
Reconfigurable Network for Efficient Inferencing
in Autonomous Vehicles

Shihong Fang∗ and Anna Choromanska∗

Abstract— We propose a reconfigurable network for efficient
inference dedicated to autonomous platforms equipped with
multiple perception sensors. The size of the network for steering
autonomous platforms grows proportionally to the number of
installed sensors eventually preventing the usage of multiple
sensors in real-time applications due to an inefficient inference.
Our approach hinges on the observation that multiple sensors
provide a large stream of data, where only a fraction of the data
is relevant for the performed task at any given moment in time.
The architecture of the reconfigurable network that we propose
contains separate feature extractors, called experts, for each
sensor. The decisive block of our model is the gating network,
which online decides which sensor provides the data that is
most relevant for driving. It then reconfigures the network by
activating only the relevant expert corresponding to that sensor
and deactivating the remaining ones. As a consequence, the
model never extracts features from data that are irrelevant
for driving. The gating network takes the data from all inputs
and thus to avoid explosion of computation time and memory
space it has to be realized as a small and shallow network.
We verify our model on the unmanned ground vehicle (UGV)
comprising of the 1/6 scale remote control truck equipped with
three cameras. We demonstrate that the reconfigurable network
correctly chooses experts in real-time allowing the reduction of
computations cost for the whole model without deteriorating
its performance.

I. INTRODUCTION

A plethora of real-life problems are currently addressed
with convolutional neural networks (CNNs), including image
recognition [1], [2] and segmentation [3], speech recog-
nition [4], and natural language processing [5]. In some
learning tasks the performance of deep networks exceeds
that of a human [2]. Due to the rapid advances in hard-
ware technologies leading to powerful and efficient GPUs
and mobile supercomputers, deep learning techniques were
more recently successfully used in the complex intelligent
autonomous systems such as self-driving cars [6], [7], [8].
Deep learning techniques enable automatic extraction of
data features and consequently allow scaling-up learning
systems to large data settings. Due to automatic feature
extraction, employing multiple sensors in platforms based
on deep learning became much easier than in case of rule-
based models. Using multiple sensors improve the safety of
autonomous vehicles by increasing its perception abilities
and became an industrial standard used in Advanced Driver
Assistance Systems (ADAS) and autonomous car driving
platforms of Google, NVIDIA, UBER, or Intel.

∗The authors are with the Machine Learning Lab, Department of Electri-
cal and Computer Engineering, New York University, 5 MetroTech Center,
USA. {sf2584, ac5455}@nyu.edu

The bottleneck for using multiple sensors on the au-
tonomous platform is the size of the network that needs to
process the data registered by all the sensors in order to
output the steering command. The size of network needs to
expand proportionally to accommodate the incoming data
which hurts the inference time and affects the real-time
operation of the resulting model. Our work addresses this
problem. We design a reconfigurable network, which con-
tains feature extractors, that we call experts, each processing
the data coming from a different sensor, where at any given
point in time only one expert is active and the remaining ones
are deactivated. Thus the network reconfigures itself online
guided by the gating network, which each time chooses the
most relevant sensor. To empirically verify our approach
we built a UGV equipped with three front-facing cameras
covering left, center, and right field of view. We demonstrate
that our model can steer the UGV in real time and choose
correct sensors for navigation. Furthermore, we demonstrate
that the reconfigurable network exhibits similar performance
to the standard network without the gating mechanism and
requires significantly less computations.

This paper is organized as follows: Section II reviews
relevant literature, Section III discusses the reconfigurable
network (architecture and training), Section IV shows em-
pirical evaluation, and Section V concludes the paper with a
brief summary of findings.

II. RELATED WORK
A. End-to-end learning for autonomous vehicles

An end-to-end learning system for steering autonomous
vehicles typically learns the mapping from the raw readings
from the sensors to the corresponding steering commands
via supervised learning. The training data are acquired from
human drivers, where inputs to the learning system obtained
from the sensors are captured together with driver actions.
A system known as Autonomous Land Vehicle in a Neural
Network (ALVINN) [9] was the first end-to-end learning
system for autonomous driving and was based on fully-
connected network. Later introduced convolutional neural
networks (CNNs) for data feature extraction [10] were ap-
plied in DARPA Autonomous Vehicle (DAVE) project [11].
The DAVE robot was able to drive autonomously using left
and right cameras. Recently, CNNs were used to train a
real car to drive autonomously with good performance [7].
Authors used three cameras in data collection phase and a
single one for actual driving. Their later work [12] explains
why CNNs are very effective in self-driving tasks. Besides
cameras, other sensors like LiDARs were used to provide



multi-modal input to the networks [13], [14] and make the
system more robust to the variability of the real world.

B. Gating mechanism

The first gating network proposed in the literature [15]
divides learning task into subtasks and uses separate expert
for each subtask. Each expert takes the same input and the
gating network decides which experts to use at any given
moment. It can be viewed as an ensemble method that uses
a combination of selected experts to improve prediction.
This idea was extended [16] to a tree-structured architecture
called Hierarchical Mixture of Experts that solves nonlinear
supervised learning problems by dividing the input space
into a nested set of regions and fitting simple surfaces to
the data that fall in these regions. The gating mechanism
was also applied in mixture of SVMs [17], where the
authors demonstrated the feasibility of training SVMs on
large datasets. A stacked Deep Mixture of Experts model [18]
with multiple sets of gating and experts was later proposed
utilizing the concept of conditional computation. Conditional
computation policies were also explored in the context of
reinforcement learning [19]. Another notable work [20]
presents an approach that can adaptively choose parts of the
whole neural network to be evaluated for efficient inference
purposes. Similarly, this can be achieved by introducing the
sparsely-gated mixture-of-experts layer [21] that allows to
pick the best performing subset of k experts, which constitute
the feed-forward sub-networks. A trainable gating network
determines a sparse combination of these experts to use for
each example. The authors demonstrate the plausibility of
their approach in language modeling problems and machine
translation, where they show improvements in the computa-
tional costs compared to standard approaches.

Gating mechanism was also applied to sensor fusion in
order to boost model’s performance. Multi-sensor fusion al-
lows capturing more diverse data representation (i.e. multiple
sensors can capture various modalities) and benefit from
wider space coverage (i.e. multiple sensors can have large
combined field of view). These factors are crucial to increase
reliability and accuracy of the system. For example, in object
detection problems, the network performing fusion of LiDAR
and camera data has shown to be successful in practical
settings [22]. Combining such approach with gated multi-
modal method was found to outperform other conventional
fusion techniques [23].

Our work builds on the intuition that in the autonomous
driving applications, due to heavy redundancies in the data,
one can use a subset of the inputs at any given moment to
steer the car, i.e. when driving forward, the sensors situated
on vehicle’s side and back most often do not provide relevant
information. Thus, we propose to utilize the idea of gating
network and sparse gating as a practical way to handle multi-
sensor input and at the same time avoid the explosion of the
computational cost. Our approach differs from other works
existing in the literature in that it allows switching the experts
on/off (in contrary to [13]) and it allows the experts to use
different input data (in contrary to [21]).

III. RECONFIGURABLE NETWORK

The reconfigurable network proposed in this paper is
captured in Fig. 1. The network receives n input signals
from various sensors, i.e. the input to the network can be
written as x = {x1, x2, ..., xn}, where xi is the signal
from ith sensor. Reconfigurable network consists of n expert
networks E1, E2, . . . , En, the gating network G, and the
fully connected layers. The expert networks extract features
from the inputs and the gating network decides which input
signals xi should be processed for a given input x. Thus,
only the experts corresponding to the selected input signals
need to perform calculations. Finally, the fully connected
layers form the final prediction based on combined feature
vector from all experts that processed the data. Thus, the
final prediction ŷ can be written as:

ŷ = F

(
n∑

i=1

Gi(x)Ei(xi)

)
, (1)

where Gi(x) is the weight of expert i (∈ [0, 1], where 0
denotes the situation when the expert is not used) for input
x assigned by the gating mechanism, Ei(xi) is the feature
vector outputted by expert i for input xi, and F denotes the
action of fully connected layers.

The gating network in the proposed architecture selects
the subset of experts which will process the data. Thus, the
gating network needs to properly estimate the relevance of
each expert for the given learning task, not just the input xi

itself, i.e. even if xi contain relevant information for driving
the autonomous vehicle, expert Ei should not be activated if
it is unable to extract high-quality features from xi. It makes
the reconfigurable network difficult to train in an end-to-end
fashion as there is no explicit correlation between experts and
the feature extractors used in the gating network. In order to
overcome the mentioned problem we propose the dedicated
training procedure.

In the first step of the proposed training procedure, we
train the sensor fusion network proposed before in the
literature [13] and illustrated in Fig. 2. In this step, the
gating network uses experts as feature extractors, which
solves the problem mentioned before. The outputs of the
experts are scaled by the outputs of the gating network and
then concatenated to form the combined feature vector. The
obtained feature vector is then passed to the fully-connected

Fig. 1. Reconfigurable network with the gating mechanism. In this example,
the second expert is activated based on the output of the gating network and
the other experts are disabled (colored in gray).



layers (FC), which forms the final prediction. To ensure
that feature extractors capture necessary representation, we
first pre-train each expert individually to make the final
prediction. We then borrow weights from our pre-trained
models for initialization. Finally, we train this network end-
to-end to obtain the properly trained experts and a functional
gating network.

In the second step of the proposed training procedure,
we construct the reconfigurable network that contains a very
specific gating component as shown in Fig. 3 (we ask the
reader to look either at the top or bottom figure as both of
them contain the same gating network shown in the shaded
green box). In this step we only train the gating network.
The newly constructed gating network has it own feature
extractors, which are significantly smaller than experts in the
main part of the network. The new gating network is trained
in a supervised setting to mimic the behavior of the reference
gating network obtained from the first step. At this stage we
are enforcing sparsity by modifying training labels for the
new gating network. In particular, we convert label vector
v = [v1, ..., vn] obtained from reference gating network, and
convert it into one-hot vector, where max value from v is
converted to 1, and rest to 0. Additionally, after training
the new gating network, we add the hard thresholding on
the output, so the output is always one-hot vector. This will
force the reconfigurable network to use only one input, or
equivalently expert, at a time. The extension to constrained
number of inputs will be explained later in this section. At
the end of this stage we obtain the compact version of gating
network with desired behavior.

In the third step, we fine tune the experts and the fully-
connected layers (keeping the gating network fixed) by
training them all together on the same data as in the first step.
This step allows the reconfigurable network to adjust to the
modified behavior of the gating network. In the experimental
section the resulting network is called “Reconf Concat” (see
top of Fig. 3).

So far, we have used concatenation for combining feature
vectors obtained from the experts. This results in a large
combined feature vector which leads to significant amount
of computations. Instead we propose to use point-wise sum-
mation instead of concatenation since we want to use one
selected input at a time. In this case, the combined feature
vector is equal to the feature vector corresponding to the
selected input. As the encoding of input by expert may
be different for each input and expert, we pass the gating
network output together with a combined feature vector to
the fully connected layers. This way, the fully connected
layer has the information about which input is used at the
moment and can process it properly. Finally, the expert
networks are fine-tuned and the the fully-connected layers
are trained from scratch, while keeping the gating network
fixed. In the experimental section the resulting network is
called “Reconf Select” (see bottom of Fig. 3). .

In each step, we train the network until convergence.
The first step of training is critical. As the gating network
is trained in the first step and used as a reference in the

Fig. 2. The architecture of the network used in the first step of the proposed
training procedure. The part of the network inside the green shaded box
performs the task of the gating network. Thus, the gating network uses
experts as feature extractors.

Fig. 3. The architecture of “Reconf Concat” (top) and “Reconf Select”
(botttom). The part of the network inside the green shaded box performs the
task of the gating network and is trained in the second step of the training
process. In this case the gating network has its own feature extractors, which
are significantly smaller then experts in the main part of the network. For
each data example, only the experts selected by the gating network are
fine-tuned (on the picture above only the first expert is activated since the
outputs of the gating network for the other two experts are zero for the
given input image and thus are colored in gray). Top: The concatenated
feature vectors are fed to the fully connected layers of the main network.
Bottom: The selected feature vector is fed to the fully connected layers of
the main network together with the output of the gating network.

following steps, shortening the first step too much may
significantly degrade the performance.

At the end of the training process we obtain the network,
which has similar computational cost at inference to the
network processing only a single input. The proposed net-
work selects one most relevant sensor at any given moment.
Extending to the case where a subset of sensors is used can
be done in the following way. After the first step of training,
the gating network outputs a vector with continuous weights
corresponding to the experts. In order to keep k experts, in
the second step of training the labels used for training the
gating network should be modified appropriately, e.g. if one
wants to use 2 out of 3 sensors and use weights for each
input, one should only zero-out the smallest weight.

IV. EXPERIMENTS

To validate our approach, we implemented the proposed
reconfigurable network to steer the autonomous platform
equipped with three cameras.



A. Hardware Overview

The block diagram of the our autonomous platform used
for the experiments is shown in Fig. 4. We used a Traxxas
X-Maxx remote control truck as a base for the autonomous
platform and NVIDIA Jetson TX1 for computations. We
installed three Logitech HD Pro C920 cameras on the
platform. The center camera is oriented straight. The side
cameras are mounted at angles to allow capturing front
side views. Cameras capture non-overlapping views. A PCI
Express (PCIe) USB 3.0 Card was connected to NVIDIA
Jetson TX1 to provide the bandwidth for three cameras
enabling them to operate at the same time. For controlling
actuators of the autonomous platform we used Micro Maestro
6-Channel USB Servo Controller. We use the same platform
for autonomous driving and training data collection.

In the training data collection mode we use the wireless
gamepad to control the car. The corresponding steering
commands and images captured by the cameras are saved
on the local storage of the NVIDIA Jetson TX1.

In the autonomous testing mode, we run our network on
NVIDIA Jetson TX1 in real time. The predicted commands
are used to steer the platform while the speed is controlled
by the operator.

Fig. 4. Block diagram of the autonomous platform used for experiments.

B. Data Preprocessing

Before training the network using the collected data, we
pre-process the data in order to improve training efficiency.
We perform two preprocessing steps, data balancing and data
augmentation. We describe these steps below. The data bal-
ancing and augmentation are used to achieve a good driving
performance. This step is the same for the reconfigurable
network and all other methods we experimented with. Data
balancing is crucial to prevent the car from overfitting to
driving straight and augmentation ensures the same number
of turns to the left and right.

1) Data Balancing: First, we normalize the values of the
captured steering commands to the range −1 to 1, where
0 means driving straight. Next, we organize all the training
examples into 7 categories based on their steering command
as shown in Table I. We collected 68245 scenes for training,
9896 scenes in category 1, 1671 in category 2, 2505 in
category 3, 39926 in category 4, 4882 in category 5, 2383
in category 6, and 6982 in category 7. Therefore, collected
data are heavily imbalanced in terms of captured steering
commands. We address this problem with data balancing

procedure. For every training epoch, we sample uniformly
at random from each of these seven categories (70000 in
total) in order to create our actual training data set.

2) Data augmentation: In order to increase the size of
the training data set we perform data augmentation. We use
horizontal flipping of the images. As we use three cameras
mounted symmetrically on the autonomous platform, we also
have to swap left and right camera images. In order to adjust
the steering command accordingly we multiply it by −1
when we perform the flipping. We apply the augmentation
with probability 0.5.

Finally, note that we use the same amount of data for
our network as well as other methods, including the ones
without the gating mechanism, thus introducing the gating
mechanism does not require an increased amount of training
data.

C. Experimental Results

In the experiments we use the network which takes three
camera images on its input and outputs a steering command
for the autonomous platform. We construct and train the
network as described in Section III. Each expert has an
architecture provided in Table II. The fully connected layers
block consists of two fully connected layers, for both,
the reconfigurable network and its component, the gating
network.

We use separate recordings for training and testing. The
training and test data were recorded in different driving
environments, i.e. different parts of the building, thus the
training data are not replicated in the test set. The training
data consisted of 70000 scenes, as explained before, and the
test data had 5738 scenes.

The results obtained for the reconfigurable network as
given in Fig. 2 obtained after the first step of the training
process are shown in Fig. 5. The results show that the
network learned to correctly predict the steering command
and also properly choose the most relevant input, i.e. a center
camera when driving straight and side cameras in tight turns.

In the second step of the training procedure we trained
multiple gating networks of various architectures given in
Table III. We modify the training labels as described before,
to predict single most relevant input. After the training we
are adding hard thresholding on the gating network output
to form a one-hot output vector. The comparison of the
performance of the trained gating networks is shown in
Fig. 6. The performance is measured with the classification
accuracy. Based on our experiments we found that the

TABLE I
SEVEN CATEGORIES FOR DATA BALANCING

Category number Steering Command
1 [-1,-0.67)
2 [-0.67,-0.33)
3 [-0.33,0)
4 0
5 (0,0.33]
6 (0.33,0.67]
7 (0.67,1]



TABLE II
EXPERT LAYER ARCHITECTURE.

layer name output size parameters
conv1 16× 58× 78 5× 5, stride=2, BN, ReLU
conv2 32× 27× 37 5× 5, stride=2, BN, ReLU
conv3 64× 12× 17 5× 5, stride=2, BN, ReLU
conv4 96× 4× 7 5× 5, stride=2, BN, ReLU
conv5 128× 2× 5 3× 3, stride=1, BN, ReLU
conv7 128× 1× 4 2× 2, stride=1, BN, ReLU

vectorize 512

gating architecture that performs well can be obtained by
significantly scaling down the input image, which is done
by introducing large stride in the first layer of the gating
network, and using shallow CNN architecture, which helps
to minimize required computations for the gating network.
For further experiments we use the best performing gating
network which uses feature extractor with an architecture
given in case 6 in Table III.

Next, we train two versions of the reconfigurable network
described in the third step of the training procedure in
Section III. The obtained results are shown in Fig. 7. The
performance of both networks is very similar while the
Reconf Select has significantly smaller fully-connected layer.

For comparison, we also trained a single-input network,
a three-input network without any gating mechanism, and
a soft-attention mechanism (first three rows in Table IV).
Both networks use experts that have the same architecture
as other considered networks. The single-input network uses
only the center camera. We compare the performance of all
considered networks in terms of the test loss and the amount
of computations needed for the forward pass through the
network. The test loss is measured as the mean squared
error between predicted and reference steering command and
the amount of computation is measured in the number of
floating-point operations (FLOPs). We summarize the results
of the comparison in Table IV.

The results clearly show that both versions of the proposed
reconfigurable network achieve the performance that is close
to network with three inputs and they use almost the same
amount of computations as the single-input network. The
results also show that shallow gating network is sufficient
for selecting a relevant input at any given moment. We also
found that roughly the same number of errors come from
choosing the wrong camera and insufficiency of one sensor
in making a prediction.

Finally, we tested the second version of the reconfigurable
network on our autonomous platform, where the network
steers the car in the indoor environment. We recorded the
videos captured by the three cameras as well as the gating
network output. We used the recorded gating network output
to highlight the images corresponding to the sensors that are
activated by the gating mechanism at any given moment. The
resulting video is attached as the Supplementary material.
The example images captured by the three cameras during
autonomous driving are shown in Fig. 8.

TABLE III
DIFFERENT ARCHITECTURES OF THE FEATURE EXTRACTOR USED IN

THE GATING NETWORK. FROM TOP TO BOTTOM: CASES 1 - 9.
Case 1:

layer name output size parameters
conv1 3× 60× 80 1× 1, stride=2, BN, ReLU
conv2 16× 28× 38 5× 5, stride=2, BN, ReLU
conv3 32× 12× 17 5× 5, stride=2, BN, ReLU
conv4 48× 4× 7 5× 5, stride=2, BN, ReLU
conv5 64× 2× 5 3× 3, stride=1, BN, ReLU
conv6 96× 1× 4 2× 2, stride=1, BN, ReLU

vectorize 384

Case 2:
layer name output size parameters

conv1 3× 30× 40 1× 1, stride=4, BN, ReLU
conv2 16× 13× 18 5× 5, stride=2, BN, ReLU
conv3 32× 5× 7 5× 5, stride=2, BN, ReLU
conv4 48× 3× 5 3× 3, stride=1, BN, ReLU
conv5 64× 1× 3 3× 3, stride=1, BN, ReLU

vectorize 192

Case 3:
layer name output size parameters

conv1 3× 24× 32 1× 1, stride=5, BN, ReLU
conv2 16× 10× 14 5× 5, stride=2, BN, ReLU
conv3 32× 3× 5 5× 5, stride=2, BN, ReLU
conv4 48× 1× 3 3× 3, stride=1, BN, ReLU

vectorize 144

Case 4:
layer name output size parameters

conv1 3× 15× 20 1× 1, stride=8, BN, ReLU, Maxpool
conv2 16× 6× 9 3× 3, stride=1, BN, ReLU, Maxpool
conv3 32× 2× 3 3× 3, stride=1, BN, ReLU, Maxpool
conv4 48× 1× 2 2× 2, stride=1, BN, ReLU, Maxpool

vectorize 96

Case 5:
layer name output size parameters

conv1 3× 12× 16 1× 1, stride=10, BN, ReLU, Maxpool
conv2 16× 5× 7 3× 3, stride=1, BN, ReLU, Maxpool
conv3 32× 2× 3 2× 2, stride=1, BN, ReLU, Maxpool
conv4 48× 1× 2 2× 2, stride=1, BN, ReLU, Maxpool

vectorize 96

Case 6:
layer name output size parameters

conv1 3× 12× 16 1× 1, stride=10, BN, ReLU
conv2 16× 6× 8 3× 3, stride=1, padding=1 BN, ReLU, Maxpool
conv3 32× 2× 3 3× 3, stride=2, BN, ReLU, Maxpool

vectorize 192

Case 7:
layer name output size parameters

conv1 3× 12× 16 1× 1, stride=10, BN, ReLU
conv2 12× 6× 8 3× 3, stride=1, padding=1 BN, ReLU, Maxpool
conv3 24× 2× 3 3× 3, stride=2, BN, ReLU, Maxpool

vectorize 144

Case 8:
layer name output size parameters

conv1 3× 12× 16 1× 1, stride=10, BN, ReLU
conv2 8× 6× 8 3× 3, stride=1, padding=1 BN, ReLU, Maxpool
conv3 16× 2× 3 3× 3, stride=2, BN, ReLU, Maxpool

vectorize 96

Case 9:
layer name output size parameters

conv1 3× 6× 8 1× 1, stride=20, BN, ReLU, Maxpool
conv2 16× 2× 3 3× 3, stride=1, BN, ReLU, Maxpool
conv3 32× 1× 2 2× 3, stride=1, BN, ReLU, Maxpool

vectorize 64



Fig. 5. Top: The output of the gating component of the reconfigurable
network indicating the relevance of the inputs. Bottom: The comparisons
between the actual steering command and predicted steering angles pro-
duced by network after the first step of the training procedure.

Fig. 6. Performance comparisons of 9 various gating network architectures.

Fig. 7. The comparisons between the actual steering command and
predicted steering angles produced by the first (top) and second (bottom)
version of reconfigurable network after the third step of the training
procedure. The output of the gating network is marked with shaded areas
in different colors for each selected input.

TABLE IV
COMPARISON OF DIFFERENT NETWORKS IN TERMS OF THE TEST LOSS

AND REQUIRED AMOUNT OF COMPUTATIONS.

Model Test loss FLOPs
Network using only center camera 0.20 36.36M

No gating mechanism; 0.09 109.08M
images from all three cameras are used

Network with gating mechanism 0.09 109.15M
and no thresholding

(soft attention mechanism)
Reconf Concat 0.12 36.54M
Reconf Select 0.11 36.41M

Fig. 8. The exemplary images captured by the three cameras during
autonomous driving when turning left (top row), driving straight (middle
row), and turning right (bottom row). The color images in red frames are
the inputs selected by the gating network.

V. CONCLUSION

In this work, we propose the reconfigurable network for
handling multiple sensors on autonomous platforms. We
discuss its architecture and the training procedure. We show
that the proposed reconfigurable network effectively selects
the most relevant input at any given moment and by far
(achieving almost two times smaller test loss) outperforms
single-sensor network, while using the same amount of
computations. We also demonstrate that the compact gating
network is sufficient for selecting the relevant input at any
given moment. Thus, the proposed concept can be easily
scaled up to large number of sensors while keeping compu-
tations at a reasonable level, especially in applications were
only a subset of sensors are expected to suffice to perform
the learning task at any given time.

ACKNOWLEDGMENT

We would like to thank Dr Mariusz Bojarski from
NVIDIA for hardware assistance and helpful discussions.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.



[2] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in CVPR, 2016.

[3] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“Deeplab: Semantic image segmentation with deep convolutional nets,
atrous convolution, and fully connected crfs,” arXiv:1606.00915, 2016.

[4] O. Abdel-Hamid, A. Mohamed, H. Jiang, and G. Penn, “Applying
convolutional neural networks concepts to hybrid NN-HMM model
for speech recognition,” in ICASSP, 2012.

[5] J. Weston, S. Chopra, and K. Adams, “#tagspace: Semantic embed-
dings from hashtags,” in EMNLP, 2014.

[6] B. Huval, T. Wang, S. Tandon, J. Kiske, W. Song, J. Pazhayampallil,
M. Andriluka, P. Rajpurkar, T. Migimatsu, R. Cheng-Yue, et al.,
“An empirical evaluation of deep learning on highway driving,”
arXiv:1504.01716, 2015.

[7] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp,
P. Goyal, L. D. Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang,
J. Zhao, and K. Zieba, “End to end learning for self-driving cars,”
CoRR, vol. abs/1604.07316, 2016.

[8] C. Chen, A. Seff, A. L. Kornhauser, and J. Xiao, “Deepdriving:
Learning affordance for direct perception in autonomous driving.” in
ICCV, 2015.

[9] D. A. Pomerleau, “Alvinn: An autonomous land vehicle in a neural
network,” in NIPS, 1989.

[10] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[11] U. Muller, J. Ben, E. Cosatto, B. Flepp, and Y. L. Cun, “Off-road
obstacle avoidance through end-to-end learning,” in NIPS, 2006.

[12] M. Bojarski, P. Yeres, A. Choromanska, K. Choromanski, B. Firner,
L. Jackel, and U. Muller, “Explaining how a deep neural network
trained with end-to-end learning steers a car,” arXiv:1704.07911, 2017.

[13] N. Patel, A. Choromanska, P. Krishnamurthy, and F. Khorrami, “Sen-
sor modality fusion with cnns for ugv autonomous driving in indoor
environments,” in IROS, 2017.

[14] X. Chen, H. Ma, J. Wan, B. Li, and T. Xia, “Multi-view 3d object
detection network for autonomous driving,” in CVPR, 2017.

[15] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton, “Adaptive

mixtures of local experts,” Neural computation, vol. 3, no. 1, pp. 79–
87, 1991.

[16] M. I. Jordan and R. A. Jacobs, “Hierarchical mixtures of experts and
the em algorithm,” Neural computation, vol. 6, no. 2, pp. 181–214,
1994.

[17] R. Collobert, S. Bengio, and Y. Bengio, “A parallel mixture of svms
for very large scale problems,” in NIPS, 2002.

[18] D. Eigen, M. Ranzato, and I. Sutskever, “Learning factored represen-
tations in a deep mixture of experts,” arXiv preprint arXiv:1312.4314,
2013.

[19] E. Bengio, P.-L. Bacon, J. Pineau, and D. Precup, “Conditional
computation in neural networks for faster models,” arXiv:1511.06297,
2015.

[20] T. Bolukbasi, J. Wang, O. Dekel, and V. Saligrama, “Adaptive neural
networks for efficient inference,” in ICML, 2017.

[21] N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton,
and J. Dean, “Outrageously large neural networks: The sparsely-gated
mixture-of-experts layer,” arXiv:1701.06538, 2017.

[22] J. Schlosser, C. K. Chow, and Z. Kira, “Fusing lidar and images for
pedestrian detection using convolutional neural networks,” in ICRA,
2016.

[23] O. Mees, A. Eitel, and W. Burgard, “Choosing smartly: Adaptive
multimodal fusion for object detection in changing environments,” in
IROS, 2016.


