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Abstract

Recently a majorization method for optimizing partition functions of log-linear
models was proposed alongside a novel quadratic variational upper-bound. In
the batch setting, it outperformed state-of-the-art first-and second-order opti-
mization methods on various learning tasks. We propose a stochastic version
of this bound majorization method as well as a low-rank modification for high-
dimensional data-sets. The resulting stochastic second-order method outperforms
stochastic gradient descent (across variations and various tunings) both in terms
of the number of iterations and computation time till convergence while finding a
better quality parameter setting. The proposed method bridges first- and second-
order stochastic optimization methods by maintaining a computational complexity
that is linear in the data dimension and while exploiting second order information
about the pseudo-global curvature of the objective function (as opposed to the
local curvature in the Hessian).

1 Introduction

Stochastic learning algorithms are of central interest in machine learning due to their simplicity and,
as opposed to batch methods, their low memory and computational complexity requirements [1, 2,
3]. For instance, stochastic learning algorithms are commonly used to train deep belief networks
(DBNs) [4, 5] which perform extremely well on tasks involving massive data-sets [6, 7]. Stochastic
algorithms are also broadly used to train Conditional Random Fields (CRFs) [8], solve maximum
likelihood problems [9] and perform variational inference[10].

Most stochastic optimization approaches fall into two groups: first-order methods and second-order
methods. Popular first-order methods include stochastic gradient descent (SGD) [11] and its many
extensions [12, 13, 14, 15, 16, 17]. These methods typicallyhave low computational cost per it-
eration (such asO(d) whered is the data dimensionality) and either sub-linear (most stochastic
gradient methods) or linear (as shown recently in [12]) convergence rate which makes them par-
ticularly relevant for large-scale learning. Despite its simplicity, SGD has many drawbacks: it has
slow asymptotic convergence to the optimum [8], it has limited ability to handle certain regularized
learning problems such asl1-regularization [18], it requires step-size tuning and it is difficult to
parallelize [19]. Many works have tried to incorporate second-order information (i.e. Hessian) into
the optimization problem to improve the performance of traditional SGD methods. A straightfor-
ward way of doing so is to simply replace the gain in SGD with the inverse of the Hessian matrix
which, when naively implemented, induces a computational complexity ofO(d3). This makes the
approach impractical for large problems. The trade-offs inlarge-scale learning for various prototyp-
ical batch and stochastic learning algorithms are conveniently summarized in [20]). Therein, several
new methods are developed, including variants of Newton’s method which use both gradient and
Hessian information to compute the descent direction. By carefully exploring different first- and
second-order techniques, the overall computational complexity of optimization can be reduced as in
the Stochastic Meta-Descent (SMD) algorithm [21]. Although it still uses the gradient direction to
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converge, SMD also efficiently exploits certain Hessian-vector products to adapt the gradient step-
size. The algorithm is shown to converge to the same quality solution as limited-memory BFGS
(LBFGS) an order of magnitude faster for CRF training [8]. There also exists stochastic versions of
quasi-Newton methods like online BFGS and online LBFGS [22], the latter applicable to large-scale
problems, which while using convenient size mini-batches performs comparably to a well-tuned nat-
ural gradient descent [23] on the task of training CRFs, but at the same time is more scalable. In each
iteration the inverse of the Hessian, that is assumed to haveno negative eigenvalues, is estimated.
Computational complexity of this online LBFGS method isO(md) per iteration, wherem is the
size of the buffer used to estimate the inverse of the curvature. The method degrades (largem) for
sparse data-sets. Another second-order stochastic optimization approach proposed in the literature
explores diagonal approximations of the Hessian matrix or Gauss-Newton matrix[5, 24]. In some
cases this approach appears to be overly simplistic [25], but turned out successful in very particular
applications, i.e. for learning with linear Support VectorMachines [24]. There is also a large body
of work on stochastic second-order methods particularly successful in training deep belief network
like Hessian-free optimization [25]. Finally, there are also many hybrid methods using existing
stochastic optimization tools as building blocks and merging them to obtain faster and more robust
learning algorithms [9, 26].

This paper contributes to the family of existing second-order stochastic optimization methods with a
new algorithm that is using a globally guaranteed quadraticbound with a curvature different than the
Hessian. Therefore our approach is not merely a variant of Newton’s method. This is a stochastic
version of a recently proposed majorization method [27] which performed maximum (latent) condi-
tional likelihood problems more efficiently than other state-of-the-art first- and second- order batch
optimization methods like BFGS, LBFGS, steepest descent (SD), conjugate gradient (CG) and New-
ton. The corresponding stochastic bound majorization method is compared with a well-tuned SGD
with either constant or adaptive gain inl2-regularized logistic regression and turns out to outperform
competitor methods in terms of the number of iterations, theconvergence time and even the quality
of the obtained solution measured by the test error and test likelihood.

2 Preliminaries

A staggering number of machine learning and statistics frameworks involve linear combinations or
cascaded linear combinations of soft-maximum functions:

s(θ) =

t
∑

j=1

γi log
∑

y

h(y) exp(θ⊤f(y)),

whereθ ∈ R
d is a parameter vector,f : Ω → R

d is any vector-valued function mapping an inputy
to some arbitrary vector (we assumeΩ is finite and|Ω| = n is enumerable),t is the size of the data-
set andγi is some non-negative weight. These functions emerge in multi-class logistic regression,
CRFs [28], hidden variable problems, DBNs [29], discriminatively trained speech recognizers [30]
and maximum entropy problems [31]. For simplicity, we focusherein on the CRF training problem
in particular. CRFs use the density model:

p(y|xj , θ) =
1

Zxj
(θ)

hxj
(y) exp(θ⊤fxj

(y)),

where {(x1, y1), . . . , (xt, yt)} are iid input-output pairs andZxj
(θ) is a partition function:

Zxj
(θ) =

∑

y∈Ωj
hxj

(y) exp(θ⊤fxj
(y)). Following the maximum likelihood approach, the ob-

jective function to maximize in this setting is:

J(θ) =
t

∑

j=1

[

log
hxj

(yj)

Zxj
(θ)

+ θ⊤fxj
(yj)

]

−
λ

2
‖θ‖2, (1)

whereλ is a regularization hyper-parameter. LetJ(θ) =
∑t

j=1 Jj(θ), whereJj(θ) = log
hxj

(yj)

Zxj
(θ) +

θ⊤fxj
(yj) −

λ
2t‖θ‖

2. For large numbers of data pointst, and potentially large dimensionalityd,
summations in Equation 1 need not be handled in a batch form, but rather, can be processed stochas-
tically or semi-stochastically. We next review the most commonly used stochastic algorithm, SGD,
which will be a key comparator for our stochastic bound majorization algorithm.
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2.1 Stochastic gradient descent methods

Batch gradient descent updates the parameter vectorθ after seeing the entire training data-set using
the following formula:

θ = θ − ηµ(θ) = θ − η

t
∑

j=1

µj(θ),

whereµ(θ) = ▽θJ(θ), µj(θ) = ▽Jj(θ) andη is typically chosen via line search. In contrast,
stochastic gradient descent updates the parameter vectorθ after seeing each training data point (resp.
each mini-batch of data points) as follows:

θi+1 = θi − ηiµj(θi), resp.θi+1 = θi − ηi

m
∑

j=1

µj(θi),

whereθi is the current parameter vector,ηi is the current gain or step-size, andm << t is the
size of the mini-batch. We assume a data point is randomly selected and take its index to bej.
We intentionally indexθ with i andi + 1 to emphasize that the update is done after seeing single
example (resp. mini-batch of examples). For the batch method, we do not indexθ since the update
is done after passing through the entire data-set (epoch). In the experimental section we explore
two existing variants of stochastic gradient descent: one with constant gain (SGD) and one with
adaptive gain (ASGD). For the latter, we consider two strategies for modifying the gain and present
the results for the better one (in Section 5 the absence of aτ value indicates that the second strategy
is better since it does not require aτ parameter):

• ηi =
τ

τ+iη0

• ηi =
η0

i , whereη0, τ > 0 are tuning parameters.

2.2 Batch bound majorization algorithm

Algorithm 1 Batch Bound
Input Parameters̃θ, f(y), h(y) ∀y ∈ Ω
Init z → 0+,g = 0,Σ = zI
For eachy ∈ Ω {

α = h(y) exp(θ̃⊤f(y)); l = f(y)− g

β =
tanh( 1

2
log(α/z))

2 log(α/z) ; κ = α
z+α

Σ += βll⊤

g += κl
z += α }

Outputz,g,Σ −10 −5 0 5 10
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Bound
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Theorem 1 Algorithm 1 findsz,g,Σ such thatz exp(12 (θ − θ̃)⊤Σ(θ − θ̃) + (θ − θ̃)⊤g) upper-

boundsZ(θ) =
∑

y h(y) exp(θ
⊤f(y)) for anyθ, θ̃, f(y) ∈ R

d andh(y) ∈ R
+ for all y ∈ Ω.

The stochastic bound majorization algorithm proposed in this paper is a stochastic variant of the
batch method described in [27]. The bound is depicted in Theorem 1. The figure near Algorithm 1
shows typical bounds the algorithm recovers (in blue) and also shows (in green) examples what
happens when the bound’sΣ matrix is replaced by the Hessian matrix which yields a second-order
approximation to the function. These tight quadratic bounds facilitate majorization: solving an
optimization problem by iteratively finding the optima of simple bounds on it [32] as popularized by
the Expectation-Maximization (EM) algorithm [33]. Majorization was shown to achieve faster and
monotonically convergent performance in CRF learning and maximum latent conditional likelihood
problems with a clear advantage over state-of-the-art first- and second-order batch methods [27].
The batch bound majorization algorithm applied to Equation1 updates the parameter vectorθ after
seeing the entire training data-set using the following formula:

θ = θ − ηΣ−1(θ)µ(θ), (2)
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whereΣ(θ) =
∑t

j=1 Σj(θ)+λI,µ(θ) =
∑t

j=1 µj(θ) =
∑t

j=1(gj(θ)−fj(yj))+λθ. Here, each
Σj andgj is computed using Algorithm 1 (for details see [27]) andη ∈ (0, 2) guarantees monotonic
improvement [34] (typically we setη = 1).

3 Stochastic bound majorization algorithm

The intuition behind stochastic gradient descent is to compute the gradient over a single representa-
tive data-point rather than an iterative computation (namely a summation) over all data-points. This
allows us to interleave parameter updates into the gradientcomputation rather than wait for it to
terminate after a full epoch. We herewith extend this intuition into a bound majorization setting.
Unfortunately, the update rule for majorization involves amatrix inverse rather than a simple sum
across the data. We will re-cast this update rule as an iterative computation over the data-set which
will then admit a stochastic incarnation.

3.1 Full-rank version

Notice that the batch update in Equation 2 is the solution of the linear system:




t
∑

j=1

Σj + λI



 δ =

t
∑

j=1

µj

For the ease of notation we denoteΣj(θ) asΣj andµj(θ) asµj . Rewrite the linear system as
Σδ = u. We then define the inverse matrixM = Σ−1 and write the solution asδ = Mu. Clearly,
the matrix inversion cannot be performed each time we process a single data-point in a stochastic
setting since a computational complexity ofO(d3) is prohibitive in a stochastic setting. Therefore,
consider an online version of Algorithm 1 which computes thematrix inversion ofΣ incrementally
using the Sherman-Morrison formula(Σ+ qiq

⊤
i )

−1 = Σ−1 − (Σ−1qiq
⊤
i Σ

−1)/(1 + q⊤
i Σ

−1qi).
Sherman-Morrison works with the inverse matrixM = Σ−1 instead. InitializeM0 = 1

λI and
incrementally increaseM using the update rule:

Mi+1 = Mi −
Miqiq

⊤
i Mi

1 + q⊤
i Miqi

, where qi =
√

βi(fi − gi) =
√

βili,

where the indexi ranges over all rank1 updates to the matrixΣ for all elements ofΩ as well as
j = 1, . . . , t. Finally, the solution is obtained by multiplyingM with u. This avoidsO(d3) inversion
and solves the linear system inO(tnd2). Let T = tn. We will now reformulate the batch update
from Equation 2 by using the Sherman-Morrison technique. For the ease of notation, introduceξ’s
such that∀i=1,2,...,Tµi = µi−1 + ξi−1 (thusξi−1 = κi−1li−1 − fi−1 + λθ/t).

θ = θ − ηMTµT = θ − η

[

MT−1 −
MT−1qT−1q

⊤
T−1MT−1

1 + q⊤
T−1MT−1qT−1

]

(µT−1 + ξT−1)

= θ − ηMT−1µT−1 − ηMT−1ξT−1 +
MT−1qT−1q

⊤
T−1MT−1

1 + q⊤
T−1MT−1qT−1

µT−1

+
MT−1qT−1q

⊤
T−1MT−1

1 + q⊤
T−1MT−1qT−1

ξT−1.

We can further expandMT−1µT−1 as:

MT−1µT−1 =

[

MT−2 −
MT−2qT−2q

⊤
T−2MT−2

1 + q⊤
T−2MT−2qT−2

]

(µT−2 + ξT−2)

= MT−2µT−2 +MT−2ξT−2 −
MT−2qT−2q

⊤
T−2MT−2

1 + q⊤
T−2MT−2qT−2

µT−2 −
MT−2qT−2q

⊤
T−2MT−2

1 + q⊤
T−2MT−2qT−2

ξT−2

and again we can further expandMT−2µT−2 as:

MT−2µT−2 =

[

MT−3 −
MT−3qT−3q

⊤
T−3MT−3

1 + q⊤
T−3MT−3qT−3

]

(µT−3 + ξT−3)
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= MT−3µT−3+MT−3ξT−3−
MT−3qT−3q

⊤
T−3MT−3

1 + q⊤
T−3MT−3qT−3

µT−3−
MT−3qT−3q

⊤
T−3MT−3

1 + q⊤
T−3MT−3qT−3

ξT−3.

We repeat these steps. In the last step we expandM1µ1. We can combine these results and write
the following update rule:

θ = θ − ηMTµT = θ − ηM0µ0 − η
T−1
∑

c=0

[

Mcξc −
Mcqcq

⊤
c Mc

1 + q⊤
c Mcqc

µc −
Mcqcq

⊤
c Mc

1 + q⊤
c Mcqc

ξc

]

= θ − η

T−1
∑

c=0

[(

Mc −
Mcqcq

⊤
c Mc

1 + q⊤
c Mcqc

)

ξc −
Mcqcq

⊤
c Mc

1 + q⊤
c Mcqc

µc

]

The last inequality comes from the fact thatµ0 is initialized asµ0 = 0. We have thus rewritten the
batch majorization update rule for the parameters as an iterative summation over the data. Analogous
to the conversion of a batch gradient descent algorithm intoSGD, the most natural way to convert the
batch bound majorization algorithm to its stochastic version is to interleave updates of the parameter
θ rather than waiting for the full summation to terminate (after an epoch) before allowingθ to
update. This permits us to now write a fully stochastic update rule on the parameter vectorθ (in
original notation):

θi+1 = θi − ηi

[(

Mj(θi)−
Mj(θi)qj(θi)qj(θi)

⊤Mj(θi)

1 + qj(θi)⊤Mj(θi)qj(θi)

)

ξj(θi)

−
Mj(θi)qj(θi)qj(θi)

⊤Mj(θi)

1 + qj(θi)⊤Mj(θi)qj(θi)
µj(θi)

]

Algorithm 2 Stochastic Bound
Input: λ ∈ R

+, η
Initialize: θ ∈ R

d, φ = zeros(d), M = 1
λI, µ = 0

while not converged{
select data pointj
z → 0+; g = 0
For eachy ∈ Ω {

α = hj(y) exp(θ
⊤fj(y)); l = fj(y)− g; β =

tanh( 1

2
log(α/z)

2 log(α/z) ; κ = α
z+α

ξ = κl− fj + λθ/t

N = Mβll⊤M

1+βl⊤Ml

M −= N
φ += Mξ −Nµ
g += κl
µ += ξ
z += α }

θ −= ηφ }

The stochastic bound majorization algorithm also readily admits mini-batches. Algorithm 2 captures
the full-rank version of the proposed algorithm (we always use constant step sizeη = 1

t ).

We have also investigated many other potential variants of Algorithm 2 including heuristics bor-
rowed from other stochastic algorithms in the literature [12]. Some heuristics involved using mem-
ory to store previous values of updates, gradients and second order matrix information. Remarkably,
all such heuristics and modifications slowed down the convergence of Algorithm 2.

On caveat remains. The computational complexity of the proposed stochastic bound majorization
method isO(nd2) per iteration which is less appealing than theO(nd) complexity of SGD. This
shortcoming is resolved in the next subsection.

3.2 Low-rank version

We next provide a low-rank version of Algorithm 2 to maintaina O(nd) run-time per stochastic
update. Consider the update onφ inside the loop overy in Algorithm 2. This update can be
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rewritten as

φ+= Mξ −Nµ = Mξ − (Mold −M)µ = (Σ)−1ξ − ((Σold)
−1 − (Σ)−1)µ,

whereMold andΣold are the matrices that, after being updated, becomeM andΣ respectively:
M = Mold − Nold, Mold = Σ−1

old andΣ = Σold + qoldq
⊤
old = Σold + βoldloldl

⊤
old (rank 1

update). We can store the matrixΣ using a low-rank representationV⊤SV + D, wherek is a
rank (k << d), V ∈ R

k×d is orthonormal,S ∈ R
k×k is positive semi-definite andD ∈ R

d×d is
non-negative diagonal. We can directly updateV, S andD online rather than incrementing matrix
Σ by a rank1 update. In the case of batch bound majorization method this still guarantees an
overall upper bound [27]. We directly apply this technique as well in our stochastic setting. Due
to space constraints we will not present this technique (we refer the reader to [27]). Given a low-
rank version of the matrix, we use the Woodbury formula to invert it in each iteration:Σ−1 =
D−1 + D−1V⊤(S−1 + VD−1V⊤)−1VD−1. That leads to a low-rank version of Algorithm 2,
which requires onlyO(knd) work per iteration which is pseudo-linear in dimension ifk is assumed
to be a logarithmic or constant function ofd.

4 A motivating example
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Figure 1: A comparison of LBFGS, SGD, ASGD and SBM forl2-regularized logistic regression.
From left to right, first row: the data-set, training log-likelihood and error (originaland zoomed)
vs. passes through the data for LBFGS, SGD (η0 = 10−8, m = 1), ASGD (η0 = 10−5, τ = 1,m =
1) and SBM (η0 = 1

t , m = 1), second row: SGD training log-likelihood and error (η0 = 10−7) and
ASGD training log-likelihood and error (η0 = 10−4, τ = 1) vs. passes through the data.λ = 101.

Consider Figure 1 which is an example of a binary classification problem which exposes some of
difficulties with SGD. Intuitively, in this example, the gradients in the SGD update rule will point
in almost random directions which could lead to very slow progress. Four training algorithms will
be compared: SGD, ASGD, stochastic bound majorization algorithm (SBM) and LBFGS. We have
tried several parameter settings for SGD and ASGD. The rangeof tested step sizeη0 was as broad
as [10−12, 1]. The SGD method however exhibits high instability until thestep size is reduced to
an unreasonably small value such as10−8 (for comparison we also show SGD performance for
η0 = 10−7). The reason for is that this is a highly symmetric and non-linearly separable data-
set. Therefore, the information captured in the gradients is extremely noisy which causes SGD to
oscillate and fail to converge in practice. For ASGD we obtained the best and stable result for
η0 = 10−5 (for comparison we also show ASGD performance forη0 = 10−4) andτ = 1 (larger
values ofτ weaken performance). For both methods we tested the mini-batch sizem from 1 (a
single data point) to10 and noticed no meaningful difference. Clearly both SGD and ASGD are
stuck in solutions that are only slightly better than randomguessing. Meanwhile SBM (withm = 1
and a constant step sizeη0 = 1

t ) finds the same solution as a batch LBFGS method. It does so
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with a single pass through the data and simultaneously outperforming the competitor methods. We
emphasize that all methods used as comparators to our algorithm were well-tuned, i.e. the initial
gainη0 is set as high as possible for each method while maintaining stability.
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Figure 2: A comparison of LBFGS, SGD, ASGD, SBM and BBM forl2-regularized logistic regres-
sion.From left to right, first row: training and testing log-likelihood and testing error (original and
zoomed) vs. passes through the data for LBFGS, SGD (η0 = 10−2, m = 10), ASGD (η0 = 10−1,
τ = 500, m = 10), SBM (η0 = 1

t , m = 1) and BBM on the ecoli data-set,second row: testing
error (original and zoomed) vs. iterations for LBFGS, SGD and ASGD on the same experiment.

Next, we focus on the ecoli UCI data-set (http://archive.ics.uci.edu/ml/), a simple small-scale clas-
sification problem. We compare LBFGS, batch bound majorization method (BBM), SGD, ASGD
and SBM. Results are summarized in Figure 2. BBM, which was already shown to outperform
leading batch methods [27], performs comparably to ASGD andSGD. The only method that beats
BBM is SBM. In the first row of Figure 2, we plot the objective with respect to the number of
passes through the data. However, looking more closely at the objective with respect to each iter-
ation (where a single iteration corresponds to a single update of the parameter vector), we note an
interesting property of SBM: it clearly remains monotonic in its convergence despite its stochastic
nature. This is in contrast to SGD and ASGD which (as expected) fluctuate much more noisily.

Note that, in all experiments in this section and the next,90% of the data is used for training and
the rest for testing, the results are averaged over10 random initializations close to the origin and
the regularization valueλ is chosen through crossvalidation. All methods were implemented in C++
using the mex environment under Matlab.

5 Experiments

We next evaluate the performance of the new algorithm empirically. We compare SGD, ASGD
and SBM forl2-regularized logistic regression on the Mnist⋆, gisette∗, SecStr†, digitl† and Text†

data-sets1. We show two variants of the SBM algorithm: full-rank (on SecSTR and Mnist) and
low-rank (on the remaining data-sets). For the experimentswith full-rank SBM, we plot the testing
log-likelihood and error versus passes through the data (epoch iterations). For the experiments with
low-rank SBM, we plot the likelihood versus cpu time. For SGDand ASGD we tested mini-batches
of size fromm = 1 to m = 10 and chose the best setting. For the Mnist data-set we explored
mini-batches of up tom = 100 to achieve optimal SGD behavior. For SBM we always simply
usedm = 1. For each data-set, Figure 3 reports the optimal step sizeη0 for SGD and ASGD
and the optimal parameterτ for ASGD (if it was necessary). For the full-rank version of SBM
we always useη0 = 1

t , however for its low-rank version (where we simply assumedk = 1) we

1Downloaded from ⋆http://yann.lecun.com/exdb/mnist/, ∗http://archive.ics.uci.edu/ml/ and
†http://olivier.chapelle.cc/ssl-book/benchmarks.html
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tunedη0. The chosen value ofη0 is also reported in Figure 3. Clearly, SBM is less prone to over-
fitting and achieves higher testing likelihood than SGD and ASGD as well as lower testing error.
Simultaneously, SBM exhibits the fastest convergence in terms of the number of passes through the
data till convergence. Furthermore, low-rank SBM had the fastest convergence in terms of cpu time,
outperforming the leading stochastic first-order methods (SGD and ASGD) as shown in the plots of
likelihood over time.

0 0.5 1 1.5 2
−700

−650

−600

−550

−500
SecStr(testing)

log10(passes)

lo
g

(J
(
θ)

)

 

 

SGD
ASGD
SBM

0 0.5 1 1.5 2
−500

−450

−400

−350

−300

−250

−200

−150

−100
Mnist(testing)

log10(passes)

lo
g

(J
(
θ)

)

 

 

0 100 200 300 400

−100

−80

−60

−40

−20

digitl(testing)

time(sec)

lo
g

(J
(
θ)

)

 

 

0 2000 4000 6000 8000

−100

−95

−90

−85

Text(testing)

time(sec)

lo
g

(J
(
θ)

)

 

 

0 500 1000 1500 2000 2500 3000

−100

−80

−60

−40

−20

gisette(testing)

time(sec)

lo
g

(J
(
θ)

)

 

 

0 0.5 1 1.5 2
25

30

35

40

45

50
SecStr

log10(passes)

T
e

st
in

g
 E

rr
o

r 
(%

)

 

 

0 0.5 1 1.5 2
10

20

30

40

50

60

70

80

90
Mnist

log10(passes)

T
e

st
in

g
 E

rr
o

r 
(%

)

 

 

0 100 200 300 400

10

20

30

40

50

digitl

time(sec)

T
e

st
in

g
 E

rr
o

r 
(%

)

 

 

0 2000 4000 6000 8000

15

20

25

30

35

40

45

Text

time(sec)

T
e

st
in

g
 E

rr
o

r 
(%

)

 

 

0 500 1000 1500 2000 2500 3000

5

10

15

20

25

30

35

40

45

gisette

time(sec)

T
e

st
in

g
 E

rr
o

r 
(%

)

 

 

0.5 1 1.5

25.5

26

26.5

27

27.5

28

SecStr

log10(passes)

T
e

s
ti
n

g
 E

rr
o

r 
(%

)

 

 

0.8 1 1.2 1.4 1.6 1.8 2
14

16

18

20

22

Mnist

log10(passes)

T
e

st
in

g
 E

rr
o

r 
(%

)

 

 

100 200 300 400
−2

0

2

4

6

8

10

12

14

digitl

time(sec)

T
e

st
in

g
 E

rr
o

r 
(%

)

 

 

2000 4000 6000 8000

10

12

14

16

18

Text

time(sec)

T
e

st
in

g
 E

rr
o

r 
(%

)

 

 

0 200 400 600 800
1

2

3

4

5

6

7

8
gisette

time(sec)

T
e

st
in

g
 E

rr
o

r 
(%

)

 

 

Figure 3: A comparison of SGD, ASGD and SBM forl2-regularized logistic regression.From top
to bottom: testing log-likelihood and testing error (original and zoomed) vs. passes through the data
for data-sets:SecStr(t = 83679, n = 2, d = 632, λ = 101, SGD (η0 = 10−4, m = 10), ASGD
(η0 = 10−1, m = 10) SBM (η0 = 1

t , m = 1, full-rank)), Mnist (t = 10000, n = 10, d = 510,
λ = 10−2, SGD (η0 = 10−1, m = 100), ASGD (η0 = 10−1, τ = 105, m = 100) SBM (η0 = 1

t ,
m = 1, full-rank)), digitl (t = 1500, n = 2, d = 1448, λ = 101, SGD (η0 = 10−4, m = 10),
ASGD (η0 = 10−3, τ = 102, m = 10) SBM (η0 = 50 · 1

t , m = 1, k = 1)), Text (t = 1500, n = 2,
d = 23922, λ = 101, SGD (η0 = 10−4, m = 10), ASGD (η0 = 10−2, τ = 103, m = 10) SBM
(η0 = 1

t , m = 1, k = 1)) andgisette(t = 1500, n = 2, d = 10002, λ = 100, SGD (η0 = 10−3,
m = 10), ASGD (η0 = 10−1, τ = 101, m = 10) SBM (η0 = 100 · 1

t , m = 1, k = 1)).

6 Conclusion

We have proposed a new stochastic bound majorization methodfor optimizing the partition function
of log-linear models that uses second-order curvature through a global bound (rather than a local
Hessian). The method is obtained by applying Sherman-Morrison to the batch update rule to con-
vert it into an iterative summation over the data which can easily be made stochastic by interleaving
parameter updates. This (full-rank) stochastic method requires no parameter tuning. A low-rank
version of this stochastic update rule makes this effectively second-order method remain linear in
the dimensionality of the data. We showed experimentally that the method has significant advantage
over the state-of-the-art first-order stochastic methods like SGD and ASGD making majorization
competitive in both stochastic and batch settings [27]. Stochastic bound majorization achieves con-
vergence in fewer iterations, in less computation time (when using the low-rank version), and with
better final solutions. Future work will involve providing theoretical guarantees for the method as
well as application to deep architectures with cascaded linear combinations of soft-max functions.
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