
VisualBackProp: visualizing CNNs for autonomous driving

Mariusz Bojarski 1 Anna Choromanska 2 Krzysztof Choromanski 3

Bernhard Firner 1 Larry Jackel 1 Urs Muller 1 Karol Zieba 1

Abstract
This paper proposes a new method, that we call
VisualBackProp, for visualizing which sets of
pixels of the input image contribute most to the
predictions made by the convolutional neural net-
work (CNN). The method heavily hinges on ex-
ploring the intuition that the feature maps con-
tain less and less irrelevant information to the
prediction decision when moving deeper into the
network. The technique we propose was devel-
oped as a debugging tool for CNN-based systems
for steering self-driving cars and is therefore re-
quired to run in real-time, i.e. it was designed to
require less computations than a forward prop-
agation. This makes the presented visualization
method a valuable debugging tool which can be
easily used during both training and inference.
We furthermore justify our approach with theo-
retical arguments and theoretically confirm that
the proposed method identifies sets of input pix-
els, rather than individual pixels, that collabora-
tively contribute to the prediction. Our theoret-
ical findings stand in agreement with the exper-
imental results. The empirical evaluation shows
the plausibility of the proposed approach on the
road video data and reveals that it compares fa-
vorably to the LRP approach, i.e. it obtains
similar visualization results and simultaneously
achieves order of magnitude speed-ups.

1. Introduction
A plethora of important real-life problems are currently ad-
dressed with CNNs (LeCun et al., 1989), including im-
age recognition (Krizhevsky et al., 2012), speech recog-
nition (Abdel-Hamid et al., 2012), and natural language
processing (Weston et al., 2014). More recently they were
successfully used in the complex intelligent autonomous

1NVIDIA Corp. 2ECE NYU Tandon 3Google Brain
Robotics. Correspondence to: Mariusz Bojarski <mbo-
jarski@nvidia.com>, Anna Choromanska <ac5455@nyu.edu>,
Krzysztof Choromanski <kchoro@google.com>.

systems such as self-driving cars (Bojarski et al., 2016;
Chen et al., 2015). One of the fundamental question that
arises when considering CNNs as well as other deep learn-
ing models is: what made the trained neural network model
arrive at a particular response? This question is of partic-
ular importance to the end-to-end systems, where the in-
terpretability of the system is limited. Visualization tools
aim at addressing this question by identifying parts of the
input image that had the highest influence on forming the
final prediction by the network. It is also straightforward
to think about visualization methods as a debugging tool
that helps to understand if the network detects “reasonable”
cues from the image to arrive at a particular decision.

The visualization method for CNNs proposed in this paper
was originally developed for CNN-based systems for steer-
ing autonomous cars, though it is highly general and can
be used in other applications as well. The method relies
on the intuition that when moving deeper into the network,
the feature maps contain less and less information which
are irrelevant to the output. Thus, the feature maps of the
last convolutional layer should contain the most relevant
information to determine the output. At the same time, fea-
ture maps of deeper layers have lower resolution. The un-
derlying idea of the approach is to combine feature maps
containing only relevant information (deep ones) with the
ones with higher resolution (shallow ones). In order to
do so, starting from the feature maps of the last convo-
lutional layer, we “backpropagate” the information about
the regions of relevance while simultaneously increasing
the resolution, where the backpropagation procedure is not
gradient-based (as is the case for example in sensitivity-
based approaches (Baehrens et al., 2010; Simonyan et al.,
2014; Rasmussen et al., 2012)), but instead is value-based.
We call this approach VisualBackProp.

Our method provides a general tool for verifying that the
predictions generated by the neural network2, are based on
reasonable optical cues in the input image. In case of au-
tonomous driving these can be lane markings, other cars,
or edges of the road. Our visualization tool runs in real
time and requires less computations than forward propaga-
tion. We empirically demonstrate that it is order of mag-

2In the case of our end-to-end system for steering an au-
tonomous car, a prediction is the steering wheel angle.



VisualBackProp: visualizing CNNs for autonomous driving

nitude faster than the state-of-the-art visualization method,
LRP (Bach et al., 2015), while at the same time it leads to
very similar visualization results.

In the theoretical part of this paper we first provide a rigor-
ous mathematical analysis of the contribution of input neu-
rons to the activations in the last layer that relies on network
flows. We propose a quantitative measure of that contribu-
tion. We then show that our algorithm finds for each neu-
ron the approximated value of that measure. To the best
of our knowledge, the majority of the existing visualiza-
tion techniques for deep learning, which we discuss in the
Related Work section, lack theoretical guarantees, which
instead we provide for our approach. This is yet another
important contribution of this work.

The paper is organized as follows: Section 2 discusses re-
lated work, Section 3 describes our approach and Section 4
provides its theoretical analysis, Section 5 presents empiri-
cal results, and Section 6 contains final remarks.

2. Related work
A notable approach (Bach et al., 2015) addressing the prob-
lem of understanding classification decisions by pixel-wise
decomposition of non-linear classifiers proposes a method-
ology called layer-wise relevance propagation (LRP),
where the prediction is back-propagated without using gra-
dients such that the relevance of each neuron is redis-
tributed to its predecessors through a particular message-
passing scheme. The method relies on the conservation
principle which ensures that the network output activity is
fully redistributed through the layers of a neural network
model onto the input variables. This approach allows the
visualization of the contribution of single pixels to the pre-
dictions of a previously trained network as heatmaps. Its
stability and the sensitivity to different settings of the con-
servation parameters was studied in the context of several
deep learning models (Binder et al., 2016). The LRP tech-
nique was later extended to Fisher Vector classifiers (Bach
et al., 2016) and also used to explain predictions of CNNs
in NLP applications (Arras et al., 2016). An extensive com-
parison of LRP with other visualization techniques, like
the deconvolution method (Zeiler & Fergus, 2014) and the
sensitivity-based approach (Simonyan et al., 2014), which
we also discuss next in this section, using an evaluation
based on region perturbation can be found in (Samek et al.,
2016). This study reveals that LRP provides both quali-
tatively and quantitatively better explanation of the DNN
classification decisions than considered competitors.

Another approach (Zeiler & Fergus, 2014) for understand-
ing CNNs with max-pooling and rectified linear units (Re-
LUs) through visualization uses deconvolutional neural
network (Zeiler et al., 2011) attached to the convolutional
network of interest. This approach maps the feature ac-

tivity in intermediate layers of a previously trained CNN
back to the input pixel space using deconvolutional net-
work, which performs successively repeated operations of
i) unpooling, where switch variables are used to record the
locations of maxima within each pooling region, ii) rectifi-
cation, and iii) filtering. Since this method identifies struc-
tures within each patch that stimulate a particular feature
map, it differs from previous approaches (Girshick et al.,
2014) which instead identify patches within a data set that
stimulate strong activations at higher layers in the model.
The method can also be interpreted as providing an ap-
proximation to partial derivatives with respect to pixels in
the input image (Simonyan et al., 2014). One of the short-
comings of the method is that it enables the visualization
of only a single activation in a layer (all other activations
are set to zero). There also exist other techniques for in-
verting a modern large convolutional network with another
network, e.g. a method based on up-convolutional architec-
ture (Dosovitskiy & T.Brox, 2016), where as opposed to the
previously described deconvolutional neural network, the
up-convolutional network is trained. This method inverts
deep image representations and obtains reconstructions of
an input image from each layer.

The fundamental difference between the LRP approach and
the deconvolution method lies in how the responses are pro-
jected towards the inputs. The latter approach solves the
optimization problems to reconstruct the image input while
the former one aims to reconstruct the classifier decision
(the details are well-explained in (Bach et al., 2015)).

Guided backpropagation (Springenberg et al., 2015) ex-
tends the deconvolution approach by combining it with a
simple technique visualizing the part of the image that most
activates a given neuron using a backward pass of the ac-
tivation of a single neuron after a forward pass through
the network. Finally, the recently published method (Zint-
graf et al., 2017) based on the prediction difference analy-
sis (Robnik-Sikonja & Kononenko, 2008) is a probabilistic
approach that extends the idea in (Zeiler & Fergus, 2014) of
visualizing the probability of the correct class using the oc-
clusion of the parts of the image. The approach highlights
the regions of the input image of a CNN which provide ev-
idence for or against a certain class.

Understanding CNNs can also be done by visualizing out-
put units as distributions in the input space via output unit
sampling (Hinton et al., 2006). However, computing rel-
evant statistics of the obtained distribution is often diffi-
cult. This technique cannot be applied to deep architec-
tures based on auto-encoders as opposed to the subsequent
work (Erhan et al., 2010; 2009). In their work the authors
visualize what is activated by the unit in an arbitrary layer
of a CNN in the input space (of images) via an activation
maximization procedure that looks for input patterns of a
bounded norm that maximize the activation of a given hid-



VisualBackProp: visualizing CNNs for autonomous driving

den unit using gradient ascent. This method extends pre-
vious approaches (Berkes & Wiskott, 2006). The gradient-
based visualization method (Erhan et al., 2009) can also
be viewed as a generalization of the deconvolutional net-
work reconstruction procedure (Zeiler & Fergus, 2014) as
shown in subsequent work (Simonyan et al., 2014). The re-
quirement of careful initialization limits the method (Zeiler
& Fergus, 2014). The approach was applied to Stacked
Denoising Auto-Encoders, Deep Belief Networks and later
on to CNNs (Simonyan et al., 2014). The latter work also
proposes a technique for computing a class saliency map
from a CNN, specific to a given image and class. Instead
of projecting back convolutional features to the input space
as in (Zeiler & Fergus, 2014), they perform the projec-
tion from the fully connected layers of the network. The
method described in this work belongs to a broader family
of sensitivity-based methods (other members of this fam-
ily include (Baehrens et al., 2010; Rasmussen et al., 2012),
which aim to understand how the classifier works in differ-
ent parts of the input domain by computing scores based on
partial derivatives at the given sample.

Some more recent gradient-based visualization techniques
for CNN-based models not mentioned before include Grad-
CAM (Selvaraju et al., 2016), which is an extension of
the Class Activation Mapping (CAM) method (Zhou et al.,
2016). The approach heavily relies on the construction of
weighted sum of the feature maps, where the weights are
global-average-pooled gradients obtained through back-
propagation. The approach lacks the ability to show fine-
grained importance like pixel-space gradient visualization
methods (Springenberg et al., 2015; Zeiler & Fergus, 2014)
and thus in practice has to be fused with these techniques to
create high-resolution class-discriminative visualizations.

Other approaches for analyzing neural networks in-
clude quantifying variable importance in neural net-
works (Gevrey et al., 2003; Olden et al., 2004), extract-
ing the rules learned by the decision tree model that is
fitted to the function learned by the neural network (Se-
tiono & Liu, 1995), applying kernel analysis to under-
stand the layer-wise evolution of the representation in a
deep network (Montavon et al., 2011), analyzing the visual
information in deep image representations by looking at
the inverse representations (Mahendran & Vedaldi, 2015),
applying contribution propagation technique to provide
per-instance explanations of predictions (Landecker et al.,
2013) (the method relies on the technique of (Poulin et al.,
2006), or visualizing particular neurons or neuron lay-
ers (Krizhevsky et al., 2012; Yosinski et al., 2015). Finally,
there also exist more generic tools for explaining individual
classification decisions of any classification method for sin-
gle data instances, like for example (Baehrens et al., 2010).

3. Visualization method
As mentioned before, our method combines feature maps
from deep convolutional layers that contain mostly relevant
information, but are low-resolution, with the feature maps
of the shallow layers that have higher resolution but also
contain more irrelevant information. This is done by “back-
propagating” the information about the regions of relevance
while simultaneously increasing the resolution. The back-
propagation is value-based. We call this approach Visual-
BackProp to emphasize that we “back-propagate” values
(images) instead of gradients. We explain the method in
details below.

Figure 1. Block diagram of the VisualBackProp method. The fea-
ture maps after each ReLU layer are averaged. The averaged fea-
ture map of the last convolutional layer is scaled-up via deconvo-
lution and multiplied by the averaged feature map from the previ-
ous layer. The resulting intermediate mask is again scaled-up and
multiplied. This process is repeated until we reach the input.

The block diagram of the proposed visualization method is
shown in Figure 1. The method utilizes the forward prop-
agation pass, which is already done to obtain a prediction,
i.e. we do not add extra forward passes. The method then
uses the feature maps obtained after each ReLU layer (thus
these feature maps are already thresholded). In the first
step, the feature maps from each layer are averaged, result-
ing in a single feature map per layer. Next, the averaged
feature map of the deepest convolutional layer is scaled up
to the size of the feature map of the previous layer. This
is done using deconvolution with filter size and stride that
are the same as the ones used in the deepest convolutional
layer (for deconvolution we always use the same filter size
and stride as in the convolutional layer which outputs the
feature map that we are scaling up with the deconvolution).
In deconvolution, all weights are set to 1 and biases to 0.
The obtained scaled-up averaged feature map is then point-
wise multiplied by the averaged feature map from the pre-
vious layer. The resulting image is again scaled via de-
convolution and multiplied by the averaged feature map of
the previous layer exactly as described above. This process



VisualBackProp: visualizing CNNs for autonomous driving

continues all the way to the network’s input as shown in
Figure 1. In the end, we obtain a mask of the size of the
input image, which we normalize to the range [0, 1].

Figure 2. Left: Averaged feature maps of all convolutional layers
from the input (top) to the output (bottom). Right: Corresponding
intermediate masks. The top one is the final result.

Figure 3. Input image with the mask overlaid in red.

The process of creating the mask is illustrated in Figure 2.
On the left side the figure shows the averaged feature maps
of all the convolutional layers from the input (top) to the
output (bottom). On the right side it shows the correspond-
ing intermediate masks. Thus on the right side we show
step by step how the mask is being created when moving
from the network’s output to the input. Comparing the two
top images clearly reveals that many details were removed
in order to obtain the final mask. Finally, Figure 3 shows
the mask overlaid on the input image.

4. Theoretical analysis
We now present theoretical guarantees for the algorithm
(all proofs are deferred to the Supplement). We empha-
size that our theoretical analysis is not about computing the
sensitivity of any particular cost function with respect to the
changes of values of particular input neurons. So we will
not focus on computing the gradients. The reason for that is
that even if these gradients are large, the actual contribution
of the neuron might be small. Instead our proposed method
is measuring the actual contribution that takes into account
the “collaborative properties” of particular neurons. This

is measured by the ability of particular neurons to substan-
tially participate in these weighted inputs to neurons in con-
secutive layers that themselves have higher impact on the
form of the ultimate feature maps than others.

Let’s consider a convolutional neural network N with L
convolutional layers that we index from 1 to L and ReLU
nonlinear mapping with biases −bv , where v stands for a
neuron of the network. We assume that no pooling mecha-
nism is used. For simplicity we assume that the strides are
equal to one. However, the entire analysis can be repeated
for arbitrary stride values. We denote by fl the number of
feature feature maps of the lth layer, by al× bl the shape of
the kernel applied in the lth convolutional layer and by sl
the number of neurons in each feature map of the lth con-
volutional layer. We will denote by a(v) the activation of
the neuron v.

For a CNN with learned weights and biases we think about
the inference phase as a network flow problem, where
source nodes are the neurons of the input layer (l = 0) and
sinks are nodes of the output layer (output of the last con-
volutional layer). In that setting the flow is (dis-)amplified
when it travels along edges and furthermore some fraction
of the flow is lost in certain nodes of the network (due to
biases).

Our first observation relates the inference phase to the
aforementioned flow problem on the sparse multipartite
graph with L + 1 parts A0, A1, ..., AL and where vertex
v in the part Ai−1 has aibifi neighbors in part Ai.

Lemma 1 The inference phase in the model above is
equivalent to the network flow model on a multipartite
graph with parts A1, ..., AL, where each edge has a
weight defining the amplification factor for the flow trav-
eling along this edge. In each node v the flow of value
min(zv, bv) is lost, where zv is the incoming flow and
where vertex v in the part Ai−1 has aibifi neighbors in
part Ai.

Different parts Ai above correspond to different convolu-
tional layers (A0 corresponds to the input layer). From now
on we will often implicitly transition from the neural net-
work description to the graph theory and vice versa using
the above mapping.

The flow-formulation of the problem is convenient since
it will enable us to quantitatively measure the contribution
of neurons from the input layer to the activations of neu-
rons in the last convolutional layer. Before we propose
a definition of that measure, let us consider a simple sce-
nario, where no nonlinear mapping is applied. That neural
network model would correspond to the network flow for
multipartite graphs described above, but with no loss of the
flow in the nodes of the network.

In that case different input neurons act independently. For



VisualBackProp: visualizing CNNs for autonomous driving

Figure 4. Right: General CNN N with biases. Left: Corresponding multipartite graph. Dead nodes, i.e. nodes that do not transmit any
flow (corresponding to neurons with zero activation), are crossed.

Figure 5. Convolutional architecture with no biases. The contri-
bution of each neuron can be computed by summing the contri-
bution along different paths originating at X and ending in the
last layer. The contribution from each path is proportional to the
product of the weights of edges belonging to this path.

each node X in A0 the total flow value received by AL is
obtained by summing over all paths P from X to AL the
expressions of the form f(X)

∏
e∈P we, where we stands

for the weight of an edge e and f(X) is the value of the
input flow to X (see Figure 5). This observation motivates
the following definition:

Definition 1 (φ-function for CNNs with no biases)
Consider the neural network architectures N described
above but with no biases. Then the contribution of the
input neuron X to the last layer of feature maps is given
as:

φN (X) = v(X)
∑
P∈P

∏
e∈P

we, (1)

where v(X) is the value of X and P is a family of paths
from X to AL in the corresponding multipartite graph.

In our setting the biases need to be taken into account, but
the definition above suggests how to do this: We transform
our CNN with biases N to the one without biases Ñ , but
with corrected weights of edges. We do it in such a way
that the following property will be satisfied:

For every neuron X and every incoming edge e0 the
input flow f0 along e0 is replaced by a(X) f0∑

e
f(e)

,

where the summation goes over all incoming edges e.
f(e) stands for the input flow along e and a(X) is an
activation of X in the original network.

Note that this network is equivalent to the original one, i.e.
it produces the same activations for all its neurons as the
original one. Furthermore, the property above just says that
the contribution of the given input flow f to the activation
of X is proportional to the value of the flow (this is a de-
sirable property since the applied nonlinear mapping is a
ReLU function). It also captures the observation that if the
flow is large, but the activation is small, the contribution
might be also small since even though the flow contributes
substantially, it contributes to an irrelevant feature.

Lemma 2 The above network Ñ can be obtained from the
original one N by multiplying each weight we of an edge
e = (n1, n2) by c(e) = ae

z(e) , where ae stands for the acti-
vation of the neuron n1 and z(e) is a weighted input to the
neuron n2.

Since we know how to calculate the contribution of each in-
put neuron to the convolutional network in the setting with-
out biases and we know how to translate any general convo-
lutional neural networkN (see: Figure 4) to the equivalent
one Ñ without biases, we are ready to give a definition of
the contribution of each input neuron in the general net-
work N .
Definition 2 (φ-function for general CNNs) Consider
the general neural network architecture described above.
Then the contribution of the input neuron X to the last
layer of feature maps is given as:

φN (X) = φÑ (X), (2)

where Ñ stands for the counterpart of N with no biases
described above.

We are now ready to express the contribution of the neuron
X in N explicitly in terms of the parameters of N .

Lemma 3 For an input neuron X function φN (X) is de-
fined as (Figure 6):

φN (X) = v(X)
∑
P∈P

∏
e∈P

ae
ae + be

we, (3)

where v(X) is the value of pixel X , P is a family of paths
from X to AL in the corresponding multipartite graph, be
is a bias in the second neuron of e and aes are as above.



VisualBackProp: visualizing CNNs for autonomous driving

Figure 6. The contribution of any given input neuron X along a
particular path P in the general CNN N is equal to the product∏

e∈P
aiwi
ai+bi

, where ais are the activations on the path and bis are
the corresponding biases.

Note that in the network with no biases one can set be = 0
and obtain the results introduced before the formula involv-
ing sums of weights’ products.

We prove the following results (borrowing the notation in-
troduced before) by connecting our previous theoretical
analysis with the algorithm.

Theorem 1 For a fixed CNN N considered in this paper
there exists a universal constant c > 0 such that the values
of the input neurons computed by VisualBackProp are of
the form:

φNV BP (X) = c · v(X)
∑
P∈P

∏
e∈P

ae. (4)

The statement above shows that values computed for pixels
by the VisualBackProp algorithm are related to the flow
contribution from that pixels in the corresponding graphical
model and thus, according to our analysis, measure their
importance.

The formula on φNV BP (X) is similar to the one on φN (X),
but gives rise to a much more efficient algorithm. Note that
the latter one can be obtained from the former one by mul-
tiplying each term of the inner products by we

ae+be
and then

rescaling by a multiplicative factor of 1
c . Rescaling does not

have any impact on quality since it is conducted in exactly
the same way for all the input neurons. In the next section
we show empirically that φNV BP (X) works very well as a
measure of contribution. Thus it might be the case that for
the considered setting φN (X) is a near-monotonic function
of φNV BP (X).

Remark 1 Note that for small kernels the number of
paths considered in the formula on φN (X) is small (since
the degrees of the corresponding multipartite graph are
small) thus in practice the difference between formula on
φNV BP (X) and the formula on φN (X) coming from the re-
weighting factor we

ae+be
is also small. Therefore for small

kernels the VisualBackProp algorithm computes good ap-
proximations of input neurons’ contributions to the activa-
tions in the last layer.

5. Experiments
In the main body of the paper we demonstrate the perfor-
mance of VisualBackProp on the task of end-to-end au-
tonomous driving, which requires real-time operation. The
experiments were performed on the Udacity self-driving
car data set (Udacity Self Driving Car Dataset 3-1: El
Camino). The Supplement contains additional experi-
mental results on the task of the classification of traf-
fic signs on the German Traffic Sign Detection Bench-
mark data set (http://benchmark.ini.rub.de/
?section=gtsdb&subsection=dataset). We
compare our method with LRP implementation as given
in Equation 6 from (Samek et al., 2016) (similarly to the
authors, we use ε = 100).

We train two networks, that we call NetSVF and NetHVF,
which vary in the input size. In particular, NetHVF input
image has approximately two times higher vertical field of
view, but then is scaled down by that factor. The details of
both architectures are described in Table 1. The networks
are trained with stochastic gradient descent (SGD) and the
mean squared error (MSE) cost function for 32 epochs.

NetSVF NetHVF
Layer Layer Layer Filter Stride

output size output size size size
conv 32× 123× 638 32× 123× 349 3× 3 1× 1
conv 32× 61× 318 32× 61× 173 3× 3 2× 2
conv 48× 59× 316 48× 59× 171 3× 3 1× 1
conv 48× 29× 157 48× 29× 85 3× 3 2× 2
conv 64× 27× 155 64× 27× 83 3× 3 1× 1
conv 64× 13× 77 64× 13× 41 3× 3 2× 2
conv 96× 11× 75 96× 11× 39 3× 3 1× 1
conv 96× 5× 37 96× 5× 19 3× 3 2× 2
conv 128× 3× 35 128× 3× 17 3× 3 1× 1
conv 128× 1× 17 128× 1× 8 3× 3 2× 2
FC 1024 1024 - -
FC 512 512 - -
FC 1 1 - -

Table 1. Architectures of NetSVF and NetHVF. Each layer except
for the last fully-connected layer is followed by a ReLU. Each
convolution layer is preceded by a batch normalization layer.

The Udacity self-driving car data set that we use contains
images from three front-facing cameras (left, center, and
right) and measurements such as speed and steering wheel
angle, recorded from the vehicle driving on the road. The
measurements and images are recorded with different sam-
pling rates and are independent, thus they require synchro-
nization before they can be used for training neural net-
works. For the purpose of this paper, we pre-process the
data with the following operations: i) synchronizing im-
ages with measurements from the vehicle, ii) selecting only
center camera images, iii) selecting images where the car
speed is above 5 m/s, iv) converting images to gray scale,

http://benchmark.ini.rub.de/?section=gtsdb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsdb&subsection=dataset


VisualBackProp: visualizing CNNs for autonomous driving

Figure 7. Visualizing the training of the network NetSVF (the set
of top 7 images) and NetHVF (remaining images) with the Visual-
BackProp method: the mask after 0.1, 0.5, 1, 4, 16, and 32 epochs.
Over time the network learns to detect more relevant cues for the
task from the training data. The last picture in each set shows the
input image with the mask overlaid in red.

and v) cropping and scaling the lower part of the images
to a 640 × 135 size for network NetSVF and 349 × 173
size for network NetHVF. As a result, we obtain a data set
with 210 K images with corresponding steering wheel an-
gles (speed is not used), where the first 190 K examples are
used for training and the remaining 20 K examples are used
for testing. We train the CNN to predict steering wheel an-
gles based on the input images.

Images in Figures 7 (the set of top 7 images), 8, 10, 12, 14,
and 16 come from the same video frames as the images in
Figures 7 (the set of bottom 7 images), 9, 11, 13, 15, and 17
respectively, but have smaller field of view.

We first apply VisualBackProp method during training to
illustrate the development of visual cues that the network
focuses on. The obtained masks for an exemplary image
are shown in Figure 7. The figure captures how the CNN
gradually learns to recognize visual cues relevant for steer-
ing the car (lane markings) as the training proceeds.

Figure 8. Network NetSVF. Left: VisualBackProp, right: LRP. In-
put test images with the corresponding masks overlaid in red. The
errors are (from the top): 0.18, 2.32, 4.65, and −2.41 degrees of
SWA.

Figure 9. Network NetHVF. Left: VisualBackProp, right: LRP.
Input test images with the corresponding masks overlaid in red.
The errors are (from the top): −0.06, 3.91, 3.17, and −0.82 de-
grees of SWA.

Figure 10. Network NetSVF. Left: VisualBackProp, right: LRP.
Input test images with the corresponding masks overlaid in red.
The error is 0.69 degrees of SWA.

Figure 11. Network NetHVF. Left: VisualBackProp, right: LRP.
Input test images with the corresponding masks overlaid in red.
The error is -0.99 degrees of SWA.

Figure 12. Network NetSVF. Left: VisualBackProp, right: LRP.
Top and bottom of each column: two consecutive frames with the
corresponding masks overlaid in red. The errors are (from the
top): −2.65 and 3.21 degrees of SWA.

We next evaluate VisualBackProp and LRP on the test data.
We show the obtained masks on various exemplary test in-
put images in Figures 8–17, where on each figure the left
column corresponds to our method and the right column



VisualBackProp: visualizing CNNs for autonomous driving

Figure 13. Network NetHVF. Left: VisualBackProp, right: LRP.
Top and bottom of each column: two consecutive frames with the
corresponding masks overlaid in red. The errors are (from the
top): 1.55 and −0.66 degrees of SWA.

Figure 14. Network NetSVF. Left: VisualBackProp, right: LRP.
Input test image with the mask overlaid in red. The errors are
(from the top): 0.13 and −3.91 degrees of SWA.

Figure 15. Network NetHVF. Left: VisualBackProp, right: LRP.
Input test image with the mask overlaid in red. The errors are
(from the top): −20.74 and −4.09 degrees of SWA.

Figure 16. Network NetSVF. Left: VisualBackProp, right: LRP.
Input test image with the mask overlaid in red. The errors are
(from the top): −3.28, −0.84, and −3.97 degrees of SWA.

Figure 17. Network NetHVF. Left: VisualBackProp, right: LRP.
Input test image with the mask overlaid in red. The errors are
(from the top): −7.72, −0.72, and −3.17 degrees of SWA.

corresponds to LRP. For each image we also report the test
error defined as a difference between the actual and pre-
dicted steering wheel angle (SWA) in degrees. Figures 8
and 9 illustrate that the CNN learned to recognize lane
markings, the most relevant visual cues for steering a car.
Figures 10 and 11 capture how the CNN responds to shad-
ows on the image. One can see that the network still detects
lane markings but only between the shadows, where they
are visible. Each of the Figures 12 and 13 shows two con-
secutive frames (top and bottom) for VisualBackProp (left
column) and LRP (right column). On the second frame in
Figure 12, the lane marking on the left side of the road dis-
appears, which causes the CNN to change the visual cue
it focuses on from the lane marking on the left to the one
on the right. Figures 14 and 15 correspond to the sharp
turns. The images in the top row of Figure 15 demonstrate
the correlation between the high prediction error of the net-
work and the low-quality visual cue it focuses on. Finally,
in Figure 16 we demonstrate that the CNN has learned to
ignore horizontal lane markings as they are not relevant for
steering a car, even though it was trained only with the im-
ages and the steering wheel angles as the training signal.
The network was therefore able to learn which visual cues
are relevant for the task of steering the car from the steering
wheel angle alone. Figure 17 similarly shows that the CNN
learned to ignore the horizontal lines, however, as the visu-
alization shows, it does not identify lane markings as the
relevant visual cues but other cars instead. As can be seen
in Figures 8–17 the field of view affects the visualization
results.

We implemented VisualBackProp and LRP in Torch7 to
compare the computational time. Both methods used the
cunn library to utilize GPU for calculations and have simi-
lar levels of optimization. All experiments were performed
on GeForce GTX 970M. The average time of computing a
mask for VisualBackProp was equal to 2.0ms, whereas in
case of the LRP method it was 24.6ms. The VisualBack-
Prop is therefore on average 12 times faster than LRP. At
the same time, as demonstrated in Figures 8–17, Visual-
BackProp generates visualization masks that are very sim-
ilar to those obtained by LRP.

6. Conclusions
In this paper we propose a new method for visualizing the
regions of the input image that have the highest influence
on the output of a CNN. The presented approach is com-
putationally efficient which makes it a feasible method for
real-time applications as well as for the analysis of large
data sets. We provide theoretical justification for the pro-
posed method and empirically show on the task of au-
tonomous driving that it is a valuable diagnostic tool for
CNNs.



VisualBackProp: visualizing CNNs for autonomous driving

References
Abdel-Hamid, O., Mohamed, A.-r., Jiang, H., and Penn,

G. Applying convolutional neural networks concepts
to hybrid NN-HMM model for speech recognition. In
ICASSP, 2012.

Arras, L., Horn, F., Montavon, G., Müller, K.-R., and
Samek, W. Explaining predictions of non-linear clas-
sifiers in NLP. In ACL Workshop on Representation
Learning for NLP, 2016.

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller,
K.-R., and Samek, W. On pixel-wise explanations for
non-linear classifier decisions by layer-wise relevance
propagation. PLOS ONE, 10(7):e0130140, 2015.

Bach, S., Binder, A., Montavon, G., Müller, K.-R., and
Samek, W. Analyzing classifiers: Fisher vectors and
deep neural networks. In CVPR, 2016.

Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M.i,
Hansen, K., and Müller, K.-R. How to explain individual
classification decisions. J. Mach. Learn. Res., 11:1803–
1831, 2010.

Berkes, P. and Wiskott, L. On the analysis and interpre-
tation of inhomogeneous quadratic forms as receptive
fields. Neural Computation, 18(8):1868–1895, 2006.

Binder, A., Bach, S., Montavon, G., Müller, K.-R., and
Samek, W. Layer-wise relevance propagation for deep
neural network architectures. pp. 913–922, 2016.

Bojarski, M., Testa, D. Del, Dworakowski, D., Firner,
B., Flepp, B., Goyal, P., Jackel, L. D., Monfort, M.,
Muller, U., Zhang, J., Zhang, X., Zhao, J., and Zieba,
K. End to end learning for self-driving cars. CoRR,
abs/1604.07316, 2016.

Chen, C., Seff, A., Kornhauser, A. L., and Xiao, J. Deep-
driving: Learning affordance for direct perception in au-
tonomous driving. In ICCV, 2015.

Dosovitskiy, A. and T.Brox. Inverting visual representa-
tions with convolutional networks. In CVPR, 2016.

Erhan, D., Bengio, Y., Courville, A., and Vincent, P. Visu-
alizing higher-layer features of a deep network. Techni-
cal Report 1341, University of Montreal, 2009.

Erhan, D., Courville, A., and Bengio, Y. Understanding
representations learned in deep architectures. Technical
Report 1355, University of Montreal, 2010.

Gevrey, M., Dimopoulos, I., and Lek, S. Review and com-
parison of methods to study the contribution of variables
in artificial neural network models. Ecological Mod-
elling, 160(3):249 – 264, 2003.

Girshick, R., Donahue, J., Darrell, T., and Malik, J. Rich
feature hierarchies for accurate object detection and se-
mantic segmentation. In CVPR, 2014.

Hinton, G. E., Osindero, S., and Teh, Y.-W. A fast learning
algorithm for deep belief nets. Neural Comput., 18(7):
1527–1554, 2006.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. Imagenet
classification with deep convolutional neural networks.
In NIPS. 2012.

Landecker, W., Thomure, M.l D., Bettencourt, L. M. A.,
Mitchell, M., Kenyon, G. T., and Brumby, S. P. Interpret-
ing individual classifications of hierarchical networks. In
CIDM, 2013.

LeCun, Y., Boser, B., Denker, J. S., Henderson, D.,
Howard, R. E., Hubbard, W., and Jackel, L. D. Back-
propagation applied to handwritten zip code recognition.
Neural Comput., 1(4):541–551, 1989.

Mahendran, A. and Vedaldi, A. Understanding deep image
representations by inverting them. In CVPR, 2015.

Montavon, G., Braun, M. L., and Müller, K.-R. Kernel
analysis of deep networks. J. Mach. Learn. Res., 12:
2563–2581, 2011.

Olden, J. D., Joy, M. K., and Death, R. G. An accurate
comparison of methods for quantifying variable impor-
tance in artificial neural networks using simulated data.
Ecological Modelling, 178(34):389 – 397, 2004.

Poulin, B., Eisner, R., Szafron, D., Lu, P., Greiner, R.,
Wishart, D. S., Fyshe, A., Pearcy, B., Macdonell, C.,
and Anvik, J. Visual explanation of evidence with ad-
ditive classifiers. In IAAI, 2006.

Rasmussen, P. M., Schmah, T., Madsen, K. H., Lund, T. E.,
Strother, S. C., and Hansen, L. K. Visualization of
nonlinear classification models in neuroimaging - signed
sensitivity maps. BIOSIGNALS, pp. 254–263, 2012.

Robnik-Sikonja, M. and Kononenko, I. Explaining classi-
fications for individual instances. IEEE Trans. Knowl.
Data Eng., 20(5):589–600, 2008.

Samek, W., Binder, A., Montavon, G., Bach, S., and
Müller, K.-R. Evaluating the visualization of what a deep
neural network has learned. IEEE Transactions on Neu-
ral Networks and Learning Systems, 2016.

Selvaraju, R. R., Das, A., Vedantam, R., Cogswell, M.,
Parikh, D., and Batra, D. Grad-cam: Why did you
say that? visual explanations from deep networks via
gradient-based localization. CoRR, abs/1610.02391,
2016.



VisualBackProp: visualizing CNNs for autonomous driving

Setiono, R. and Liu, H. Understanding neural networks via
rule extraction. In IJCAI, 1995.

Simonyan, K., Vedaldi, A., and Zisserman, A. Deep inside
convolutional networks: Visualising image classification
models and saliency maps. In Workshop Proc. ICLR,
2014.

Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried-
miller, M. Striving for simplicity: The all convolutional
net. In ICLR 2015 Workshop Track, 2015.

Weston, J., Chopra, S., and Adams, K. #tagspace: Seman-
tic embeddings from hashtags. In EMNLP, 2014.

Yosinski, J., Clune, J., Nguyen, A. M., Fuchs, T., and Lip-
son, H. Understanding neural networks through deep
visualization. CoRR, abs/1506.06579, 2015.

Zeiler, M. D. and Fergus, R. Visualizing and understanding
convolutional networks. In ECCV, 2014.

Zeiler, M. D., Taylor, G. W., and Fergus, R. Adaptive de-
convolutional networks for mid and high level feature
learning. In ICCV, 2011.

Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Tor-
ralba, A. Learning deep features for discriminative lo-
calization. In CVPR, 2016.

Zintgraf, L. M., Cohen, T. S., Adel, T., and Welling, M.
Visualizing deep neural network decisions: Prediction
difference analysis. In ICLR, 2017.



VisualBackProp: visualizing CNNs for autonomous driving

VisualBackProp: visualizing CNNs
for autonomous driving

(Supplementary Material)

7. Proof of Lemma 1

Figure 18. Neuron X is covered by patches corresponding to se-
lected neurons in the consecutive layer. In the corresponding mul-
tipartite graph node X is adjacent to selected vertices in the next
part and transports the flow to them.

Proof: As we have explained in the main body of the pa-
per, we will identify the source-nodes for the flow problem
with input neurons and the sink-nodes with the neurons of
the last convolutional layer. Parts A1,...,AL are the sets of
nodes in the corresponding convolutional layers (observe
that indeed there are no edges between nodes in Ais since
there are no edges between neurons in feature maps associ-
ated with the fixed convolutional layer). Part A0 represents
the input layer. Each source-node v ∈ Ai−1 sends a(v)
units of flow along edges connecting it with nodes in part
Ai. This is exactly the amount of the input flow f(v) to the
node v with flow of value min(fv, bv) deducted (due to the
ReLU nonlinear mapping). The activations of neurons in
the last convolutional layer can be represented in that model
as the output flows of the nodes from AL. Note that for a
fixed neuron v in the (i−1)th convolutional layer and fixed
feature map in the consecutive convolutional layer (here the
0th layer is the input layer) the kernel of size ai × bi can

be patched in aibi different ways (see: Figure 18) to cover
neuron v (this is true for all but the “borderline neurons”
which we can neglect without loss of generality; if one ap-
plies padding mechanism the “borderline neurons” do not
exist at all). Thus the total number of connections of v to
the neurons in the next layer is aibifi. A similar analysis
can be conducted if v is an input neuron. That completes
the proof.

8. Proof of Lemma 2
Proof: Assume that e = (A,B), where A is an first node
of the edge and B is second one. Note that from the def-
inition of Ñ for an input flow f , the flow of value ae f

F is
transmitted byB, where F stands for the total input flow to
B. Note also that F = z(e). Furthermore f = f̃we, where
f̃ is the original value of f before amplification obtained
by passing that flow through an edge e. Thus the flow f̃
output by A is multiplied by we

ae

ze
and output by B. Thus

one can set: c(e) = ae

ze
. That completes the proof.

9. Proof of Lemma 3
Proof: Straightforward from the formula on φÑ (X) and
derived formula on transforming weights of N to obtain
Ñ .

Figure 19. The family of paths from the input neuron X to out-
put neurons F1 and F2 in the last set of feature maps F̄ . Crossed
nodes correspond to neurons with zero activation. Paths contain-
ing these nodes do not contribute to F̄ .

10. Proof of Theorem 1
Proof: Note that averaging over different feature maps
in the fixed convolutional layer with fi feature maps that
is conducted by VisualBackProp is equivalent to summing
over paths with edges in different feature maps of that layer
(up to a multiplicative constant 1

fi
.) Furthermore, adding

contributions from different patches covering a fixed neu-
ron X is equivalent to summing over all paths that go
through X . Thus computed expression is proportional to
the union of products of activations (since in the algorithm



VisualBackProp: visualizing CNNs for autonomous driving

after resizing the masks are point-wise multiplied) along
paths from the given input neuron X to all the neurons in
the last set of feature maps. That leads to the proposed for-
mula. Note that the formula automatically gets rid of all
the paths that lead to a neuron with null activation since
these paths do not contribute to activations in the last set of
feature maps (see: Figure 19).

11. Additional experiments
In this section we demonstrate the performance of Vi-
sualBackProp on the task of the classification of traffic
signs. The experiments here were performed on the
German Traffic Sign Detection Benchmark data set
(http://benchmark.ini.rub.de/?section=
gtsdb&subsection=dataset). We compare our
method with LRP implementation as given in Equation 6
from (Samek et al., 2016) (similarly to the authors, we use
ε = 100).

We train the neural network to classify the input image con-
taining a traffic sign into one of 43 categories. The details
of the architecture are described in Table 2. The network is
trained with stochastic gradient descent (SGD) and the neg-
ative log likelihood (NLL) cost function for 100 epochs.

The German Traffic Sign Detection Benchmark data set
that we use contains images of traffic signs of various sizes,
where each image belongs to one out of 43 different cate-
gories. For the purpose of this paper, we scale all images
to the size of 125× 125.

We apply VisualBackProp and LRP algorithm on trained
network. The results are shown in Figures 20 and 21.

Layer Layer Filter Stride
output size size size

conv 16× 123× 123 3× 3 1× 1
conv 16× 61× 61 3× 3 2× 2
conv 24× 59× 59 3× 3 1× 1
conv 24× 29× 29 3× 3 2× 2
conv 32× 27× 27 3× 3 1× 1
conv 32× 13× 13 3× 3 2× 2
conv 48× 11× 11 3× 3 1× 1
conv 48× 5× 5 3× 3 2× 2
FC 64 - -
FC 43 - -

Table 2. Architecture of the network used for sign classification.
Each layer except for the last fully-connected layer is followed by
a ReLU. The last fully-connected layer is followed by a LogSoft-
Max. Each convolution layer is preceded by a batch normalization
layer.

Figure 20. Sets of input images with visualization masks arranged
in two columns. Each set consist of an input image (left), a visu-
alization mask generated by VisualBackProp (center), and a visu-
alization mask generated by LRP (right).

http://benchmark.ini.rub.de/?section=gtsdb&subsection=dataset
http://benchmark.ini.rub.de/?section=gtsdb&subsection=dataset


VisualBackProp: visualizing CNNs for autonomous driving

Figure 21. Sets of input images with visualization masks arranged
in two columns. Each set consist of an input image (left), a visu-
alization mask generated by VisualBackProp (center), and a visu-
alization mask generated by LRP (right).


