>

=
P

t

t

0
=s

L
t

0 , and for the loss on a sequence
indexed from time s+ 1 to t, we use L

(s,t>

.

The family of algorithms that we introduce di↵er in
their update rules for the distribution over experts,
p
t

(i). With respect to that distribution, we define the
output of our algorithms as follows.

Definition 4. The clustering of our algorithm at

Online Clustering with Experts

time t, with respect to its current distribution over ex-
perts, p

t

(i), is the weighted sum of the closest centers
to x

t

, per expert: clust(t) =
P

n

i=1

p
t

(i)ci
t

.

Note that this is a single center. For any usage in
which k (or ak) centers must be output at every time-
step, it is equivalent, with respect to all our analyses,
for the algorithm to output the center above, in ad-
dition to the k � 1 (or ak � 1) centers, Ci

⇤

t

� {ci⇤
t

},
where i⇤ = argmax

i2{1,...,n} pt(i), i.e. the remaining
centers output by the clustering algorithm with the
current highest weight. In the experiments, we use
this version to evaluate the k-means cost of the algo-
rithm on the entire stream seen so far, however since
this does not a↵ect our analysis, we will simply refer
to the clustering as defined above.

3.2 Algorithms

Algorithm 1 summarizes our Online Clustering with
Experts (OCE) algorithms. We present 3 variants
of OCE in Algorithm 1: the Static-Expert algorithm
(from [19], with a prior history in the literature), and
Fixed-share, introduced by Herbster and Warmuth
[19] as a simple way to model time-varying data in the
experts setting. We also provide an OCE version of
Learn-↵, an algorithm introduced by Monteleoni and
Jaakkola [25], in the supervised setting, to address the
question of how to run Fixed-Share algorithms with-
out the knowledge of the hindsight optimal value of
the parameter ↵. Learn-↵ learns the parameter online
using Static-Expert updates over a set of Fixed-share
algorithms, each with a di↵erent value of the ↵ param-
eter; we use the discretization procedure from [25].3

We state the algorithms in their most general form,
in which the experts are arbitrary black boxes that
output a set of cluster centers at each iteration, and
filter them to just return the center closest to x

t

, the
current observation. The OCE algorithm views only
this vector of n centers, c, before producing its out-
put. Then, to compute loss and perform the weight
updates, it views x

t

, the current observation in the
stream. Our regret analyses hold in this setting. When
the experts are instantiated as batch clustering algo-
rithms, we denote byW

t

a sliding window, of sizeW , of
the stream through and including x

t

, on which the ex-
perts compute the current clustering. This aligns with
approximation guarantees for clustering algorithms in
the literature, i.e. algorithms cluster an input data set
and are then evaluated with respect to the optimum of
some objective function, computed on the same data
set. Our approximation guarantees hold in this set-
ting, and we show that no b-approximate clustering

3We also have analyses for a generalization of Fixed-
Share, with arbitrary transition dynamics, studied in [25].

algorithm can trivially optimize our loss function by
outputting x

t

. The algorithm also permits the use of
(a, b)-approximation algorithms as experts.

Running time analysis. Using a straight-forward
analysis of our 3 variants of the OCE algorithm listed
in Algorithm 1 yields running-times, per observation,
of: O(dkn), O(dkn + n2), and O(dkn + m(n + n2)),
respectively, in addition to the times to run each clus-
tering expert, where n is the number of experts, d is
the dimension, k is the desired number of clusters (k is
replaced with ak when run with experts that output ak
centers), and m is the size of the discretization of ↵ in
the Learn-↵ algorithm. The discretization can be set
using the procedure from [25], in which m = O(

p
T)

for desired sequence length T . For a strictly online
algorithm, a uniform discretization of constant size m
can be used instead; we have observed that the choice
of discretization does not a↵ect performance by much.

4 Performance guarantees

We will give two types of performance guarantees for
our family of online clustering algorithms. First we will
provide similar bounds to those in [19, 25] for the set-
ting of supervised online learning with experts. Then
we will instantiate the experts as batch clustering al-
goirthms, with approximation guarantees, to yield on-
line variants of approximation guarantees with respect
to the k-means objective. Omitted proofs appear in
the appendix. Bounds are not optimized with respect
to constants.

4.1 Regret bounds

In order to make use of analysis tools from the litera-
ture, we first need to show that for our clustering and
loss functions, a certain property holds. Here we refor-
mulate the definition of (c, ⌘)-realizability presented
in [19], and due to [18, 29], and demonstrate that it
holds in our setting.

Theorem 1. The loss function L defined in Defini-
tion 3 and the clustering function defined in Defini-
tion 4 are (2, 1

2

)-realizable, i.e.: L(x
t

, clust(t))
�2 log

P
n

i=1

p(i)e�
1

2

L(x

t

,c

i

t

) for all n 2 N and all x
t

and ci
t

such that kx
t

k R, kci
t

k R, and all stochas-
tic vectors p 2 [0 1]n.

Using this, we can now provide regret bounds for
a family of online clustering algorithms. For our
OCE algorithm’s Static-Expert variant, shown in Al-
gorithm 1, we have the following bound.

Theorem 2. Given any sequence of length T , let a
i

⇤
be the best expert in hindsight (with respect to cumula-
tive loss on the sequence). Then the cumulative loss of

Anna Choromanska, Claire Monteleoni

Algorithm 1 OCE: Online Clustering with Experts (3 variants)

Inputs: Clustering algorithms {a
1

, a
2

, . . . , a
n

}, R: large constant, Fixed-Share only: ↵ 2 [0, 1],
Learn-↵ only: {↵

1

,↵
2

, . . . ,↵
m

} 2 [0, 1]m

Initialization: t = 1, p
1

(i) = 1/n, 8i 2 {1, . . . , n}, Learn-↵ only: p
1

(j) = 1/m, 8j 2 {1, . . . ,m},
p
1,j

(i) = 1/n, 8j 2 {1, . . . ,m}, 8i 2 {1, . . . , n}
At t-th iteration:
Receive vector c, where ci is the output of algorithm a

i

at time t.
clust(t) =

P
n

i=1

p
t

(i)ci // Learn-↵: clust(t) =
P

m

j=1

p
t

(j)
P

n

i=1

p
t,j

(i)ci

Output: clust(t) // Optional: additionally output Ci

⇤ � {ci⇤}, where i⇤ = argmax
i2{1,...,n} pt(i)

View x
t

in the stream.
For each i 2 {1, . . . , n}:

L(i, t) = kx

t

�c

i

2R

k2
——

p
t+1

(i) = p
t

(i)e�
1

2

L(i,t) 1. Static-Expert

——
For each i 2 {1, . . . , n}: 2. Fixed-Share

p
t+1

(i) =
P

n

h=1

p
t

(h)e�
1

2

L(h,t)P (i | h;↵) // P (i | h;↵) = (1� ↵) if i = h, ↵

n�1

o.w.
——

For each j 2 {1, . . . ,m}: 3. Learn-↵
lossPerAlpha[j] = � log

P
n

i=1

p
t,j

(i)e�
1

2

L(i,t)

p
t+1

(j) = p
t

(j)e�lossPerAlpha[j]

For each i 2 {1, . . . , n}:
p
t+1,j

(i) =
P

n

h=1

p
t,j

(h)e�
1

2

L(h,t)P (i | h;↵
j

)
Normalize p

t+1,j

.
——

Normalize p
t+1

.
t=t+1

the algorithm obeys the following bound, with respect
to that of the best expert:

L
T

(alg) L
T

(a
i

⇤) + 2 log n

The proof follows by an almost direct application of
an analysis technique of [25]. We now provide regret
bounds for our OCE Fixed-Share variant. First, we fol-
low the analysis framework of [19] to bound the regret
of the Fixed-Share algorithm (parameterized by ↵)
with respect to the best s-partition of the sequence.4

Theorem 3. For any sequence of length T , and for
any s < T , consider the best partition, computed in
hindsight, of the sequence into s segments, mapping
each segment to its best expert. Then, letting ↵0 =
s/(T � 1): L

T

(alg) L
T

(best s-partition)
+ 2[log n+ s log(n� 1) + (T � 1)(H(↵0) +D(↵0k↵))]

We also provide bounds on the regret with respect to
the Fixed-Share algorithm running with the hindsight
optimal value of ↵. We extend analyses in [25, 26]
to the clustering setting, which includes providing a
more general bound in which the weight update over

4To evaluate this bound, one must specify s.

experts is parameterized by an arbitrary transition dy-
namics; Fixed-Share follows as a special case. Fol-
lowing [26, 25], we will express regret bounds for
these algorithms in terms of the following log-loss:
Llog

t

= � log
P

n

i=1

p
t

(i)e�
1

2

L(x

t

,c

i

t

). This log-loss re-
lates our clustering loss (Definition 3) as follows.

Lemma 1. L
t

 2Llog

t

Proof. By Theorem 1: L
t

= L(x
t

, clust(t))
�2 log

P
n

i=1

e�
1

2

L(x

t

,c

i

t

) = 2Llog

t

Theorem 4. The cumulative log-loss of a generalized
OCE algorithm that performs Bayesian updates with
arbitrary transition dynamics, ⇥, a matrix where rows,
⇥

i

, are stochastic vectors specifying an expert’s distri-
bution over transitioning to the other experts at the
next time step, obeys5:

Llog

T

(⇥) Llog

T

(⇥⇤) + (T � 1)
nX

i=1

⇢⇤
i

D(⇥⇤
i

k⇥
i

)

where ⇥⇤ is the hindsight optimal (minimizing log-loss)

5As in [26, 25], we express cumulative loss with respect
to the algorithms’ transition dynamics parameters.

Online Clustering with Experts

setting of the transition matrix, for the observed se-
quence, and ⇢⇤

i

is the marginal probability of being in
state i, of the hindsight optimal algorithm.

Corollary 1. For our OCE algorithm’s Fixed-
share(↵) variant:

Llog

T

(↵) Llog

T

(↵⇤) + (T � 1)D(↵⇤k↵)

where ↵⇤ is the hindsight optimal setting of the param-
eter ↵ for the observed sequence.

In the supervised setting, the analogous regret for
Fixed-share has a sequence-dependent lower bound
which can be linear in T [25]. Now we address the
setting in which ↵⇤ is not known beforehand, and pro-
vide a regret bound for the OCE Learn-↵ variant.

Theorem 5. For our OCE algorithm’s Learn-↵ vari-
ant, using a discretization of the ↵ parameter, {↵

j

} of
size m, where ↵⇤ is the hindsight optimal ↵:

Llog

T

(alg) Llog

T

(↵⇤) + (T � 1)min
{↵

j

}
D(↵⇤k↵

j

) + logm

The proof uses Corollary 1 and a variant of regret
bound for Static-Expert, which is used by Learn-↵ to
update the weights over Fixed-share algorithms. By
choice of discretization, {↵

j

}, we can control the sec-
ond term. For example, allowing the discretization to
depend on T , [25] optimized their regret bound.

4.2 Approximation guarantees

When the experts are k-means approximation algo-
rithms, we can extend our regret bounds to provide
online variants of approximation guarantees for OCE.
Now each expert i is a b

i

-approximate k-means cluster-
ing algorithm, a

i

. First we show that no b-approximate
clustering algorithm will trivially minimize our cluster-
ing loss by always outputting x

t

as the current center,
to attain zero loss. That is, given b, we provide a se-
quence of examples such that outputting x

t

violates
the b-approximation guarantee.

Lemma 2. If an algorithm is b-approximate with re-
spect to the k-means objective, there exist sequences
ending in x

t

for which it cannot output x
t

as a center.

We continue by providing the following lemmas, which
may also be of general interest.

Lemma 3. Let OPT
W

1

be the optimum value of the
k-means objective for the data set seen in window W

1

,
OPT

W

2

be the optimum value of the k-means objective
for the data set seen in window W

2

, and OPT
W

1

[W

2

be the optimum value of the k-means objective for the
data set seen in window W

1

[W
2

. Then: OPT
W

1

+
OPT

W

2

 OPT
W

1

[W

2

.

Proof. Let C
1

be the clustering minimizing the k-
means objective on the window W

1

and C
2

be the
clustering minimizing the k-means objective on the
window W

2

and let the C
3

be the clustering minimiz-
ing the k-means objective on the window W

1

[W
2

.
Then: OPT

W

1

[W

2

=
P

x2W

1

[W

2

min
z2C

3

kx � zk2 =P
x2W

1

min
z2C

3

kx�zk2+
P

x2W

2

min
z2C

3

kx�zk2 �P
x2W

1

min
z2C

1

kx�zk2+
P

x2W

2

min
z2C

2

kx�zk2 =
OPT

W

1

+OPT
W

2

.

Lemma 4. Given any b-approximate k-means cluster-
ing algorithm, the sum over a sequence of length T of
its k-means costs when run on sliding windows W

t

of
size W , obeys:

P
T

t=1

�
W

t

 b ·W ·OPT
<1,T>

.

Lemma 5. Given any b-approximate k-means clus-
tering algorithm, a, its cumulative loss when run on a
sliding window of size W on a stream of length T ,
obeys:

P
T

t=1

L
t

(a) b·W
4R

2

OPT
<1,T>

.

In all results below, we denote by OPT
T

the optimum
value of the k-means objective for the entire sequence
of length T . Now we state the bound for the OCE
Static-Expert algorithm.

Theorem 6. Given any sequence of length T , let a
i

⇤
be the best expert in hindsight (with respect to cu-
mulative loss on the sequence). When a

i

⇤ is a b-
approximate batch clustering algorithm run on sliding
windows W

t

of size W : L
T

(alg) b·W
4R

2

OPT
T

+
2 log n.

Proof. We will expand the result from Theorem 2, us-
ing our instantiation of the experts as b

i

-approximate
clustering algorithms, trained on sliding windows of
the data. For ease of notation let us denote by
b, the approximation factor for a⇤

i

, the best expert
with respect to minimizing L

T

(a
i

) on the observed
sequence of length T . L

T

(alg) L
T

(a⇤
i

) + 2 log n

=
P

T

t=1

L
t

(a⇤
i

) + 2 log n b·W
4R

2

OPT
<1,T>

+ 2 log n.
where the last inequality follows from Lemma 5.

Using similar arguments, along with Lemma 1, we can
extend our regret bounds for the other algorithms to
provide online variants of approximation guarantees.
We provide two such bounds for our OCE variant of
Fixed-Share, corresponding to Theorems 3 and 1; the
appendix contains our bound for the general version.

Theorem 7. For any sequence of length T , and for
any s < T , consider the best partition, computed
in hindsight, of the sequence into s segments, map-
ping each segment to its best expert. Let each of the
n experts be b-approximate w.r.t. k-means, and run
on sliding windows W

t

of size W . Then, letting
↵0 = s/(T � 1): L

T

(alg) bW

4R

2

OPT
T

+ 2[log n+ s log(n� 1) + (T � 1)(H(↵0) +D(↵0k↵))]

Anna Choromanska, Claire Monteleoni

5 10 15 20 25
0

1

2

3

4

5

6

7

8

9
x 108

k

k−
m

ea
ns

 c
os

t

Mixture of 25 Gaussians

5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 108

k

k−
m

ea
ns

 c
os

t

Cloud data

5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 108

k

k−
m

ea
ns

 c
os

t

Spambase data

 Expert 1
Expert 2
Expert 3
Static−Expert
Fixed−Share 1
Fixed−Share 2
Fixed−Share 3
Fixed−Share 4
Learn−alpha
Doubling algorithm
Online Lloyds

5 10 15 20 25
0

0.5

1

1.5

2

2.5
x 1010

k

k−
m

ea
ns

 c
os

t

Intrusion data

5 10 15 20 25
0

0.5

1

1.5

2

2.5

3

3.5
x 107

k

k−
m

ea
ns

 c
os

t

Forest fires data

5 10 15 20 25
3

3.5

4

4.5

5

5.5
x 104

k

k−
m

ea
ns

 c
os

t

Robot data

Figure 1: k-means cost on the entire sequence, versus k, per experiment. Legend in upper right.

Theorem 8. For our OCE algorithm’s Fixed-share(↵)
variant, where ↵⇤ is the hindsight-optimal ↵:

L
T

(↵) bW

4R2

OPT
T

+ 2(T � 1)D(↵⇤k↵)

In our bound for the OCE Learn-↵ variant, the choice
of discretization, {↵

j

}, governs the second term.

Corollary 2. For our OCE algorithm’s Learn-↵ vari-
ant, using a discretization of the ↵ parameter, {↵

j

} of
size m, where ↵⇤ is the hindsight optimal ↵:

L
T

(alg) bW

4R2

OPT
T

+2(T�1)min
{↵

j

}
D(↵⇤k↵

j

)+logm

The proof combines Theorem 5 with the bound on
Llog

T

(↵⇤) that was derived in proving Theorem 8.

5 Experiments

We ran experiments with OCE, using other clustering
algorithms from the literature as experts. We used real
and simulated data sets, some of which had been used
in past works on batch clustering [5], and clustering
(finite) data streams [3]. The simulated data consists
of samples from a mixture of 25 well-separated Gaus-
sians in R15; the “true” k is therefore 25. We also
experimented on 5 UCI data sets, in which the “true”
k is unknown: Cloud (d = 10), Spambase (d = 58), In-
trusion (KDD cup 99; d = 38), Forest Fires (d = 13),
and Wall-following robot navigation (d = 24) [6]. We
used N = 1000 samples for all data sets except Cloud
(N = 1024) and Forest Fires (N = 517).

We used 6 clustering algorithms as experts:6 1.
Lloyd’s algorithm.7 2. k-means++. 3. An heuris-

6We used implementations of these clustering algo-
rithms by Ragesh Jaiswal.

7Centers were initialized randomly, per sliding window.

tic called “Online k-means.”8 4.-6. 3 variants of k-
means# [3]. These are all batch clustering algorithms,
except Online k-means, which we also restricted to op-
erate only on a sliding window. Only the k-means++
and k-means# variants have approximation guaran-
tees with respect to the k-means objective. Our The-
orem 2 holds regardless, but Theorem 6 requires at
least the best performing expert (in hind-sight) to be
b-approximate with respect to the k-means objective.

The window size,W , andR (used in our analysis to up-
per bound the norm of any data point, and any cluster
center output by an expert), were set arbitrarily. Tun-
ing or informing these decisions by choice of data and
expert clustering algorithms, could lead to improved
peformance. While we set W = 200, we also experi-
mented over window size, and observed, as expected,
decreasing loss with increasing window size for very
stationary data sets, yet no trend for non-stationary
data sets, which is consistent with our analysis (where
the upper bound on loss increases with window size).

Table 1 reports mean and standard deviation, over
the sequence, of the k-means cost on all points seen
so far. The experts are denoted e

i

; the OCE meth-
ods are: se=Static-Expert (equivalent to Fixed-Share
with ↵ = 0), f

1�3

are Fixed-Share algorithms using
the smallest 3 values of ↵ in the discretization, f

4

uses the middle value, and f
5

uses the highest value,
and la=Learn-↵. We ran experiments with 3 experts
(e1� e3) and 6 experts (e1� e6); the table separates
the experts from the algorithms compared, in each ex-
periment. In the 3-expert experiment, we also com-
pared with several online clustering algorithms from
the literature, run on the whole sequence: ol=Online
k-means (which, run on windows, was also used as ex-

8This algorithm has apparently been used in practice
for a while; pseudocode is stated in [15].

Online Clustering with Experts

25 Gaussians Cloud ⇥107 Spam ⇥108 Intrus. ⇥1010 For. fire ⇥106 Robot ⇥104

e
1

0.6193±0.3195⇥10

8 1.3180±1.9395 0.2706±0.2793 0.1988±0.2104 0.7766±0.6413 1.8362±1.2172

e
2

0.0036±0.0290⇥10

7 0.8837±1.3834 0.1042±0.1463 0.0743±0.1041 0.6616±0.4832 1.8199±1.2102

e
3

2.0859±0.9204⇥10

8 4.6601±7.8013 1.6291±1.3292 0.7145±0.5376 7.1172±7.6576 2.3590±1.4070

da 0.0179±0.0723⇥10

8 0.5285±0.2959 0.1971±0.0826 0.0050±0.0529 1.4496±0.6484 2.5514±1.4239

ol 1.7714±0.6888⇥10

8 4.2322±2.4965 0.8222±0.7619 1.3518±0.3827 2.9617±1.3006 1.9806±1.0160

se 0.0014±0.0143⇥10

8 0.8855±1.3824 0.1059±0.1469 0.0778±0.1094 0.6620±0.4831 1.8139±1.2032

f
1

0.0014±0.0143⇥10

8 0.8855±1.3823 0.1059±0.1469 0.0779±0.1100 0.6614±0.4819 1.8137±1.2032

f
2

0.0014±0.0143⇥10

8 0.9114±1.4381 0.1059±0.1470 0.0778±0.1099 0.7008±0.5382 1.8134±1.2031

f
3

0.0014±0.0143⇥10

8 1.0715±1.6511 0.1059±0.1470 0.0779±0.1099 0.6996±0.5361 1.8145±1.2031

f
4

0.0124±0.0193⇥10

8 1.4806±2.6257 0.3723±0.7351 0.1803±0.2358 1.0489±1.4817 1.8334±1.2212

f
5

1.3811±1.0881⇥10

8 3.0837±6.3553 0.8212±1.1583 0.4126±0.5040 4.4481±6.2816 2.2576±1.3849

la 0.0012±0.0136⇥10

8 0.8862±1.3920 0.1076±0.1483 0.0785±0.1108 0.6616±0.4805 1.8130±1.2026

e
4

7.3703±4.2635⇥10

3 0.6742±1.2301 0.0687±0.1355 0.0704±0.1042 0.2316±0.2573 1.3667±1.0176

e
5

8.2289±4.4386⇥10

3 0.6833±1.2278 0.0692±0.1356 0.0704±0.1042 0.2625±0.2685 1.4385±1.0495

e
6

9.8080±4.7863⇥10

3 0.7079±1.2364 0.0710±0.1360 0.0705±0.1042 0.3256±0.2889 1.5713±1.1011

se 0.1360±1.4323⇥10

6 0.6743±1.2300 0.0687±0.1355 0.0705±0.1045 0.2322±0.2571 1.3642±1.0138

f
1

0.1360±1.4323⇥10

6 0.6743±1.2300 0.0687±0.1355 0.0705±0.1045 0.2322±0.2571 1.3640±1.0135

f
2

0.1361±1.4322⇥10

6 0.6746±1.2298 0.0687±0.1355 0.0705±0.1045 0.2322±0.2572 1.3636±1.0130

f
3

0.1364±1.4322⇥10

6 0.6743±1.2300 0.0687±0.1355 0.0711±0.1055 0.2321 ±0.2570 1.3634±1.0127

f
4

0.0027±0.0144⇥10

8 0.7207±1.3025 0.0707±0.1357 0.0773±0.1203 0.2776±0.4917 1.3963±1.0339

f
5

1.4039±1.0790⇥10

8 3.0786±6.4109 0.7155±1.0650 0.4227±0.5179 4.6103±6.3019 2.3142±1.4127

la 0.0012±0.0134⇥10

8 0.6742±1.2300 0.0687±0.1355 0.0708±0.1046 0.2318±0.2573 1.3632±1.0128

Table 1: Mean and standard deviation, over the sequence, of k-means cost on points seen so far. k = 25 for
Gaussians, k = 15 otherwise. The best expert and the best 2 scores of the algorithms, per experiment, are bold.
Below the triple lines, 3 more experts are added to the ensemble.

pert 3.), and the “Doubling algorithm” (da).9 Neither
of these have known approximation guarantees with
respect to the k-means objective, however the Dou-
bling algorithm approximates the k-center objective
[12]. This evaluation is a k-means cost variant of pro-
gressive validation analysis, a standard evaluation of
online learning algorithms in the supervised setting,
analyzed in [10] with respect to k-fold cross-validation
error and standard batch holdout error.

In two of the experiments, the Doubling algorithm
achieves the lowest mean k-means cost over the se-
quence; in the other experiments, at least one of our
OCE methods does. Both the 3 and 6-expert exper-
iments demonstrate that, without prior knowledge of
the sequence, Learn-↵ is the most applicable, as its
performance tracks that of the best Fixed-Share(↵).

In Figure 1 we vary k from 5 to 25 in multiples of
5 as in [3], and state the final k-means cost achieved
by each method in the 3-experts experiments. The
OCE methods often achieve lower final k-means cost
than the other algorithms. In particular, Learn-↵ suf-
fers lower k-means cost than Online k-means in all
experiments except Cloud: k = 25. For most k, the
Doubling algorithm achieves lower cost on 2 data sets,

9These algorithms output k centers so running them
with experts 4-6, which can output more than k centers,
would not be a fair comparison, since OCE can output as
many centers as its experts.

but higher cost on the remaining 4 data sets, although
in the simulation where the true k = 25, the results
are comparable. For Robot data, which is clearly non-
stationary, the performance of Doubling is significantly
worse than that of Learn-↵ for all k tested. Thus OCE
has (at least) comparable performance over a variety
of data sets to these existing methods that have not
been analyzed with respect to the k-means objective;
moreover, it exploits the performance advantages of
the clustering algorithms used as experts.

6 Conclusions and future work

There are several interesting directions for future work.
Extending from our present work, we are looking into
aggregating all the cluster centers over all experts, so
as to remove the assumption that experts filter their
centers to return the one closest to the current point
in the stream. We would also like to run thorough
experiments on extremely non-stationary data sets to
better explore the empirical di↵erences among the var-
ious algorithms.

We believe this is the first work providing regret
bounds for online clustering in the case k > 1. This
opens up a range of possibilities; we can also explore
an online clustering with experts setting in which the
experts need not be clustering algorithms.

Anna Choromanska, Claire Monteleoni

References

[1] Marcel R. Ackermann, Christian Lammersen, Marcus
Märtens, Christoph Raupach, Christian Sohler, and
Kamil Swierkot. Streamkm++: A clustering algo-
rithms for data streams. In ALENEX, 2010.

[2] A. Aggarwal, A. Deshpande, and R. Kannan. Adap-
tive sampling for k-means clustering. In APPROX,
2009.

[3] Nir Ailon, Ragesh Jaiswal, and Claire Monteleoni.
Streaming k-means approximation. In NIPS, 2009.

[4] Daniel Aloise, Amit Deshpande, Pierre Hansen, and
Preyas Popat. Np-hardness of euclidean sum-of-
squares clustering. Mach. Learn., 75:245–248, May
2009.

[5] David Arthur and Sergei Vassilvitskii. k-means++:
the advantages of careful seeding. In SODA, 2007.

[6] A. Asuncion and D.J. Newman. UCI machine learning
repository, University of California, Irvine, School of
Information and Computer Sciences, 2007.

[7] M.-F. Balcan, A. Blum, and A. Gupta. Approximate
clustering without the approximation. In SODA, 2009.

[8] M. Belkin and K. Sinha. Toward learning gaussian
mixtures with arbitrary separation. In COLT, 2010.

[9] A. Beygelzimer, S. Kakade, and J. Langford. Cover
trees for nearest neighbor. In ICML, pages 97–104,
2006.

[10] A. Blum, A. Kalai, and J. Langford. Beating the
hold-out: Bounds for k-fold and progressive cross-
validation. In COLT, 1999.

[11] Olivier Cappé and Eric Moulines. Online EM algo-
rithm for latent data models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology),
71:593–613, 2009.

[12] Moses Charikar, Chandra Chekuri, Tomas Feder, and
Rajeev Motwani. Incremental clustering and dynamic
information retrieval. SIAM J. Comput., 33(6):1417–
1440, 2004.

[13] K. Chaudhuri and S. Rao. Learning mixtures of prod-
uct distributions using correlations and independence.
In COLT, 2008.

[14] Sanjoy Dasgupta. Learning mixtures of gaussians. In
FOCS, 1999.

[15] Sanjoy Dasgupta. Course notes, CSE 291: Top-
ics in unsupervised learning. Lecture 6: Cluster-
ing in an online/streaming setting. Section 6.2.3.
In http://www-cse.ucsd.edu/⇠dasgupta/291/lec6.pdf,
University of California, San Diego, Spring Quarter,
2008.

[16] X. Z. Fern and C. E. Brodley. Solving cluster ensemble
problems by bipartite graph partitioning. In ICML,
2004.

[17] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and
L. O’Callaghan. Clustering data streams: Theory and
practice. IEEE Transactions on Knowledge and Data
Engineering, 15(3):515–528, 2003.

[18] David Haussler, Jyrki Kivinen, and Manfred K. War-
muth. Sequential prediction of individual sequences
under general loss functions. IEEE Trans. on Infor-
mation Theory, 44(5):1906–1925, 1998.

[19] M. Herbster and M. K. Warmuth. Tracking the best
expert. Machine Learning, 32:151–178, 1998.

[20] T. Kanungo, D. M. Mount, N. Netanyahu, C. Piatko,
R. Silverman, and A. Y. Wu. A local search approx-
imation algorithm for k-means clustering. Computa-
tional Geometry: Theory and Applications, 28:89–112,
2004.

[21] Philipp Kranen, Ira Assent, Corinna Baldauf, and
Thomas Seidl. The clustree: Indexing micro-clusters
for anytime stream mining. In Knowledge and Infor-
mation Systems Journal (KAIS), 2010.

[22] Percy Liang and Dan Klein. Online EM for unsuper-
vised models. In NAACL, pages 611–619, 2009.

[23] S. P. Lloyd. Least square quantization in pcm. Bell
Telephone Laboratories Paper, 1957.

[24] Adam Meyerson. Online facility location. In FOCS,
2001.

[25] Claire Monteleoni and Tommi Jaakkola. Online learn-
ing of non-stationary sequences. In NIPS, 2003.

[26] Claire E. Monteleoni. Online learning of non-
stationary sequences. SM Thesis. In MIT Artificial
Intelligence Technical Report 2003-011, 2003.

[27] Vikas Singh, Lopamudra Mukherjee, Jiming Peng,
and Jinhui Xu. Ensemble clustering using semidefi-
nite programming with applications. Mach. Learn.,
79:177–200, May 2010.

[28] Andrea Vattani. k-means requires exponentially many
iterations even in the plane. In 25th Annual Sympo-
sium on Computational Geometry, 2009.

[29] V. G. Vovk. A game of prediction with expert advice.
J. Comput. Syst. Sci., 56:153–173, April 1998.

[30] Manfred K. Warmuth and Dima Kuzmin. Random-
ized pca algorithms with regret bounds that are log-
arithmic in the dimension. In Advances in Neural In-
formation Processing Systems 19, pages 1481–1488,
2007.

