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Abstract—We present a novel end-to-end learning frame-
work to enable ground vehicles to autonomously navigate
unknown environments by fusing raw pixels from a front
facing camera and depth measurements from LiDAR. A new
deep neural network architecture is introduced for mapping
the depth and vision from LIDAR and camera, respectively,
to the steering commands. The network effectively performs
modality fusion and reliably predicts steering commands even
in the presence of sensor failures. The proposed network in
trained on our own dataset, which we will publicly release,
of LIDAR depth measurements and camera images taken in
an indoor corridor environment. Comprehensive experimental
evaluation to demonstrate the robustness of our network archi-
tecture is performed to show that the proposed deep learning
neural network is able to fully autonomously navigate in the
corridor environment. Furthermore, we demonstrate that the
fusion of the camera and LIiDAR modalities provides further
bene ts beyond robustness to sensor failures. Speci cally, the
multimodal fused system shows a potential to navigate around
obstacles placed in the corridor environment and to handle
changes in environment geometry (e.g., having additional paths
such as opening of doors that were closed during training)
without being trained for these tasks.

I. INTRODUCTION

objectives is to train the system to properly merge data to
leverage both (or more) sensors and to be robust to sensor
failures.

Our work focuses on the problem of navigating of an
autonomous unmanned ground vehicle (UGV) using vision
from camera and depth measurements from LiDAR in an
indoor environment with deep learning. A novel approach
to modality fusion is presented to generate steering com-
mands for autonomous navigation of a ground vehicle. The
proposed methodology naturally extends to the setting with
multiple sensors, where one or more sensor data might be
missing.

We propose a deep learning architecture for the sensor
fusion problem that consists of two convolutional neural
networks (CNNs), each consisting of a different input modal-
ity, which are fused with a gating mechanism. The gating
mechanism is realized as a fully-connected network that is
trained to generate environment-appropriate scalar weights
for LIDAR and camera using the CNN-generated feature
vectors. These scalar weights are then utilized to obtain
the fused embedding including both modalities. The fused
embedding is then passed through additional network layers
to generate the steering command for the vehicle. The

There have been signi cant advances in machine learningaining of the network relies on the introduction of corrupted

based approaches for robotic applications in recent years dygta in the training batches (to mimic sensor failures). This
to the advancements in deep learning techniques. Deep leaginthetic sensor failure introduction enables, in effect, the
ing approaches have the ability to leverage large amounts @étwork to generalize better. The novel aspects of this paper

labeled and contextually rich data to give desired outputgye as follows:

Some recent applications of deep learning that are relevant
to this paper include autonomous car driving systems [1],
[2]. This paper addresses the robust sensor fusion prob-
lem (Figure 1) in the context of building deep learning
frameworks for self-driving vehicles equipped with multiple
sensors (mainly camera and LiDAR) although the same
methodology may be utilized for fusing a larger number of
sensors. This work is motivated by two primary objectives.
The rst objective is related to the observation, which we
also empirically verify, that the deep network trained jointly
with camera and LiDAR data (i.e., without considering
possibility of sensor failures) performs very poorly when
one of the sensors is suddenly not available, i.e., one of the
sensors intermittently going off-line. Hence, we seek to in-
troduce a learning methodology that can handle intermittent

application of deep learning for the problem of indoor
corridor tracking with a ground vehicle registering
camera and LiDAR data,

proposing a new deep learning architecture and training
method for sensor fusion that leads to a system for
autonomous driving of ground vehicles indoors that is
robust to the presence of partial data from a single
modality,

experimental demonstration of the ef cacy of the pro-
posed system on our in-house developed ground ve-
hicle that includes a real-time autopilot, single board
computer with graphics processing unit (GPU), and
integrated camera and LiDAR sensors,

releasing a new dataset dedicated to the problem of
autonomous driving of ground vehicles indoors.

e paper is organized as follows. Related literature is

is to study the possibility of obtaining better performanc

riey summarized in Section Il. The problem formulation

sensor failures during testing. The second primary objecti\%h

characteristics with the multimodal fused system than wit ted in Section Il Th hitect ¢
either sensor modality separately (e.g., see Figure 3). In otl’fﬁr presented in section [il. The architectures Tor sensor
|

words, the underlying goal addressed by both the motivatidifSion developed in this paper are discussed in Section IV,
cluding an architecture based on a gating mechanism

1Al authors are with the Department of Electrical and Computera_'S well as two o_ther a:rCh'teCtureS more S|.m|Ia.r to prior
Engineering, NYU Tandon School of Engineering, 2 MetroTech Centediterature (though in a different context than in this paper).
USA. naman.patel@nyu.edu, ac5455@nyu.edu, The training mechanisms are also discussed in Section IV.
E%%Srt‘:m%ﬁ'ihggwurthy nyu.edu, Empirical veri cation studies are presented in Section V.
yu. Finally, concluding remarks are provided in Section VI.
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Fig. 1. End-to-end learning framework for autonomous navigation in indoor environment.

Il. RELATED WORK for robust end-to-end learning of autonomous corridor driv-

Various aspects of robot autonomy has been extensivealyg and improved training techniques that enable resiliency
studied in the literature [3], [4]. For example, using Simultato sensor failure. The efcacy of the proposed approach
neous Localization and Mapping (SLAM) based approacheis demonstrated through experimental studies on our UGV
[5], [6], autonomous navigation in both indoor and outdooplatform (Figure 2).
environments has been studied using vision and depth based
sensors, such as camera, stereo camera, and LiDAR. Ob- Ill. PROBLEM FORMULATION .
stacle avoidance and navigation in uncertain environmentsWe address the problem of end-to-end learning of appro-
has been studied using various approaches [7]-[9]. Visid¥iate steering commands for a UGV to drive autonomously
processing for indoor wall detection and corridor foillowingthrough an indoor environment using camera and LiDAR
has been studied using techniques such as optical ow [L§Ensors. The proposed deep learning based system is trained
and visual servoing [11]. Reinforcement learning techniquedsing data recorded under human tele-operation of the UGV.
have also been utilized to teach the mobile robot to avoid/ithin this context, the objective of this paper is to explore
obstacles and navigate through the corridor using sensdifective network architectures and training techniques for
such as a laser range nder [12]. fusion of the camera and LIDAR modalities to obtain ro-

With the advances in neural networks over the last feJustness to a sensor failure and also to achieve performance
years, new toolsets are emerging for autonomous navigatifaracteristics superior to either what is achieved by each
of robots. For example, an online navigation framewori€nsor separately (e.g., Figure 3). . o
relying on object recognition was presented in [13]. CNNs The sensory inputs considered here for indoor navigation
have been successfully used for learning driving decisiod® Vision (RGB image) and depth (LIDAR range image).
rules for autonomous navigation [14] and for end-to-end nathe visual RGB image gives information about the type of
igation of a car using a single front facing camera [1] (als§hvironment and information regarding texture and colour
some debugging tools were developed for these autonomdefsthe objects present in the nearby environment whereas
systems to understand the visual cues that the network udB§ depth range image gives complementary information to
to produce a steering command, e.g. [15]). Visual navigatioR GB channels in the form of the structure of the environment
in simulated environment has been addressed using dedp depth measurements to points in the environment. In
reinforcement learning in [16], [17]. Generative adversarig®rder to successfully navigate through a corridor, the ground
networks have also been used for aiding in the autonomodghicle has to use the most relevant information from the
navigation tasks [18], [19]. Neural network based navigatioR@mera RGB image and depth range image in order to fuse
in indoor environments has also been studied in multiplé to predict the steering command for adjusting its head-
works including [20]-[24]. ing. As illustrated in Figure 3, each sensor separately can

In the deep learning literature, fusion of different modalil@ve limitations in environment perception. There are also
ties has been studied for various applications in recent yedt§1er complementary sensory performance characteristics of
such as in [25] for object detection using images and depfffMmera and LIDAR, e.g., sensitivity of a camera 1o lighting
maps. Deep learning for a recurrent neural network [26] wePnditions, limitations of a LIDAR in detecting small objects
applied to implicitly learn the dependencies between RGHAue to typically signi cantly lower resolutions than a camera.
images and depth map to perform semantic segmentation.
In [27], RGB image and its corresponding 3D point cloud
are used as inputs for 3D object detection. RGB image,
optical ow, and LiDAR range images are combined to form
a six channel input to a deep neural network [28] for object
detection. The same network can also be used for different
modalities to learn a joint representation [29]. RGB images
and depth maps (HHA images) were fused in [30] for an
indoor scene recognition application using a multi-modal
learning framework and the learned features were classi ed
using a support vector machine.

Compared to the prior works summarized above, the pro-
posed system introduces several novel aspects as summarized
in the introduction. Speci cally, we introduce a new gatingFig. 2: Our unmanned ground vehicle system with integrated
mechanism based architecture that enables modality fusibPAR and camera sensors.




NetGated, feature maps from RGB image and LiDAR depth
range image are extracted through a series of convolutional
layers. Next, the features extracted from the convolutional
layers in both the parallel networks are embedded into a
feature vector using a fully connected network. The intuition
behind embedding features is that the features extracted
from image and depth range image will have the same
dimension. This ensures that one modality does not have a
greater effect on the result than the other due to unequal
size. In NetConEmb the convolutional feature maps are
passed into a fully connected network. As shown in Table I,
the network architecture consists of 8 convolutional layers
and 1 fully connected network for each modality and 2

. ] . ‘ fully connected networks for information fusion from the
Fig. 3: Examples where using only camera or LIDAR generategyo modalities. Each convolutional layer consists of 3x3
undesirable behavior. In the top row, a LIDAR-only systemarels which convolve through the input with a stride of
does not detect the low-pro le object (trash can) in front wh|chl to generate feature maps which are then passed through

would register only a few points in the LIiDAR scan. In the A ) . .
second row, a camera-only system is not able to disambiguéi%Ctl cation (ReLU) non-linearity. The inputs are padded

left/right turns when approaching near a corner without an§luring convolution to preserve the spatial resolution. The
other discriminating object/lighting features (the pictures abovi¢ature maps are downsampled after every two convolution
are from behind the UGV, the onboard camera would just sdayers by max-pooling operation with a window size and
a featureless wall). The fused system is able to successfuliyride of 2x2. All hidden layers including the fully connected
function in both these instances (i.e., moving around an obstaglgyers are equipped with Recti cation (ReLU) non-linearity.
and making an appropriate turn when approaching a featurelepfe network learns its parameters by minimizing the Hu-
wall). ber loss (=1) between the predicted steering command
and the command of the human driver. NetGated the
In tlh\lls s:C?iZgSaZSET%%EE:%IliN '?cF:Acl;AsEeVgongr(\sor fusi embedded features constructed asNatEmbare passed

: y . prop i ) ough a gating network to fuse the information from both
fra_m_ewo_rk, its deep I_earnmg _based network architecture, a e modalities which is then used to generate the steering
training implementation details. command. The gating network takes the two embeddings
A. System Framework obtained from RGB image and range image as input and

The LiDAR sensor (light detection and ranging) provide®utputs the corresponding two weights which are then used
accurate range measurements to points in the environmd@terform a weighted sum of the embeddings. This weighted
at various azimuth and elevation angles relative to th8um is then passed through two fully connected networks
sensor. Hence, the LIDAR sensor effectively provides thre@ obtain the steering command. Each of the considered
dimensional information on points in the local environmenthetwork architectures is an end-to-end deep learning system
While our LIDAR sensor provides 360 degree azimutihattakesan RGB image and a LiDAR depth range image as
measurements, the forward-facing 180 degree part of th@put and fuses the modalities using a deep neural network
measurements is utilized since that is suf cient for indook0 predict the appropriate steering command of the ground
corridor navigation. The LIDAR measurements are encode¢hicle for autonomous navigation.
as a grayscale depth range image. RGB images are obtaired|mplementation and Training
from the camera. The depth range images are updated 1 . . .
times every second and the camera images are updated 3(N€ iNPUts to the networks are the normalized RGB image
times every second. Our framework uses the most recefffin a eld of view of 72 and the LIDAR range image
depth range image and the camera image to predict a suitaﬁ# ich is cropped such that the front half with a eld of view
steering command for navigating through the corridor. Thi§' 180 is visible. Both the modalities are normalized by
steering command is used by the onboard autopilot to seffking each channel of the modality in the training dataset
appropriate signals to the motor controllers of the grounf€© mean with a standard deviation of 1. At testing time,
vehicle. A simple PID controller is used to control theth® mean and stan_dard de_-watlon calculated during training
heading of the ground vehicle, given the steering commarfi€ Used to normalize the input. .
and feedback from the motor encoders. To train the networks, camera and LiDAR datasets were

. obtained by manually driving the vehicle (with constant
B. Network Architectures speed) through the corridor environment obtaining approxi-

Three network architectures are considered for the sensoately the same amount of training data for straight motion,
fusion task described above. The primary architecture (Fideft turns, and right turns. A Leopard Imaging LI-OV5640
ure 4) which we denot®etGatedis a gating based archi- camera running at 30 frames per second is used as the
tecture described further below. We also consider two otheision sensor and a Velodyne VLP-16 LiDAR running at 10
architectures (which we denote BetEmbandNetConEmp rotations per second is used as the depth sensor. The data
that are more similar to prior literature; these networks arfom the camera and LiDAR are logged at 30 and 10 frames

also described further below. per second, respectively.
The architectures diletEmb NetConEmpandNetGated The network was trained on a dataset of 14456 images
are described in Tables 1, 1, and I, respectivelyNetEmb and their corresponding range images. The images and range

(which shares the same rst 20 layers BetConEmband images were preprocessed by making all channels zero mean



Layer Name Layer Input (For | Layer Output| Kernel | Stride | No. Ker- Layer Name Layer Input| Layer Output| Kernel | Stride | No. Ker-
RGB Image) Size nels (For LiDAR Size nels
Range Image)
1 | Spatial Convolution | 3x120x160 16x120x160 [ 3x3 1 16 Spatial Convolution | Ix900x16 16x900x16 | 3x3 1 16
2 | Rectied Linear Unit | 16x120x160 16x120x160 | - - - Recti ed Linear Unit | 16x900x16 16x900x16 | - - -
3 | Spatial Convolution | 16x120x160 16x120x160 | 3x3 1 16 Spatial Convolution | 16x900x16 16x900x16 | 3x3 1 16
4 | Rectied Linear Unit | 16x120x160 16x120x160 | - - - Recti ed Linear Unit | 16x900x16 16x900x16 | - - -
5 Max Pooling 16x120x160 16x60x80 2x2 2 - Max Pooling 16x900x16 16x450x8 2x2 2 -
6 | Spatial Convolution | 16x60x80 32x60x80 3x3 1 32 Spatial Convolution | 16x450x8 32x450x8 3x3 1 32
7 | Rectied Linear Unit | 32x60x80 32x60x80 - - - Recti ed Linear Unit | 32x450x8 32x450x8 - - -
8 | Spatial Convolution | 32x60x80 32x60x80 3x3 1 32 Spatial Convolution | 32x450x8 32x450x8 3x3 1 32
9 | Rectied Linear Unit | 32x60x80 32x60x80 - - - Recti ed Linear Unit | 32x450x8 32x450x8 - - -
10 Max Pooling 32x60x80 32x30x40 2x2 2 - Max Pooling 32x450x8 32x225x4 2x2 2 -
11 | Spatial Convolution | 32x30x40 48x30x40 3x3 1 48 Spatial Convolution | 32x225x4 48x225x4 3x3 1 48
12 | Rectied Linear Unit | 48x30x40 48x30x40 - - - Recti ed Linear Unit | 48x225x4 48x225x4 | - - -
13 | Spatial Convolution | 48x30x40 48x30x40 3x3 1 48 Spatial Convolution | 48x225x4 48x225x4 3x3 1 48
14 | Rectied Linear Unit | 48x30x40 48x30x40 - - - Recti ed Linear Unit | 48x225x4 48x225x4 - - -
15 Max Pooling 48x30x40 48x15x20 2x2 2 - Max Pooling 48x225x4 48x113x2 2x2 2 -
16 | Spatial Convolution | 48x15x20 64x15x20 3x3 1 64 Spatial Convolution | 48x113x2 64x113x2 3x3 1 64
17 | Rectied Linear Unit | 64x15x20 64x15x20 - - - Recti ed Linear Unit | 64x113x2 64x113x2 - - -
18 | Spatial Convolution | 64x15x20 64x15x20 3x3 1 64 Spatial Convolution | 64x113x2 64x113x2 3x3 1 64
19 | Rectied Linear Unit | 64x15x20 64x15x20 - - - Recti ed Linear Unit | 64x113x2 64x113x2 - - -
20 Max Pooling 64x15x20 64x8x10 2x2 2 - Max Pooling 64x113x2 64x57x1 2x2 2 -
21 Flatten 64x8x10 5120 - - - Flatten 64x57x1 3648 - - -
22 Fully Connected 5120 512 - - - Fully Connected 3648 512 - - -
23 | Rectied Linear Unit | 512 512 - - - Recti ed Linear Unit | 512 512 - - -
24 Concatenate 512,512 1024 - - - - - - - - -
25 Fully Connected 1024 32 - - -
26 | Rectied Linear Unit | 32 32 - - - - -
27 Fully Connected 32 10 - - - - - - - - -
28 | Rectied Linear Unit | 10 10 - - - - - - - - -
29 Fully Connected 10 1 - - - - - - - - -

TABLE I: NetEmb Deep learning based modality fusion architecture using embeddings. The left side of the table is for processing
of the RGB image from the camera and the right side of the table is for processing of the depth range image from the LiDAR.
The feature vectors (of length 512) constructed from camera and LiDAR are concatenated at layer 24.

Layer Name [ Layer Input | Layer Output| Layer Name[ Layer Input | Layer Output
1..20 Same as Table 1
21 | Flatten 64x8x10 5120 Flatten 64x57x1 3648
22 | Concatenate 5120,3648 | 8768 - - -
23 | Fully Connected 8768 1024 - - -
24 | Rectied Linear Unit | 1024 1024 - - -
25 | Fully Connected 1024 32 - - -
26 | Rectied Linear Unit | 32 32 - - -
27 | Fully Connected 32 10 - - -
28 | Rectied Linear Unit | 10 10 - - -
29 | Fully Connected 10 1 - - -

TABLE II: NetConEmbFusion architecture where the convolutional feature maps are directly passed through a fully connected
network instead of rst converting them into feature embeddings as doiNeiEmb The rst 20 layers are identical thletEmb

Layer Name | Layer Input | Layer Output| Layer Name | Layer Input | Layer Output
1..20 Same as Table 1

21 | Flatten 64x8x10 5120 Flatten 64x57x1 3648
22 | Fully Connected 5120 512 Fully Connected 3648 512
23 | Rectied Linear Unit 512 512 Recti ed Linear Unit 512 512
24 | Concatenate 512,512 1024 - - -

25 | Fully Connected 1024 64 - - -

26 | Rectied Linear Unit 64 64 - - -

27 | Fully Connected 64 2 - - -

28 | Split 2 1,1 - - -

29 | Multiplication with output 23| 1 512 Multiplication with output 23| 1 512
30 | Addition 512,512 512 - - -

31 [ Fully Connected 512 32 - - -

32 | Rectied Linear Unit 32 32 - - -

33 | Fully Connected 32 1 - - -

TABLE lIl: NetGated Fusion architecture with gating mechanism based on computing scalar weights from the feature embeddings
and then constructing a combination of the feature embeddings based on the scalar weights. The rst 20 layers are identical to
NetEmb

with a standard deviation of 1. The network was trainedommands. We use the Huber loss instead of mean square
using Adagrad optimizer with a learning rate of 0.01. Thesrror since an instability due to divergence of the gradients
learning rate is decreased to 0.005 after 30 epochs andwas noted with mean square error loss. The Huber loss was
0.001 after 60 epochs. Bias terms for all the layers in thimtroduced in [31] for bounding box regression and is given

networks are disabled. by

Our end-to-end learning framework learns to predict the
appropriate steering command by learning the weights of thE( £ (X)) = %(y f(x))?; forky f(x)k 1
network which minimize the Huber loss between the pre- y: - ky f(x)k 05; otherwise

dicted steering commands and the recorded human steering (2)
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Fig. 4: NetGated Our proposed architecture for deep learning based fusion of camera and LiDAR sensors.

To train the network to be able to utilize both sensorshe DC motors on the vehicle are controlled by Pulse Width
when available and also to be robust to the possibility dflodulated (PWM) pulses generated by the autopilot with
sensor failure, the training of the network was performed period of20ms and an ON period varying fromims to
in two stages. In the rst stage of training, the network iZms. The steering commands output by the network lie in
trained with the corresponding LIiDAR depth range imagethe interval [-100, 100] and are mapped linearly to PWM
and camera RGB images for each time step as input. Bignal ON periods oflms (5%) to 2ms (10%) and utilized
the second stage, the training of the network is continuems an additive differential drive actuation to the motors on
with corrupted data (i.e., with one modality shut down tahe left and right sides of the vehicle, which essentially
mimic sensor failure). Speci cally, the network is trainedresults in a left turn when the steering command is negative,
with 40% corrupted data for each epoch out of whict#60 a right turn when the steering command is positive, and
data is with the camera shut off (i.e., zero values for aktraight movement when the steering command is zero. The
elements in the RGB image) and %0s with the LIDAR magnitude of the steering command controls the sharpness
shut off. The same training procedure as described abowéthe turn.
was applied to each of the network architectures described in V. EXPERIMENTAL STUDIES
Section IV-B and the training was stopped for each network In this section, experimental results are presented for

at the same nal accuracy for the training set. It is seep, ; ; ;
; ; : e three previously described architectures (NetGated, Net-
in Section V that the proposed network architecture anE!onEmb, and NetEmb) rst with training using both camera

training approach provides robust performance under Sensgly | ipAR and then with retraining using the corrupted data
failures and implicitly learns to use the relevant mformatlor%ls discussed above

from both modalities to generate steering angle predictions: . .
We compare the networkgs trained only ongthe %riglianal datasft Performance of the Different Network Architectures
and the networks retrained with the corrupted dataset, andIn order to evaluate the performance of the proposed
show that the networks retrained with the corrupted datasatchitectures (namely NetEmb, NetConEmb and NetGated
provide superior performance when one of the modalitiegs described in Table I, 1l and Ill, respectively), steering
fail and retains the performance of the originally trainecommand predictions of each network were compared with
networks when both the sensors are present. the steering commands of a human controller. This evalua-
. . . . tion was done using a different dataset (test dataset) than the
D. Differential drive of the vehicle one used for training. The results of each of the architectures
The predicted steering commands are mapped to tlempared to the human controller are shown in Figure 5
motor actuation commands to drive the ground vehicle. Thighere the steering commands given by a human controller
mapping is done as part of the in-house developed rmwargluring tele-operation of the UGV) are denoted as the ground
on our real-time autopilot system which takes the steeringuth.
commands from the networks and outputs the control signalsAs shown in Figure 5, the utilization iNetEmbof an
to the motor drivers on the ground vehicle. The speeds efjual-size embedding (constructed using a fully connected



layer) for each modality after the last convolution laye § %
provides better performance thaetConEmbas hypothe-
sized in Section IV-B. TheNetEmbarchitecture performs
better when one of the modalities is switched off and als
oscillates less compared to thdetConEmbarchitecture.
As discussed in Section IV-B, the much larger number ¢
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one modality inNetConEmlresulting in unbalanced fusion _
which makes the steering commands oscillate more, simi % *°
to the behavior of the camera only network. We also obsei § '
that the fusion architecturedetEmband NetConEmbare |
biased towards moving right(negative steering commar
compared to the ground truth human command.
Motivated by the observations above, fully connecte
layer based embeddings for each modality were also u:g . 20
in the NetGatedarchitecture. An additional advantage ¢ ° % Q1% 2° 2 0 Fine (seconds)” 190
using an equal-size embedding for each modality is tF_"
it is then easier and more natural to fuse the embeddir §
by the learned gated weights by simply taking a weight g 1.
linear combination. As shown in Figure 5, tidetGated .
architecture based network learns to move straight w & ©jilfjmui
fewer oscillations than even the human controller. The fusi § ||
of camera and LiDAR results in a smoother output than 2
LiDAR only system as shown in the Figure 5. g ocAe Predetons a0, = L o
Since a desirable characteristic of motion in the indo Time (seconds) Time (seconds)
corridor environment is that the ground vehicle shouldig. 5: Steering command predictions using the different net-
approximately track the center of the corridor and shouldiork architectures under cases of only camera working (top
not come too close to walls when turning, a useful metricow), only LiDAR working (middle row), and both camera
for performance of the system is the distance of the vehicknd LIDAR working (bottom row). In each row, the left side
to the left side and right side walls/objects. Since there a%l;acr)g?vtvizge(lgfltc'[tﬁljr?\ss )Sgg‘f‘/’igcé%g;vg"soef g'gcgtnﬁg{gfg %rg:: %?U;'
several objects such as trash cans and also empty spaces .
open of ce doors at some locations, the closest distances ﬁﬁmggriﬁgmrsonment. Ground truth (GT) refers 1o the recorded
the left and right sides varies quite signi cantly even for an '
“ideal” motion. To remove such “noise” effects, an effective ] ] ] o
performance metric is the variance (rather than mean) 6faand LiDAR data is not directly robust to the possibility of
distances to the left side and right side walls/objects. Thegﬁsen;or failing (gl'e"t)onlliy one Senslé)rtgogagltly avallablehand
variances were recorded under fully autonomous mode (i.&1€ Other zeroed out). For exampleetatedplaces muc
with the network providing the commands to the autopimore trust on the LIDAR input than on the camera input and
lot) with the different networks for both clockwise anddoes not provide any reasonable performance in the event of
counterclockwise directions. The measured variances for@alLiDAR failure. Hence, in order to achieve robustness to
clockwise motion through the building corridor environmengensor failure, we introduce the training strategy described
(One Comp|ete oor of the bu||d|ng) are shown in Tab|e|n' Section SeC:traInlng to continue retrall’]mg of the netWOl’lk
IV and it is noted that theNetGatednetwork architecture With corrupted data generated by synthetically turning off ei-
provides the best (|owest) Variance; a similar observatidﬁler of the two modalities. The performance of the retrained
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was also noted for a counterclockwise motion. NetGatednetwork (aﬁer retraining with this CorruptEd data
based technique) is compared below with the original trained
Network Type | Network Left ~ Wall | Right Wall NetGatednetwork and the human controller.
Input Distance Distance
Variance (in| Variance (in B. Performance of Network Retrained with Corrupted Data
1 | NetConEmb Camera (T)zsoe 81, )1376 The NetGatedarchitecture when retrained with corrupted
network and data as explained in IV-C achieves better performance than
o E—— (L:'ErﬁeRra e 1345 the network only trained with the original dataset. As
and ‘ ‘ shown in Figure 6, when both camera and LiDAR are
LiDAR working, both the original and retrained networks perform
3 | NetGated Camera 0.1008 0.0575 well and have very similar performance; but, when one of the
and modalities is shut off, the retrained network performs better.
LIDAR The performance characteristics of the retrailetGated

TABLE IV: Variance of minimum distances to the wall for a network was also evaluated (under the possibilities of both

clockwise trajectory under fully autonomous mode. camera and LiDAR available, only camera available, and

only LiDAR available) using the distance variance based

For all the considered network architectures, it is noted imetric as discussed above under fully autonomous operation
Figure 5 that the system trained on a dataset with both camf the UGV (Figure 7). It is noted in Table V that the



Network Type | Network Left Wall | Right Wall

retralnedNetGatechetwork achieves autonomous naV|gat|on Input Distance Distance
through the corridor although the camera-only and LIiDAR- Variance (in| Variance (in
only situations provide lower performance (i.e., higher dis- m) m)
tance variances) than the camera+LiDAR situation. 1| Netated | Camera 1 0.1843 0.1539
2 | NetGated LIDAR 0.1358 0.1046
Architecture
3 | NetGated Camera 0.1013 0.0964
Architecture and
LiDAR

TABLE V: Variance of minimum distances to the walls using
the retrained NetGated architecture when various modalities are
turned off for a clockwise trajectory.

Fig. 6: Steering command predictions using tNetGated
trained only with the camera+LiDAR dataset and MetGated
retrained with corrupted data under cases of only came
working (top row), only LiDAR working (middle row), and both

camera and LiDAR working (bottom row). As in Figure 5, the
left side and right side pictures in each row show clockwise an
counterclockwise navigations of the corridor environment.

Fig. 8: Examples of autonomous navigation in an indoor envi-
ronment: left turn (top two rows), straight motion (middle two

ws), right turn (bottom two rows). These pictures were taken
from behind the UGV.

ever being specically trained for this purpose, i.e., the
training dataset did not include any speci ¢ demonstrations
of moving around obstacles. Also, the fused camera+LiDAR
network performs better in several scenarios than the camera-
only or LiDAR-only situations. While a LiDAR-only net-
057 work can enable avoiding of obstacles such as humans, it
05 —Both Modalities 0 — Both Modalities does not typically detect small (low-pro le) objects since

P P e (seontsy 0 2 P Frmeeones 0 ?® these register only a few points in the LiDAR scan. In such
Fig. 7: Distances of the ground vehicle from the left waliSituations, the camera image enables the fused network to
and right wall for clockwise (left) and counterclockwise (rightyavoid the obstacle. When approaching a visually featureless
autonomous navigations in the corridor environment. wall, a camera-only system can not disambiguate between

left and right turns while the LIiDAR enables the fused

C. Autonomous Indoor Navigation of the Ground Vehicle network to detect the appropriate turn. When passing an open

The proposed deep learning based system is able ggor or other open spaces (such as a short corridor leading
fully autonomously navigate through the indoor corridofO & dead end), the LIDAR being a more geometric sensor
environment. With the retraining procedure discussed abov@€asuring distances to points tends to make a LiDAR-only
the system is robust to failure of either of the camera cfyStem move towards the open space. However, the visual
LIDAR sensor modalities. Auutonomous navigation througfieatures implicitly detected from the camera enable the fused
corridors is shown in Figure 8. The ground vehicle is abl@etwork to completely ignore such an “unintended” open
to appropriately make turns at corners enabling it to béPace and remain at the center of the corridor (Figure 10).
equidistant from the walls after the turn. It is also able to VI. CONCLUSION
navigate through narrower spaces (e.g., between trash cansin end-to-end CNN based framework was developed
as shown in the middle two rows of Figure 8. for fusing vision and depth measurements from camera

Furthermore, the system is able to implicitly learn to avoichnd LiDAR, respectively, for autonomous navigation of a
static and dynamic obstacles as shown in Figure 9 withoground robot in an indoor environment. Multiple network

Distance to left wall
Distance to right wall




(9]

[20]

[11]

Fig. 9: Examples of avoidance of static obstacles (top row) arld?]
dynamic obstacles (bottom row) by the UGV. These pictures
were taken from behind the UGV.

(23]

[14]

Fig. 10: Comparison of LiDAR-only network vs fused network[15]
in presence of “spurious” open spaces (e.g., open doors). With

only LiDAR, there is marked deviation (from the center of the
corridor) towards open doors or other open spaces. [

16]

architectures were considered including a novel gating basEd!
network architecture. A two-stage training methodology was
proposed to achieve robustness to the possibility of senda8]
failure and to properly leverage the complementary strengthis9
of the two sensors so as to achieve better performance thaR
with either sensor separately. It was experimentally demon-
strated that the proposed deep learning based system is dBf& G. Chronis and M. Skubic, “Experiments in programming by demon-
to fully autonomously navigate in the indoor environment
with robustness to failure of either the camera or the LiDAR.
Topics for future work include improvements to the[21]
network architectures (and training algorithms) to make
them more robust to additive random noise, environment
perturbations caused due to vibration of the camera, angb)
sensor placement. We also plan to experiment with recurrent
neural networks due to their inherent property of capturing

temporal dependencies between inputs and extend the system
to outdoor environments.
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