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Abstract— We present a novel end-to-end learning frame-
work to enable ground vehicles to autonomously navigate
unknown environments by fusing raw pixels from a front
facing camera and depth measurements from LiDAR. A new
deep neural network architecture is introduced for mapping
the depth and vision from LiDAR and camera, respectively,
to the steering commands. The network effectively performs
modality fusion and reliably predicts steering commands even
in the presence of sensor failures. The proposed network in
trained on our own dataset, which we will publicly release,
of LiDAR depth measurements and camera images taken in
an indoor corridor environment. Comprehensive experimental
evaluation to demonstrate the robustness of our network archi-
tecture is performed to show that the proposed deep learning
neural network is able to fully autonomously navigate in the
corridor environment. Furthermore, we demonstrate that the
fusion of the camera and LiDAR modalities provides further
bene�ts beyond robustness to sensor failures. Speci�cally, the
multimodal fused system shows a potential to navigate around
obstacles placed in the corridor environment and to handle
changes in environment geometry (e.g., having additional paths
such as opening of doors that were closed during training)
without being trained for these tasks.

I. I NTRODUCTION

There have been signi�cant advances in machine learning
based approaches for robotic applications in recent years due
to the advancements in deep learning techniques. Deep learn-
ing approaches have the ability to leverage large amounts of
labeled and contextually rich data to give desired outputs.
Some recent applications of deep learning that are relevant
to this paper include autonomous car driving systems [1],
[2]. This paper addresses the robust sensor fusion prob-
lem (Figure 1) in the context of building deep learning
frameworks for self-driving vehicles equipped with multiple
sensors (mainly camera and LiDAR) although the same
methodology may be utilized for fusing a larger number of
sensors. This work is motivated by two primary objectives.
The �rst objective is related to the observation, which we
also empirically verify, that the deep network trained jointly
with camera and LiDAR data (i.e., without considering
possibility of sensor failures) performs very poorly when
one of the sensors is suddenly not available, i.e., one of the
sensors intermittently going off-line. Hence, we seek to in-
troduce a learning methodology that can handle intermittent
sensor failures during testing. The second primary objective
is to study the possibility of obtaining better performance
characteristics with the multimodal fused system than with
either sensor modality separately (e.g., see Figure 3). In other
words, the underlying goal addressed by both the motivating
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objectives is to train the system to properly merge data to
leverage both (or more) sensors and to be robust to sensor
failures.

Our work focuses on the problem of navigating of an
autonomous unmanned ground vehicle (UGV) using vision
from camera and depth measurements from LiDAR in an
indoor environment with deep learning. A novel approach
to modality fusion is presented to generate steering com-
mands for autonomous navigation of a ground vehicle. The
proposed methodology naturally extends to the setting with
multiple sensors, where one or more sensor data might be
missing.

We propose a deep learning architecture for the sensor
fusion problem that consists of two convolutional neural
networks (CNNs), each consisting of a different input modal-
ity, which are fused with a gating mechanism. The gating
mechanism is realized as a fully-connected network that is
trained to generate environment-appropriate scalar weights
for LiDAR and camera using the CNN-generated feature
vectors. These scalar weights are then utilized to obtain
the fused embedding including both modalities. The fused
embedding is then passed through additional network layers
to generate the steering command for the vehicle. The
training of the network relies on the introduction of corrupted
data in the training batches (to mimic sensor failures). This
synthetic sensor failure introduction enables, in effect, the
network to generalize better. The novel aspects of this paper
are as follows:

� application of deep learning for the problem of indoor
corridor tracking with a ground vehicle registering
camera and LiDAR data,

� proposing a new deep learning architecture and training
method for sensor fusion that leads to a system for
autonomous driving of ground vehicles indoors that is
robust to the presence of partial data from a single
modality,

� experimental demonstration of the ef�cacy of the pro-
posed system on our in-house developed ground ve-
hicle that includes a real-time autopilot, single board
computer with graphics processing unit (GPU), and
integrated camera and LiDAR sensors,

� releasing a new dataset dedicated to the problem of
autonomous driving of ground vehicles indoors.

The paper is organized as follows. Related literature is
brie�y summarized in Section II. The problem formulation
is presented in Section III. The architectures for sensor
fusion developed in this paper are discussed in Section IV,
including an architecture based on a gating mechanism
as well as two other architectures more similar to prior
literature (though in a different context than in this paper).
The training mechanisms are also discussed in Section IV.
Empirical veri�cation studies are presented in Section V.
Finally, concluding remarks are provided in Section VI.



Fig. 1: End-to-end learning framework for autonomous navigation in indoor environment.
II. RELATED WORK

Various aspects of robot autonomy has been extensively
studied in the literature [3], [4]. For example, using Simulta-
neous Localization and Mapping (SLAM) based approaches,
[5], [6], autonomous navigation in both indoor and outdoor
environments has been studied using vision and depth based
sensors, such as camera, stereo camera, and LiDAR. Ob-
stacle avoidance and navigation in uncertain environments
has been studied using various approaches [7]–[9]. Vision
processing for indoor wall detection and corridor following
has been studied using techniques such as optical �ow [10]
and visual servoing [11]. Reinforcement learning techniques
have also been utilized to teach the mobile robot to avoid
obstacles and navigate through the corridor using sensors
such as a laser range �nder [12].

With the advances in neural networks over the last few
years, new toolsets are emerging for autonomous navigation
of robots. For example, an online navigation framework
relying on object recognition was presented in [13]. CNNs
have been successfully used for learning driving decision
rules for autonomous navigation [14] and for end-to-end nav-
igation of a car using a single front facing camera [1] (also
some debugging tools were developed for these autonomous
systems to understand the visual cues that the network uses
to produce a steering command, e.g. [15]). Visual navigation
in simulated environment has been addressed using deep
reinforcement learning in [16], [17]. Generative adversarial
networks have also been used for aiding in the autonomous
navigation tasks [18], [19]. Neural network based navigation
in indoor environments has also been studied in multiple
works including [20]–[24].

In the deep learning literature, fusion of different modali-
ties has been studied for various applications in recent years
such as in [25] for object detection using images and depth
maps. Deep learning for a recurrent neural network [26] was
applied to implicitly learn the dependencies between RGB
images and depth map to perform semantic segmentation.
In [27], RGB image and its corresponding 3D point cloud
are used as inputs for 3D object detection. RGB image,
optical �ow, and LiDAR range images are combined to form
a six channel input to a deep neural network [28] for object
detection. The same network can also be used for different
modalities to learn a joint representation [29]. RGB images
and depth maps (HHA images) were fused in [30] for an
indoor scene recognition application using a multi-modal
learning framework and the learned features were classi�ed
using a support vector machine.

Compared to the prior works summarized above, the pro-
posed system introduces several novel aspects as summarized
in the introduction. Speci�cally, we introduce a new gating
mechanism based architecture that enables modality fusion

for robust end-to-end learning of autonomous corridor driv-
ing and improved training techniques that enable resiliency
to sensor failure. The ef�cacy of the proposed approach
is demonstrated through experimental studies on our UGV
platform (Figure 2).

III. PROBLEM FORMULATION

We address the problem of end-to-end learning of appro-
priate steering commands for a UGV to drive autonomously
through an indoor environment using camera and LiDAR
sensors. The proposed deep learning based system is trained
using data recorded under human tele-operation of the UGV.
Within this context, the objective of this paper is to explore
effective network architectures and training techniques for
fusion of the camera and LiDAR modalities to obtain ro-
bustness to a sensor failure and also to achieve performance
characteristics superior to either what is achieved by each
sensor separately (e.g., Figure 3).

The sensory inputs considered here for indoor navigation
are vision (RGB image) and depth (LiDAR range image).
The visual RGB image gives information about the type of
environment and information regarding texture and colour
of the objects present in the nearby environment whereas
the depth range image gives complementary information to
RGB channels in the form of the structure of the environment
via depth measurements to points in the environment. In
order to successfully navigate through a corridor, the ground
vehicle has to use the most relevant information from the
camera RGB image and depth range image in order to fuse
it to predict the steering command for adjusting its head-
ing. As illustrated in Figure 3, each sensor separately can
have limitations in environment perception. There are also
other complementary sensory performance characteristics of
camera and LiDAR, e.g., sensitivity of a camera to lighting
conditions, limitations of a LiDAR in detecting small objects
due to typically signi�cantly lower resolutions than a camera.

Fig. 2: Our unmanned ground vehicle system with integrated
LiDAR and camera sensors.



Fig. 3: Examples where using only camera or LiDAR generates
undesirable behavior. In the top row, a LiDAR-only system
does not detect the low-pro�le object (trash can) in front which
would register only a few points in the LiDAR scan. In the
second row, a camera-only system is not able to disambiguate
left/right turns when approaching near a corner without any
other discriminating object/lighting features (the pictures above
are from behind the UGV; the onboard camera would just see
a featureless wall). The fused system is able to successfully
function in both these instances (i.e., moving around an obstacle
and making an appropriate turn when approaching a featureless
wall).

IV. PROPOSEDSENSORFUSION FRAMEWORK
In this section, we introduce our proposed sensor fusion

framework, its deep learning based network architecture, and
training implementation details.

A. System Framework
The LiDAR sensor (light detection and ranging) provides

accurate range measurements to points in the environment
at various azimuth and elevation angles relative to the
sensor. Hence, the LiDAR sensor effectively provides three
dimensional information on points in the local environment.
While our LiDAR sensor provides 360 degree azimuth
measurements, the forward-facing 180 degree part of the
measurements is utilized since that is suf�cient for indoor
corridor navigation. The LiDAR measurements are encoded
as a grayscale depth range image. RGB images are obtained
from the camera. The depth range images are updated 10
times every second and the camera images are updated 30
times every second. Our framework uses the most recent
depth range image and the camera image to predict a suitable
steering command for navigating through the corridor. This
steering command is used by the onboard autopilot to send
appropriate signals to the motor controllers of the ground
vehicle. A simple PID controller is used to control the
heading of the ground vehicle, given the steering command
and feedback from the motor encoders.

B. Network Architectures
Three network architectures are considered for the sensor

fusion task described above. The primary architecture (Fig-
ure 4) which we denoteNetGatedis a gating based archi-
tecture described further below. We also consider two other
architectures (which we denote asNetEmbandNetConEmb)
that are more similar to prior literature; these networks are
also described further below.

The architectures ofNetEmb, NetConEmb, andNetGated
are described in Tables I, II, and III, respectively. InNetEmb
(which shares the same �rst 20 layers asNetConEmband

NetGated), feature maps from RGB image and LiDAR depth
range image are extracted through a series of convolutional
layers. Next, the features extracted from the convolutional
layers in both the parallel networks are embedded into a
feature vector using a fully connected network. The intuition
behind embedding features is that the features extracted
from image and depth range image will have the same
dimension. This ensures that one modality does not have a
greater effect on the result than the other due to unequal
size. In NetConEmb, the convolutional feature maps are
passed into a fully connected network. As shown in Table I,
the network architecture consists of 8 convolutional layers
and 1 fully connected network for each modality and 2
fully connected networks for information fusion from the
two modalities. Each convolutional layer consists of 3x3
kernels which convolve through the input with a stride of
1 to generate feature maps which are then passed through
Recti�cation (ReLU) non-linearity. The inputs are padded
during convolution to preserve the spatial resolution. The
feature maps are downsampled after every two convolution
layers by max-pooling operation with a window size and
stride of 2x2. All hidden layers including the fully connected
layers are equipped with Recti�cation (ReLU) non-linearity.
The network learns its parameters by minimizing the Hu-
ber loss (� =1) between the predicted steering command
and the command of the human driver. InNetGated, the
embedded features constructed as inNetEmb are passed
through a gating network to fuse the information from both
the modalities which is then used to generate the steering
command. The gating network takes the two embeddings
obtained from RGB image and range image as input and
outputs the corresponding two weights which are then used
to perform a weighted sum of the embeddings. This weighted
sum is then passed through two fully connected networks
to obtain the steering command. Each of the considered
network architectures is an end-to-end deep learning system
that takes an RGB image and a LiDAR depth range image as
input and fuses the modalities using a deep neural network
to predict the appropriate steering command of the ground
vehicle for autonomous navigation.

C. Implementation and Training

The inputs to the networks are the normalized RGB image
with a �eld of view of 72� and the LiDAR range image
which is cropped such that the front half with a �eld of view
of 180� is visible. Both the modalities are normalized by
making each channel of the modality in the training dataset
zero mean with a standard deviation of 1. At testing time,
the mean and standard deviation calculated during training
are used to normalize the input.

To train the networks, camera and LiDAR datasets were
obtained by manually driving the vehicle (with constant
speed) through the corridor environment obtaining approxi-
mately the same amount of training data for straight motion,
left turns, and right turns. A Leopard Imaging LI-OV5640
camera running at 30 frames per second is used as the
vision sensor and a Velodyne VLP-16 LiDAR running at 10
rotations per second is used as the depth sensor. The data
from the camera and LiDAR are logged at 30 and 10 frames
per second, respectively.

The network was trained on a dataset of 14456 images
and their corresponding range images. The images and range
images were preprocessed by making all channels zero mean



Layer Name Layer Input (For
RGB Image)

Layer Output Kernel
Size

Stride No. Ker-
nels

Layer Name Layer Input
(For LiDAR
Range Image)

Layer Output Kernel
Size

Stride No. Ker-
nels

1 Spatial Convolution 3x120x160 16x120x160 3x3 1 16 Spatial Convolution 1x900x16 16x900x16 3x3 1 16
2 Recti�ed Linear Unit 16x120x160 16x120x160 - - - Recti�ed Linear Unit 16x900x16 16x900x16 - - -
3 Spatial Convolution 16x120x160 16x120x160 3x3 1 16 Spatial Convolution 16x900x16 16x900x16 3x3 1 16
4 Recti�ed Linear Unit 16x120x160 16x120x160 - - - Recti�ed Linear Unit 16x900x16 16x900x16 - - -
5 Max Pooling 16x120x160 16x60x80 2x2 2 - Max Pooling 16x900x16 16x450x8 2x2 2 -
6 Spatial Convolution 16x60x80 32x60x80 3x3 1 32 Spatial Convolution 16x450x8 32x450x8 3x3 1 32
7 Recti�ed Linear Unit 32x60x80 32x60x80 - - - Recti�ed Linear Unit 32x450x8 32x450x8 - - -
8 Spatial Convolution 32x60x80 32x60x80 3x3 1 32 Spatial Convolution 32x450x8 32x450x8 3x3 1 32
9 Recti�ed Linear Unit 32x60x80 32x60x80 - - - Recti�ed Linear Unit 32x450x8 32x450x8 - - -

10 Max Pooling 32x60x80 32x30x40 2x2 2 - Max Pooling 32x450x8 32x225x4 2x2 2 -
11 Spatial Convolution 32x30x40 48x30x40 3x3 1 48 Spatial Convolution 32x225x4 48x225x4 3x3 1 48
12 Recti�ed Linear Unit 48x30x40 48x30x40 - - - Recti�ed Linear Unit 48x225x4 48x225x4 - - -
13 Spatial Convolution 48x30x40 48x30x40 3x3 1 48 Spatial Convolution 48x225x4 48x225x4 3x3 1 48
14 Recti�ed Linear Unit 48x30x40 48x30x40 - - - Recti�ed Linear Unit 48x225x4 48x225x4 - - -
15 Max Pooling 48x30x40 48x15x20 2x2 2 - Max Pooling 48x225x4 48x113x2 2x2 2 -
16 Spatial Convolution 48x15x20 64x15x20 3x3 1 64 Spatial Convolution 48x113x2 64x113x2 3x3 1 64
17 Recti�ed Linear Unit 64x15x20 64x15x20 - - - Recti�ed Linear Unit 64x113x2 64x113x2 - - -
18 Spatial Convolution 64x15x20 64x15x20 3x3 1 64 Spatial Convolution 64x113x2 64x113x2 3x3 1 64
19 Recti�ed Linear Unit 64x15x20 64x15x20 - - - Recti�ed Linear Unit 64x113x2 64x113x2 - - -
20 Max Pooling 64x15x20 64x8x10 2x2 2 - Max Pooling 64x113x2 64x57x1 2x2 2 -
21 Flatten 64x8x10 5120 - - - Flatten 64x57x1 3648 - - -
22 Fully Connected 5120 512 - - - Fully Connected 3648 512 - - -
23 Recti�ed Linear Unit 512 512 - - - Recti�ed Linear Unit 512 512 - - -
24 Concatenate 512,512 1024 - - - - - - - - -
25 Fully Connected 1024 32 - - - - - - - - -
26 Recti�ed Linear Unit 32 32 - - - - - - - - -
27 Fully Connected 32 10 - - - - - - - - -
28 Recti�ed Linear Unit 10 10 - - - - - - - - -
29 Fully Connected 10 1 - - - - - - - - -

TABLE I: NetEmb: Deep learning based modality fusion architecture using embeddings. The left side of the table is for processing
of the RGB image from the camera and the right side of the table is for processing of the depth range image from the LiDAR.
The feature vectors (of length 512) constructed from camera and LiDAR are concatenated at layer 24.

Layer Name Layer Input Layer Output Layer Name Layer Input Layer Output
1 .. 20 Same as Table 1

21 Flatten 64x8x10 5120 Flatten 64x57x1 3648
22 Concatenate 5120,3648 8768 - - -
23 Fully Connected 8768 1024 - - -
24 Recti�ed Linear Unit 1024 1024 - - -
25 Fully Connected 1024 32 - - -
26 Recti�ed Linear Unit 32 32 - - -
27 Fully Connected 32 10 - - -
28 Recti�ed Linear Unit 10 10 - - -
29 Fully Connected 10 1 - - -

TABLE II: NetConEmb: Fusion architecture where the convolutional feature maps are directly passed through a fully connected
network instead of �rst converting them into feature embeddings as done inNetEmb. The �rst 20 layers are identical toNetEmb.

Layer Name Layer Input Layer Output Layer Name Layer Input Layer Output
1 .. 20 Same as Table 1

21 Flatten 64x8x10 5120 Flatten 64x57x1 3648
22 Fully Connected 5120 512 Fully Connected 3648 512
23 Recti�ed Linear Unit 512 512 Recti�ed Linear Unit 512 512
24 Concatenate 512,512 1024 - - -
25 Fully Connected 1024 64 - - -
26 Recti�ed Linear Unit 64 64 - - -
27 Fully Connected 64 2 - - -
28 Split 2 1,1 - - -
29 Multiplication with output 23 1 512 Multiplication with output 23 1 512
30 Addition 512,512 512 - - -
31 Fully Connected 512 32 - - -
32 Recti�ed Linear Unit 32 32 - - -
33 Fully Connected 32 1 - - -

TABLE III: NetGated: Fusion architecture with gating mechanism based on computing scalar weights from the feature embeddings
and then constructing a combination of the feature embeddings based on the scalar weights. The �rst 20 layers are identical to
NetEmb.

with a standard deviation of 1. The network was trained
using Adagrad optimizer with a learning rate of 0.01. The
learning rate is decreased to 0.005 after 30 epochs and to
0.001 after 60 epochs. Bias terms for all the layers in the
networks are disabled.

Our end-to-end learning framework learns to predict the
appropriate steering command by learning the weights of the
network which minimize the Huber loss between the pre-
dicted steering commands and the recorded human steering

commands. We use the Huber loss instead of mean square
error since an instability due to divergence of the gradients
was noted with mean square error loss. The Huber loss was
introduced in [31] for bounding box regression and is given
by

L(y; f (x)) =
�

1
2 (y � f (x))2; for ky � f (x)k � 1
ky � f (x)k � 0:5; otherwise

(1)



Fig. 4: NetGated: Our proposed architecture for deep learning based fusion of camera and LiDAR sensors.

To train the network to be able to utilize both sensors
when available and also to be robust to the possibility of
sensor failure, the training of the network was performed
in two stages. In the �rst stage of training, the network is
trained with the corresponding LiDAR depth range images
and camera RGB images for each time step as input. In
the second stage, the training of the network is continued
with corrupted data (i.e., with one modality shut down to
mimic sensor failure). Speci�cally, the network is trained
with 40% corrupted data for each epoch out of which 50%
data is with the camera shut off (i.e., zero values for all
elements in the RGB image) and 50% is with the LiDAR
shut off. The same training procedure as described above
was applied to each of the network architectures described in
Section IV-B and the training was stopped for each network
at the same �nal accuracy for the training set. It is seen
in Section V that the proposed network architecture and
training approach provides robust performance under sensor
failures and implicitly learns to use the relevant information
from both modalities to generate steering angle predictions.
We compare the networks trained only on the original dataset
and the networks retrained with the corrupted dataset, and
show that the networks retrained with the corrupted dataset
provide superior performance when one of the modalities
fail and retains the performance of the originally trained
networks when both the sensors are present.

D. Differential drive of the vehicle

The predicted steering commands are mapped to the
motor actuation commands to drive the ground vehicle. This
mapping is done as part of the in-house developed �rmware
on our real-time autopilot system which takes the steering
commands from the networks and outputs the control signals
to the motor drivers on the ground vehicle. The speeds of

the DC motors on the vehicle are controlled by Pulse Width
Modulated (PWM) pulses generated by the autopilot with
a period of20ms and an ON period varying from1ms to
2ms. The steering commands output by the network lie in
the interval [-100, 100] and are mapped linearly to PWM
signal ON periods of1ms (5%) to 2ms (10%) and utilized
as an additive differential drive actuation to the motors on
the left and right sides of the vehicle, which essentially
results in a left turn when the steering command is negative,
a right turn when the steering command is positive, and
straight movement when the steering command is zero. The
magnitude of the steering command controls the sharpness
of the turn.

V. EXPERIMENTAL STUDIES

In this section, experimental results are presented for
the three previously described architectures (NetGated, Net-
ConEmb, and NetEmb) �rst with training using both camera
and LiDAR and then with retraining using the corrupted data
as discussed above.
A. Performance of the Different Network Architectures

In order to evaluate the performance of the proposed
architectures (namely NetEmb, NetConEmb and NetGated
as described in Table I, II and III, respectively), steering
command predictions of each network were compared with
the steering commands of a human controller. This evalua-
tion was done using a different dataset (test dataset) than the
one used for training. The results of each of the architectures
compared to the human controller are shown in Figure 5
where the steering commands given by a human controller
(during tele-operation of the UGV) are denoted as the ground
truth.

As shown in Figure 5, the utilization inNetEmbof an
equal-size embedding (constructed using a fully connected



layer) for each modality after the last convolution layer
provides better performance thanNetConEmbas hypothe-
sized in Section IV-B. TheNetEmbarchitecture performs
better when one of the modalities is switched off and also
oscillates less compared to theNetConEmbarchitecture.
As discussed in Section IV-B, the much larger number of
features for the camera after the last convolution layer than
for LiDAR causes the output to become more dependent on
one modality inNetConEmbresulting in unbalanced fusion
which makes the steering commands oscillate more, similar
to the behavior of the camera only network. We also observe
that the fusion architecturesNetEmband NetConEmbare
biased towards moving right(negative steering command)
compared to the ground truth human command.

Motivated by the observations above, fully connected
layer based embeddings for each modality were also used
in the NetGatedarchitecture. An additional advantage of
using an equal-size embedding for each modality is that
it is then easier and more natural to fuse the embeddings
by the learned gated weights by simply taking a weighted
linear combination. As shown in Figure 5, theNetGated
architecture based network learns to move straight with
fewer oscillations than even the human controller. The fusion
of camera and LiDAR results in a smoother output than a
LiDAR only system as shown in the Figure 5.

Since a desirable characteristic of motion in the indoor
corridor environment is that the ground vehicle should
approximately track the center of the corridor and should
not come too close to walls when turning, a useful metric
for performance of the system is the distance of the vehicle
to the left side and right side walls/objects. Since there are
several objects such as trash cans and also empty spaces and
open of�ce doors at some locations, the closest distances on
the left and right sides varies quite signi�cantly even for an
“ideal” motion. To remove such “noise” effects, an effective
performance metric is the variance (rather than mean) of
distances to the left side and right side walls/objects. These
variances were recorded under fully autonomous mode (i.e.,
with the network providing the commands to the autopi-
lot) with the different networks for both clockwise and
counterclockwise directions. The measured variances for a
clockwise motion through the building corridor environment
(one complete �oor of the building) are shown in Table
IV and it is noted that theNetGatednetwork architecture
provides the best (lowest) variance; a similar observation
was also noted for a counterclockwise motion.

Network Type Network
Input

Left Wall
Distance
Variance (in
m)

Right Wall
Distance
Variance (in
m)

1 NetConEmb
network

Camera
and
LiDAR

0.2306 0.1876

2 NetEmb Camera
and
LiDAR

0.1416 0.1245

3 NetGated Camera
and
LiDAR

0.1008 0.0575

TABLE IV: Variance of minimum distances to the wall for a
clockwise trajectory under fully autonomous mode.

For all the considered network architectures, it is noted in
Figure 5 that the system trained on a dataset with both cam-

Fig. 5: Steering command predictions using the different net-
work architectures under cases of only camera working (top
row), only LiDAR working (middle row), and both camera
and LiDAR working (bottom row). In each row, the left side
and right side pictures show clockwise (right turns) and coun-
terclockwise (left turns) navigations of a complete �oor of a
corridor environment. Ground truth (GT) refers to the recorded
human inputs.

era and LiDAR data is not directly robust to the possibility of
a sensor failing (i.e., only one sensor modality available and
the other zeroed out). For example,NetGatedplaces much
more trust on the LiDAR input than on the camera input and
does not provide any reasonable performance in the event of
a LiDAR failure. Hence, in order to achieve robustness to
sensor failure, we introduce the training strategy described
in Section sec:training to continue retraining of the network
with corrupted data generated by synthetically turning off ei-
ther of the two modalities. The performance of the retrained
NetGatednetwork (after retraining with this corrupted data
based technique) is compared below with the original trained
NetGatednetwork and the human controller.

B. Performance of Network Retrained with Corrupted Data

The NetGatedarchitecture when retrained with corrupted
data as explained in IV-C achieves better performance than
the network only trained with the original dataset. As
shown in Figure 6, when both camera and LiDAR are
working, both the original and retrained networks perform
well and have very similar performance; but, when one of the
modalities is shut off, the retrained network performs better.
The performance characteristics of the retrainedNetGated
network was also evaluated (under the possibilities of both
camera and LiDAR available, only camera available, and
only LiDAR available) using the distance variance based
metric as discussed above under fully autonomous operation
of the UGV (Figure 7). It is noted in Table V that the



retrainedNetGatednetwork achieves autonomous navigation
through the corridor although the camera-only and LiDAR-
only situations provide lower performance (i.e., higher dis-
tance variances) than the camera+LiDAR situation.

Fig. 6: Steering command predictions using theNetGated
trained only with the camera+LiDAR dataset and theNetGated
retrained with corrupted data under cases of only camera
working (top row), only LiDAR working (middle row), and both
camera and LiDAR working (bottom row). As in Figure 5, the
left side and right side pictures in each row show clockwise and
counterclockwise navigations of the corridor environment.

Fig. 7: Distances of the ground vehicle from the left wall
and right wall for clockwise (left) and counterclockwise (right)
autonomous navigations in the corridor environment.

C. Autonomous Indoor Navigation of the Ground Vehicle
The proposed deep learning based system is able to

fully autonomously navigate through the indoor corridor
environment. With the retraining procedure discussed above,
the system is robust to failure of either of the camera or
LiDAR sensor modalities. Auutonomous navigation through
corridors is shown in Figure 8. The ground vehicle is able
to appropriately make turns at corners enabling it to be
equidistant from the walls after the turn. It is also able to
navigate through narrower spaces (e.g., between trash cans)
as shown in the middle two rows of Figure 8.

Furthermore, the system is able to implicitly learn to avoid
static and dynamic obstacles as shown in Figure 9 without

Network Type Network
Input

Left Wall
Distance
Variance (in
m)

Right Wall
Distance
Variance (in
m)

1 NetGated
Architecture

Camera 0.1843 0.1539

2 NetGated
Architecture

LiDAR 0.1358 0.1046

3 NetGated
Architecture

Camera
and
LiDAR

0.1013 0.0964

TABLE V: Variance of minimum distances to the walls using
the retrained NetGated architecture when various modalities are
turned off for a clockwise trajectory.

Fig. 8: Examples of autonomous navigation in an indoor envi-
ronment: left turn (top two rows), straight motion (middle two
rows), right turn (bottom two rows). These pictures were taken
from behind the UGV.

ever being speci�cally trained for this purpose, i.e., the
training dataset did not include any speci�c demonstrations
of moving around obstacles. Also, the fused camera+LiDAR
network performs better in several scenarios than the camera-
only or LiDAR-only situations. While a LiDAR-only net-
work can enable avoiding of obstacles such as humans, it
does not typically detect small (low-pro�le) objects since
these register only a few points in the LiDAR scan. In such
situations, the camera image enables the fused network to
avoid the obstacle. When approaching a visually featureless
wall, a camera-only system can not disambiguate between
left and right turns while the LiDAR enables the fused
network to detect the appropriate turn. When passing an open
door or other open spaces (such as a short corridor leading
to a dead end), the LiDAR being a more geometric sensor
measuring distances to points tends to make a LiDAR-only
system move towards the open space. However, the visual
features implicitly detected from the camera enable the fused
network to completely ignore such an “unintended” open
space and remain at the center of the corridor (Figure 10).

VI. CONCLUSION
An end-to-end CNN based framework was developed

for fusing vision and depth measurements from camera
and LiDAR, respectively, for autonomous navigation of a
ground robot in an indoor environment. Multiple network



Fig. 9: Examples of avoidance of static obstacles (top row) and
dynamic obstacles (bottom row) by the UGV. These pictures
were taken from behind the UGV.

Fig. 10: Comparison of LiDAR-only network vs fused network
in presence of “spurious” open spaces (e.g., open doors). With
only LiDAR, there is marked deviation (from the center of the
corridor) towards open doors or other open spaces.

architectures were considered including a novel gating based
network architecture. A two-stage training methodology was
proposed to achieve robustness to the possibility of sensor
failure and to properly leverage the complementary strengths
of the two sensors so as to achieve better performance than
with either sensor separately. It was experimentally demon-
strated that the proposed deep learning based system is able
to fully autonomously navigate in the indoor environment
with robustness to failure of either the camera or the LiDAR.

Topics for future work include improvements to the
network architectures (and training algorithms) to make
them more robust to additive random noise, environment
perturbations caused due to vibration of the camera, and
sensor placement. We also plan to experiment with recurrent
neural networks due to their inherent property of capturing
temporal dependencies between inputs and extend the system
to outdoor environments.
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R. Hadsell, “Sim-to-real robot learning from pixels with progressive
nets,” arXiv preprint arXiv:1610.04286, 2016.

[17] Y. Zhu, R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and
A. Farhadi, “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,”arXiv preprint arXiv:1609.05143, 2016.

[18] E. Santana and G. Hotz, “Learning a driving simulator,”arXiv preprint
arXiv:1608.01230, 2016.

[19] A. Ghosh, B. Bhattacharya, and S. B. R. Chowdhury, “Sad-gan:
Synthetic autonomous driving using generative adversarial networks,”
arXiv preprint arXiv:1611.08788, 2016.

[20] G. Chronis and M. Skubic, “Experiments in programming by demon-
stration: Training a neural network for navigation behaviors,” inPro-
ceedings of the International Symposium on Robotics and Automation
(ISRA), 2000.

[21] M. Jonsson, P.-A. Wiberg, and N. Wickström, “Vision-based low-
level navigation using a feed-forward neural network,” inInternational
Workshop on Mechatronical Computer Systems for Perception and
Action (MCPA'97), Pisa, Italy, Feb. 10-12, 1997, 1997, pp. 105–111.

[22] M. Meng and A. C. Kak, “Neuro-nav: a neural network based
architecture for vision-guided mobile robot navigation using non-
metrical models of the environment,” inRobotics and Automation,
1993. Proceedings., 1993 IEEE International Conference on. IEEE,
1993, pp. 750–757.

[23] V. N. Murali and S. T. Birch�eld, “Autonomous navigation and map-
ping using monocular low-resolution grayscale vision,” inComputer
Vision and Pattern Recognition Workshops, 2008. CVPRW'08. IEEE
Computer Society Conference on. IEEE, 2008, pp. 1–8.

[24] K. K. Narayanan, L.-F. Posada, F. Hoffmann, and T. Bertram, “Situated
learning of visual robot behaviors,” inInternational Conference on
Intelligent Robotics and Applications. Springer, 2011, pp. 172–182.

[25] S. Gupta, R. Girshick, P. Arbeláez, and J. Malik, “Learning rich
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