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ABSTRACT

Probabilistic tropical cyclone (TC) occurrence, at lead times of week 1 to

4, in the Subseasonal to Seasonal (S2S) dataset are examined here. Forecasts

are defined over 15o in latitude × 20o in longitude regions, and the prediction

skill is measured using the Brier skill score with reference to climatological

reference forecasts. Two types of reference forecasts are used: a seasonally

constant one and a seasonally varying one with the latter used for forecasts of

anomalies from the seasonal climatology. Models from the European Centre

for Medium-Range Weather Forecasts (ECMWF), Australian Bureau of Me-

teorology, and Météo-France/Centre National de Recherche Météorologiques

have skill in predicting TC occurrence four weeks in advance. In contrast,

only the ECMWF model is skillful in predicting the anomaly of TC occur-

rence beyond one week. Errors in genesis prediction largely limit models’

skill in predicting TC occurrence. Three calibration techniques, removing the

mean genesis and occurrence forecast biases, and a linear-regression method,

are explored here. The linear-regression method performs the best and guar-

antees a higher skill score when applied to the in-sample dataset. However,

when applied to the out-of-sample data, especially in areas where the TC sam-

ple size is small, it may reduce the models’ prediction skill. Generally speak-

ing, the S2S models are more skillful in predicting TC occurrence during fa-

vorable Madden–Julian oscillation phases. Lastly, we also report accumulated

cyclone energy predictions skill using the Ranked probability skill score.
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1. Introduction44

Tropical cyclone (TC) predictions are evaluated differently at different time-scales. Short–term45

(weather prediction time-scale) track and intensity forecasts are usually verified against best-track46

records at the same time via mean absolute error (e.g., DeMaria et al. 2014). Seasonal storm47

predictions, on the other hand, are often verified over a basin using correlations of observed and48

forecast TC counts or accumulated cyclone energy (ACE; e.g., Chen and Lin 2013). Only recently49

have global weather prediction systems started to generate forecasts at subseasonal time-scales50

(Vitart et al. 2010). Therefore, there are no widely accepted standards for verifying and evaluating51

subseasonal TC predictions (Camargo et al. 2019). Similarly to short–term weather predictions,52

Elsberry et al. (2011) and Tsai et al. (2013) verified subseasonal predictions from the European53

Centre for Medium-Range Weather Forecasts (ECMWF) by comparing the forecast and observed54

TCs at times and locations at which the storms were very close to each other. Yamaguchi et al.55

(2015) defined forecasts of weekly storm occurrences over 0.5o × 0.5o grids. Vitart et al. (2010),56

Camp et al. (2018), and Gregory et al. (2019) examined weekly storm occurrence over 15o in57

latitude × 20o in longitude boxes with 7.5o and 10o buffer ranges. Others, such as Li et al. (2016),58

Lee et al. (2018) and Gao et al. (2019) considered basin–wide TC activity.59

Verification methods are, on one hand, limited by the skill of the forecasts, and on the other hand,60

they reflect, implicitly, what information is expected from the forecasts. One guiding principle61

in designing verifications is to consider the desired socio-economic value of the forecasts. For62

example, which kind of information would be useful for disaster preparedness with two to three63

weeks lead-time? This information could be used, e.g., to plan the distribution and storage of64

emergency supplies or deploy emergency personnel (Vitart and Robertson 2018). Forecasts of65

basin–wide TC activity clearly do not provide the ideal type of forecast information at these time-66
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scales as they do not provide the kind of regional information that is essential for regional disaster67

preparedness. Conversely, due to the limitations of current prediction systems, it is not reasonable68

to expect reliable forecasts of the exact time, location or intensity of landfalling TCs weeks in69

advance. The verification method used by Vitart et al. (2010), Camp et al. (2018), and Gregory70

et al. (2019) is therefore a reasonable compromise, since it balances the capability of current71

weather prediction systems with the needs of the user on subseasonal time-scales.72

Many studies have shown that forecasts of TC position and genesis can have skill beyond 1073

days. Elsberry et al. (2011) and Tsai et al. (2013) found that the ECMWF ensembles were able74

to predict most of the named typhoons’ tracks out to 4 weeks in advance in the 2009 and 201075

Northwestern Pacific typhoon seasons, although there was a 50% false alarm rate. Vitart et al.76

(2010) showed that a calibration that removes the mean forecast bias could increase the ECMWF’s77

track predictions skill in the Southern Hemisphere TC basins from two to four weeks. Similar78

results are found in two recent papers (Camp et al. 2018; Gregory et al. 2019), which evaluated79

reforecasts and real-time forecasts of the Australian Bureau of Meteorology seasonal forecasting80

system (ACCESS–S1) over the Southern Oceans. In the subseasonal to seasonal (S2S) dataset81

(see Section 2), Lee et al. (2018) showed that reforecasts run by six operational centers can predict82

genesis weeks in advance.83

TCs have a strong climatological seasonal cycle, and subseasonal variability of TCs is defined84

as the anomaly (fluctuation) that deviates from that cycle. Thus, accurately predicting TCs at sub-85

seasonal time-scales requires models to forecast both the seasonal cycle and anomalies. Generally86

speaking, global models can predict the seasonal cycle reasonably well because they are good at87

simulating the low-frequency large-scale atmospheric and oceanic patterns. These large-scale pat-88

terns contribute to the predictability of the TC seasonal cycle (Camargo and Barnston 2009; Zhan89

et al. 2012). The main source of predictability for subseasonal TC variability, on the other hand, is90
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the Madden Julian Oscillation (MJO). Models tend to be more skillful both when the MJO signal is91

strong during the initial forecast time (e.g., Belanger et al. 2010), and when the MJO is in phases92

that are favorable to TCs in the basin at the forecast verification time (e.g., Jiang et al. 2012).93

Tropical waves, such as Kelvin waves and African easterly waves, also influence TC genesis on94

subseasonal scales (e.g., Ventrice et al. 2011, 2012; Schreck 2015). The models’ ability to forecast95

the large-scale environmental patterns associated with El Niño–Southern Oscillation, the Atlantic96

Meridional Mode (e.g., Belanger et al. 2010; Li et al. 2016), as well as extra-tropical-tropical97

interactions (Zhang and Wang 2019) influence subseasonal TC predictability as well.98

The promising results mentioned above (Vitart et al. 2010; Camp et al. 2018; Gregory et al.99

2019; Lee et al. 2018) are based on verifications that credit models for capturing the seasonal cycle100

and the subseasonal variability. That is to say, forecasts are evaluated against seasonally constant101

climatological forecasts as a reference. To understand if the S2S models have skill at predicting102

genesis anomalies, Lee et al. (2018) further used seasonally varying climatological forecasts as a103

reference (no credit for capturing the seasonal cycle), and showed that the ECMWF model is the104

only one that has skill in predicting genesis anomalies at 2–3 weeks lead-time in most TC basins.105

Vitart et al. (2010) also discuss the ECMWF model’s prediction skill in southern hemisphere TC106

basins in comparison with seasonally varying climatological forecasts.107

The present study is a continuation of Lee et al. (2018) which evaluated the S2S models’ per-108

formance in predicting basin-wide TC formation. In contrast to Lee et al. (2018), we focus here109

on (1) the S2S models’ performance in predicting regional TC occurrence (i.e., genesis and sub-110

sequent locations) and Accumulated Cyclone Energy (ACE); (2) applying the various calibration111

methods, including the one used in Camp et al. (2018), to the forecasts and discussing their im-112

pact; and (3) investigating the dependence of the prediction skill on the MJO as characterized by113

two MJO indices, namely the Real-Time Multivariate Index (RMM; Wheeler and Hendon 2004)114
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and the Real-Time Outgoing-Longwave-Radiation (OLR) MJO index (ROMI; Kiladis et al. 2014).115

Data and methods for model evaluation are described in Section 2. The models’ performance in116

storm occurrence is in Section 3, followed by discussion of the calibration schemes in Section 4.117

We report the dependence of model skill on MJO in Sections 5 and the models’ performance in118

predicting ACE in Section 6, followed by Conclusions in Section 7.119

2. Methods120

a. The S2S dataset and observations121

We consider the same S2S reforecasts as in Lee et al. (2018), based on coupled, global general122

circulation models run by six operational centers: the Australian Bureau of Meteorology (BoM),123

the China Meteorological Administration (CMA), the ECMWF, the Japan Meteorological Agency124

(JMA), the Météo-France/Centre National de Recherche Météorologiques (MetFr), and the Na-125

tional Centers for Environmental Prediction (NCEP). Basic characteristics of these six reforecasts126

are shown in Table 1 and further details of the S2S dataset are described in Vitart et al. (2017).127

TCs in the S2S models are tracked daily using the methodology of Vitart and Stockdale (2001).128

The tracker defines a storm center at a local minimum sea-level pressure where (1) a local vor-129

ticity maximum (> 3.5× 10−5 s-1) at 850 hPa is nearby, (2) a local maximum in the vertically130

averaged temperature (warm core, > 0.5 oC) in between 250–500 hPa is within a distance (in any131

direction) equivalent to 2o latitude, (3) the two locations detected from (1) and (2) are within a132

distance equivalent to 8o latitude, and (4) a local maximum thickness between 1000–200 hPa can133

be identified within a distance equivalent to 2o latitude. Additionally, a detected storm must last at134

least two days to be included in our analysis. The same criteria apply to TCs in all ocean basins.135
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Observations of tropical cyclone tracks are from the HURDAT2, produced by the National Hur-136

ricane Center (Landsea and Franklin 2013), and from the Joint Typhoon Warning Center (Chu137

et al. 2002). Both best-track datasets include 1-min maximum sustained wind, minimum sea138

level pressure (not used in this study), and storm location every 6 hours. Following the conven-139

tional definitions (Fig. 1), the TC basins are: Atlantic (ATL), northern Indian Ocean (NI), western140

North Pacific (WNP), eastern North Pacific (ENP), southern Indian Ocean (SIN, 0-90oE), Aus-141

tralia (AUS, 90-160oE), and southern Pacific (SPC, east of 160oE). For each basin, we only use142

forecasts that are initialized during their respective TC seasons: May to November for ATL and143

WNP, May to October for ENP, April to June and September to November for NI, November to144

April for SIN and AUS and December to April for SPC.145

b. Defining forecasts146

Following Camp et al. (2018), we subdivide global TC basins into 20o in longitude × 15o in147

latitude boxes (centers are labeled by circles in Fig. 1). Each box overlaps with its neighboring148

boxes by 10o and 7.5o in the longitude and latitude direction, respectively. A grid on the border of149

the two basins belongs to the one on the east and/or on the north side. Thus, the 20o × 15o boxes150

centered at the equator belong to the Northern Hemisphere basins. Then, we define occurrence151

forecasts by the fraction of all the ensemble members that contain a TC (ensemble frequency) in152

individual grids for each of the six models. Similarly, we also define the accumulated cyclone153

energy forecast (ACE) by the fraction of ensemble members that have weekly ACE exceeding154

specified thresholds (Section 2d) over each box.155

Forecasts are evaluated at daily time resolution with a weekly (7 days) window, starting from156

day 4. In other words, prediction skill at day 4 contains forecasts from day 1 to day 7, prediction157

skill at day 5 includes forecasts from day 2 to day 8, and so on. Sometimes we also use ‘week’ to158
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describe the forecasts, such that “week 1 forecasts” refers to forecasts containing data from days159

1 to 7, “week 2 forecasts” are forecasts from days 8 to 14, and so on. As an example, Figs. 2a and160

2b show week-2 occurrence forecasts (in dots) and the gridded occurrence forecasts (in shading)161

from a ECMWF forecast initialized on Aug. 20, 2005. The observed storm occurrence and ACE162

are calculated following the same procedure as described above. For convenience, we refer to163

each of these 20o ×15o boxes as a “region”, and thus “regional” refers to the analyses done over164

individual boxes.165

c. Defining the MJO166

Two real-time MJO indices are considered. The first one is the RMM, which is calculated167

using intraseasonal zonal winds at 200 and 850 hPa and observed outgoing longwave radiation168

(OLR; Wheeler and Hendon 2004; Gottschalck et al. 2010; Vitart 2017). The second MJO index169

is ROMI, an OLR based index, calculated from observed intraseasonal OLR anomalies (Kiladis170

et al. 2014). Wang et al. (2018) showed that ROMI better represents northward propagation of the171

boreal summer intraseasonal oscillation than RMM.172

d. Skill scores173

1) BRIER SKILL SCORE174

The Brier skill score (BSS) is used to assess the skill of a probabilistic forecast of TC occurrence175

relative to a climatological forecast. The Brier Score (BS) is defined as:176

BS =
1
N

N

∑
i=1

(pi−oi)
2 (1)

BSS = 1− BS
BSref

, (2)
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where N is the total number of forecasts, oi is the ith observation. pi is the predicted probability of177

TC occurrence for the ith forecast, defined as:178

pi =
1
M

M

∑
j=1

Pi, j, (3)

where M is the number of ensemble members, Pi, j is the TC occurrence prediction from the jth179

ensemble member for the ith forecast. Pi, j and oi are 0 for no storm and 1 for 1 or more storm180

occurrences during the forecast period. Thus, the BS is the mean squared probability forecast181

error. When analyzing the models’ performance over individual 20o × 15o regions, N in Eq. 1 is182

the number of forecasts used. When evaluating models’ performance in a basin, N is the product of183

the number of forecasts used and the number of regions in that basin. For example, for evaluating184

the ECMWF model in the Atlantic basin, N is 64554, which consists of 1218 forecasts across185

53 regions. Note that the forecast number, 1218, is different to the one (2058) listed in Table 1,186

because we only use data during the Atlantic hurricane season.187

The BSref is similar to the BS, but for a reference forecast based on the observed climatology.188

The observed climatology is calculated using observations over the same period and at the same189

temporal resolution as the S2S model data. In this study, two climatologies are used. The first one190

is the seasonally varying climatology at monthly time resolution. The second one is a constant,191

seasonal-mean climatology. When a model is skillful compared to the climatology, the BSS is192

positive. For convenience, we refer to the BSS for the monthly–varying climatology as BSSm, and193

the BSS for the seasonal mean, constant climatology as BSSc hereafter. BSSc can be interpreted as194

the model skill in predicting the absolute TC occurrence, including seasonality. On the other hand,195

BSSm evaluates the model’s ability to predict the anomalies in TC activity that deviate from the196

seasonal cycle. The values of BSSm are lower than those of BSSc because its reference forecast197

(monthly-varying mean) is more informative.198
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2) RANKED PROBABILITY SKILL SCORE199

To verify ACE predictions (Section 6), we use the ranked probability skill score (RPSS). RPSS200

is a squared-error score for categorical forecasts. The cumulative forecasts and observations (Pc201

and Oc and the ranked probability score (RPS) are denoted as:202

Pc =
c

∑
j=1

p j,c = 1, ...,C (4)

Oc =
c

∑
j=1

o j,c = 1, ...,C (5)

RPS =
C

∑
c=1

(Pc−Oc)
2 (6)

where C is the number of forecast categories and p j is the forecast probability of the storm inten-203

sity falling in the jth category. The observed probability o j is 1 if the observations fall in the jth204

category and 0 otherwise. The RPS is the sum of the squared differences between the cumulative205

probabilities Pc and Oc. RPS is oriented so that smaller values indicate better forecasts. A correct206

forecast with no uncertainty has an RPS of 0. Similar to the BSS, the RPSS compares the average207

RPS to that of a reference forecast:208

RPSS = 1−

N

∑
i=1

RPSi

N

∑
i=1

RPSrefi

. (7)

We again have two reference forecasts: the first uses the seasonal-mean climatology, the second209

uses the monthly-varying seasonal climatology. They are referred to as RPSSc and RPSSm, re-210

spectively. The RPSS is sensitive to the definitions of the forecast categories. Because TCs are211

rare events, more than 95% of the observations have ACE of 0, and the categories should not be212

equally spaced, Here, we define 6 categories, and the first category is for ACE = 0. The other 5213

categories correspond to the 0, 20, 40, 60, 80 quantiles of the observed distribution of non-zero214

ACE.215
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3. TC occurrence prediction216

TC occurrence predictions are evaluated here from both regional and basin-wide perspectives.217

From a basin-wide perspective, the ECMWF model is skillful in predicting TC occurrence (BSSc)218

at all TC basins up to four weeks in advance (Fig. 3). The BoM and MetFr models also have219

positive BSSc at weeks 1–4 in most TC basins. The JMA model is skillful up to 10 days in all220

TC basins except the NI. In terms of predicting seasonal anomalies (BSSm), the ECMWF model221

is skillful up to 2–3 weeks in the WNP, ENP, SIN, and SPC, and 1–2 weeks in the ATL and AUS.222

Other S2S models have limited skill: the BoM model has positive BSSm in the SIN and SPC at223

week 1–2, the MetFr model is skillful in the SIN and AUS at week 1, and the JMA model is skillful224

in the SIN and SPC at week 1. The CMA and NCEP models do not have skill in predicting TC225

occurrence globally. The basin-wide prediction skill scores shown in Fig. 3 do not always reflect226

the models’ performance on the regional scale. For example, while the ECMWF model is skillful227

in predicting TC occurrence at weeks 1–2 globally, Fig. 4a shows that the model has negative228

BSSc in parts of AUS (Timor Sea, Arafura Sea, Banda Sea). Similarly, ECMWF model has no229

skill in predicting TC activity over the Arabian Sea at week 2, but it has an overall positive BSSc230

in NI. In contrast, the model is not skillful in predicting TC occurrence anomaly in the NI, but is231

skillful in the Bay of Bengal (Fig. 4b).232

The TC occurrence prediction skill scores in the S2S models are qualitatively consistent with233

those for genesis prediction shown in Lee et al. (2018); both suggest that the ECMWF is the most234

skillful model and can predict storm activity anomalies with respect to monthly climatology up235

to 2–3 weeks in advance. This similarity is not surprising as the prevailing circulation associated236

with the genesis location may influence the subsequent track pattern. Still, it is interesting to know237

how a model’s occurrence prediction skill is limited by its genesis prediction skill. To address238
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this question, we conduct an additional BSS analysis using the forecasted storms forming within239

500 km and ± 3 days of the observed TC genesis locations. We keep cases in which the observed240

genesis is captured by at least one ensemble member. In other words, we are looking at BSS241

conditioned on the genesis having occurred correctly in at least one of the ensemble members in242

the forecast (BSSm|TC). One can also think of BSSm|TC as a measure of occurrence forecast skill243

only with the genesis element removed.244

Using the ECMWF forecasts, Fig. 5 shows that the positive BSSm|TC values (gray lines) can last245

much longer than the positive BSSm values (black lines). In the NI and the three southern basins246

BSSm|TC is positive from week 1–4 while BSSm is only positive up to week 2. The increase in247

the prediction skill is smaller (a few days to one week) in the WNP, ENP, and ATL. It is well248

known that TCs are steered by their ambient steering flow (Dong and Neumann 1986) and storm249

motion forecasts depend upon skillful prediction of the environmental wind field (Galarneau and250

Davis 2012). While S2S models’ performance on steering flow has not yet been examined in251

the literature (to the best of our knowledge), the difference between BSSm and BSSm|TC values252

implies that the ECMWF model may be able to predict the steering flow weeks in advance. An253

interpretation of Fig. 5 is that the biggest challenge for subseasonal storm occurrence predictions254

is to forecast genesis well. Vitart and Robertson (2018) also mentioned that if a model can predict255

genesis correctly, there is a potential for skillful prediction of the subsequent track even at long256

lead times, at least for long-lived storms. In practice, however, we will not be able to identify257

which genesis (and subsequent track) predictions are reliable in advance.258

4. Calibration259

Next, we discuss whether the occurrence prediction skills, particularly as measured by the BSSm,260

can be further improved through a post-processing calibration. Three techniques are explored here:261
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removing the mean genesis bias, removing the mean occurrence bias, and the linear regression262

method. In principle, the calibration parameters should be developed using a subset of the entire263

data set, known as the “training” or “in-sample” data, and evaluated with the remainder of the data264

set, known as the “testing” or the “out-of-smaple” data. Here, we apply a calibration method to265

the whole dataset and examine the impact of the method in the in-sample dataset. If the results266

are promising, we will test the method by separating the dataset into in-sample and out-of-sample267

groups. As shown in this section, we only conduct out-of-sample data evaluation for the linear268

regression method.269

a. Removing the mean genesis bias270

The BSSm|TC results suggest that there is potential to improve the models’ occurrence prediction271

skill by removing the mean genesis bias – that is, by correcting the mean forecast genesis rate to272

match the observed one:273

pi|gen = pi× rgen (8)

rgen =
∑

N
i=1 oi,gen

∑
N
i=1 pi,gen

. (9)

Here, the genesis rate is defined as the number of genesis events per day, and the mean gene-274

sis bias is the ratio (rgen) between the observed genesis rate (∑N
i=1 oi,gen) and model simulations275

(∑N
i=1 pi,gen) over each region. This ratio is multiplied by the forecast occurrence probability to276

get the calibrated occurrence probability, pi|gen. rgen is a function of lead times and regions. The277

modified forecasts are then used for calculating the Brier Skill Score for anomalies (BSSm|gen):278

BSm|gen =
1
N

N

∑
i=1

(pi|gen−oi)
2 (10)

BSSm|gen = 1−
BSm|gen

BSref
. (11)
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Eq. 11 is the BSS conditioned on the same genesis rate. Compared to the BSSm (black lines in279

Fig. 5), BSSm|gen (green dashed lines in Fig. 5) has positive skill in NI and AUS for almost a week280

longer. In other words, in these two basins the mean genesis biases reduces the ECMWF model281

occurrence prediction skill by one week. BSSm|gen and BSSm are closer in the WNP, SIN, and282

SPC than in other basins. In the ENP and ATL, BSSm|gen values are even smaller than BSSm.283

b. Removing the mean occurrence bias284

Another common approach for calibrating occurrence forecasts is to remove the mean occur-285

rence biases (e.g., Vitart et al. 2010; Camp et al. 2018). Similar to Eq. 8, the calibrated probability286

(pi|mean) is derived by multiplying the forecast probability by a ratio, but now it is the ratio (rmean)287

of mean observed probability and the mean forecast probability:288

rmean =
∑

N
i=1 oi

∑
N
i=1 pi

. (12)

rmean is also a function of lead times and regions. We follow Camp et al. (2018) and restrict rmean289

to values between 0.5 and 2. For example, a rmean value of 3 is changed to 2, and a rmean value 0.02290

is changed to to 0.5. This restriction is done to avoid unreasonably large pi|mean at areas where the291

sample size (of TCs) in the forecasts is too small, and to avoid forcing the model to predict very292

small or 0 probability values at regions where the observed sample TC size is small. As mentioned293

in the Introduction, removing the mean occurrence biases increases the ACCESS–S1’s occurrence294

prediction skill from week 2 to week 5 (Camp et al. 2018; Gregory et al. 2019). Spatial maps of295

BSSm|mean from ECMWF week 2 forecasts are used to show the impact of this calibration method.296

The ECMWF week 2 BSSm|mean has positive values in the NI, ENP, SIN, AUS, and SPC (Fig. 6a).297

When compared to BSSm (Fig. 4b), the calibrated score (BSSm|mean) increases the prediction skill298

in the Bay of Bengal, western SIN, AUS, and SPC (Fig. 6b). On the basin-wide scale, BSSm|mean299
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(green solid lines in Fig. 5) improves the skill of predicting NI, SIN, and AUS storms at all lead300

times (BSSm) but degrades the skill of predicting WNP, ENP, and ATL storms. In the SPC, it has301

positive impact on BSSm before day 10 lead time but negative impact afterwards.302

The results above show that removing the mean occurrence bias does not always have a positive303

impact on the forecast. This is consistent with Camargo et al. (2019) who showed that this cali-304

bration method improves ACCESS–S1 southern hemisphere skill scores for long-leads in 2017-18305

but degrades the skill in 2018-19. Because this calibration method has been used in several studies,306

we conduct further analysis to understand how it works. First of all, we decompose Eqs. 1 and 2307

following Murphy and Winkler (1992); Murphy (1988):308

BS =
1
N

N

∑
i=1

(pi−oi)
2

=
〈
(p− p+ p−o−o+o)2

〉
=
〈
[(p− p)− (o−o)+(p−o)]2

〉
=
〈
(p− p)2

〉
+
〈
(o−o)2

〉
+
〈
(p−o)2

〉
−
〈

2(p− p)(o−o)
〉

= σ
2
p +σ

2
o +(µ f −µo)

2−2σpσoγp,o,

(13)

where σ2 is the variance, µ is the mean, γ is the correlation coefficient, and () and
〈〉

represent309

averaging over N forecasts. The skill score BSS can then be rewritten as:310

BSS = 1− BS
BSre f

= 1−
σ2

p +σ2
o +(µ f −µo)

2−2σpσoγp,o

σ2
o

= 2
σp

σo
γp,o− (

σp

σo
)2− (

µ f −µo

σo
)2

= γ
2
p,o− (γp,o−

σp

σo
)2− (

µ f −µo

σo
)2,

(14)

in which the three terms on the right-hand-side represent the potential skill (correlations), con-311

ditional bias, and unconditional bias (Bradley et al. 2008). To gain higher values of BSS (better312
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prediction skill), a calibration scheme needs to increase the correlation between forecasts and313

observations, and/or reduce the conditional and unconditional biases. Removing the mean occur-314

rence biases reduces the unconditional bias to zero. However, it also changes the value of σp and315

therefore does not guarantee a smaller conditional bias. Consequently, Eq. 8 could potentially316

result in lower values of BSS.317

When will BSSm|mean guarantee higher values of BSSm? To obtain the necessary conditions for318

increasing BSS values, we compare BS and BSm|mean (BSm|mean should be smaller than BS) and319

obtain the following:320

rmean ≤
2po

p2
−1; if rmean >= 1 (15)

rmean >
2po

p2
−1; if rmean < 1. (16)

When a model has a positive mean bias, the ratio rmean between the mean observed probability321

and the mean modeled probability has to be smaller than the threshold 2po
p2 −1. On the other hand,322

when the model is biased low, rmean needs to be larger than the threshold. Figures 7a and 7b show323

the spatial distributions of rmean and the threshold. The colorbars in both figures are designed such324

that for the calibration method to have positive impact, the regions that are red (blue) in Fig. 7a325

need to be redder (bluer) in Fig. 7b. The comparison is shown in Fig. 7c in which regions where326

the ECMWF TC occurrence prediction skill can be improved by the calibration method are labeled327

in red and those where it cannot are labeled in blue. The red and blue areas in Fig. 7c are similar to328

the reddish and bluish areas in Fig. 6b. Figure 7c also suggests that removing the mean occurrence329

bias seems to work better when the model mean occurrence forecast is biased low (gray dots in330

Fig. 7). While not shown here, the blue-red pattern shown in Fig. 7c is model dependent. The331

impact of the restriction of r (0.5 to 2) on the calibrated forecast skill score is not investigated here332

but is an interesting question that should be further explored.333
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c. Linear regression method334

Removing the mean occurrence biases does not always work because it corrects only the mean335

probabilistic forecast error, but not the mean squared probability forecast error, which is what BSS336

measures. While one can argue that it is better to use mean error as an evaluation metric instead,337

BSS is a conventional metric for evaluating the performance of probabilistic forecasts. Therefore,338

we explore a linear regression-based technique (van den Dool et al. 2016) that minimizes the mean339

square error. In this approach, the calibrated probabilistic forecast is:340

pi|linear = a× pi +b, (17)

where a (a = γp,o
σo
σp

) is the regression coefficient and b is the intercept. It is noted that pi|linear341

may be negative or greater than 1 despite the forecast probability being defined between 0 and342

1. In this study, we set all the negative pi|linear to 0; and 1 if it is greater than 1. For the in-343

sample data, Eq. 17 can remove the unconditional biases and minimize the conditional biases. The344

resulting Brier Skill Score is therefore the potential skill, γ2
p,o. Figure 6c shows that the week 2345

BSSm|linear for ECMWF model is positive everywhere except the North Atlantic; the ECMWF’s346

week 2 forecasts of TC occurrence anomaly in the North Atlantic are negatively correlated to347

observations. The differences between BSSm|linear and the BSSm (Fig. 6d), as expected, show that348

Eq. 17 improves the ECMWF model’s prediction skill globally. At the basin scale, BSSm|linear also349

outperforms BSSm (comparing the pink lines to the black lines in Fig. 5).350

We further examine the impact of applying Eq. 17 to out-of-sample data. To do so, the first351

two-third of ECMWF forecasts (from 1995 to 2009) are used as training data and the remaining352

one-third (from 2010 to 2015) are the testing data. When applied to out-of-sample data, Eq. 17353

does not guarantee higher prediction skill scores (Fig. 6e and 6f). This is especially true in regions354

where the training data are insufficient to capture the statistics of model’s forecast errors, and355
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thus the derived a and b do not minimize the mean square error of the testing data. In central356

North Pacific and part of North Atlantic, BSSm|linear, out is smaller than BSSm. At the basin scale,357

BSSm|linear,out (red lines in Fig. 5) still improves the ECMWF week 2 occurrence prediction skill.358

The improvement is small in the WNP and SIN, though. The basin-wide BSSm|linear,out for all359

models are shown in Fig. 8. Compared to Fig. 3, applying Eq. 17 seems to improve the S2S360

models’ occurrence prediction skill in all basins. The improvement is especially evident in the361

SIN where all the six S2S models are skillful at week 1 with ECMWF, BoM, MetFr and JMA362

having skill at week 2. A more sophisticated way to minimize the mean square error is to use363

logistic regression, which will be explored in the future.364

The three calibration techniques used here suggest that calibrating subseasonal, probabilistic TC365

predictions is not straightforward. A method that works for in-sample data may not work for out-366

of-sample data, especially regional scales. Further effort is necessary to develop a comprehensive367

calibration method.368

5. Dependence of occurrence prediction skill on the MJO369

As discussed in the Introduction, the predictability of subseasonal TC activity is commonly370

related to the MJO phase and amplitude (e.g., Belanger et al. 2010; Jiang et al. 2012). To sys-371

tematically assess the dependence of the S2S models’ prediction skill on the MJO, we compare372

the lag relationships of TC occurrence and Brier Skill Scores to the MJO phases defined by RMM373

and ROMI (Section 2c). To make sure the relationships are not contaminated by the calibration374

methods, we use the original BSSc and BSSm here.375

We start by examining the observed MJO–TC genesis relationship from these two indices using376

the candy-plot analysis (Lee et al. 2018), a two–dimensional histogram of genesis probability as377

a function of MJO phases and basins. In Figure 9, the TC basins are arranged so that the convec-378
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tively active MJO phases (with black circles) are aligned diagonally. The probability of genesis379

in convectively active (favorable) MJO phases is higher (red colors) than in suppressed phases380

(blue colors). The ROMI-candy diagram shows more dark red and dark blue circles than does the381

RMM-candy diagram, indicating that ROMI is sharper and better represents the MJO’s modulat-382

ing influence on TC genesis. The favorable MJO phases defined by ROMI are shifted to the east383

by one phase in the WNP, SPC, and ENP, compared to those defined by RMM. The lag–analysis384

between TC occurrence and MJO (Fig. 10) shows the eastward shift of the favorable MJO phases385

from RMM to ROMI as well. This shift may be related to the fact that RMM mostly represents the386

MJO circulation (Straub 2012; Ventrice et al. 2013), while ROMI represents the MJO convection387

(Kiladis et al. 2014). Another possibility is the existence of a shift in the geographic locations of388

the MJO phases associated defined using ROMI compared with those defined using RMM. How-389

ever, Kiladis et al. (2014) showed that the maximum correlation between OMI (the non-realtime390

version of ROMI) and RMM occurs at lags -2 to 4 days, and thus these two indices do represent391

MJO phases with similar (while not exactly the same) geographic location.392

While not perfect, the candy-plot analyses (Fig. 11) suggest that the S2S models capture the393

shifts of the favorable MJO phases. Except in the JMA model, the pattern correlations between394

simulated and observed MJO–TC relationships are higher when MJO is defined by RMM than by395

ROMI. This is an indication that S2S models better simulate the influence of MJO wind signal396

on TC frequency than they simulate the influence of the MJO convection signal. The CMA and397

MetFr models are the two extreme cases because their simulations of the ROMI defined MJO–TC398

relationship yields correlations with observations that are only 11% and 5%, while in the case of399

RMM the correlation coefficients are 41% and 42%, respectively.400

Next, we analyze the contribution of the MJO to S2S models’ prediction skill by grouping the401

forecasts by MJO phase. Using BSSc as an example, first we calculate the difference of BSSc|m jo,402
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i.e. the BSSc conditioned on the MJO phase, and BSSc: δBSSc|m jo = BSSc|m jo−BSSc. Positive403

δBSSc|m jo means that forecasts initialized at the MJO phase m jo contribute positively to BSSc,404

which is calculated using the full dataset. Then, we use lag analysis to examine the MJO–BSSc405

relationship.406

Figure 12 shows that the positive δBSSc (red shading) is in phase with the positive TC activity407

anomalies (black contour) in the ECMWF simulations, when the MJO is defined by ROMI. Similar408

results are found when MJO is defined by RMM (not shown). In other words, the ECMWF model409

has better skill in predicting total TC occurrence during favorable MJO phases than unfavorable410

ones. The pattern correlation coefficients between the relationships of MJO–TC and MJO–BSSc in411

the seven TC basins from the six S2S models are shown in Table 2. In most cases, the S2S models412

have positive correlation coefficients, meaning that they likely have better skill in predicting total413

TC occurrence during favorable MJO phases. Exceptions include the BoM model in the ENP and414

ATL when the MJO is defined by RMM, and the CMA model in the ENP and ATL when the MJO415

is defined by ROMI. The relationships between MJO–TC and MJO–BSSc are significant only in a416

few TC basins in the JMA and NCEP models. In contrast, the relationships between MJO–BSSm417

and MJO–TC in the ECMWF model are not as strongly in phase (Fig. 13). For the ECMWF model,418

the pattern correlation coefficients are still positive in most TC basins (Table 3) except in the ENP419

and SPC when the MJO is defined by ROMI. In the BoM model, the MJO–BSSm relationship is420

negatively related to the MJO–TC relationship, indicating that the BoM model has better skill in421

predicting the anomaly of TC occurrence during the suppressed phases than the active ones.422

While the impacts of the MJO phase on the prediction skill (whether BSSc or BSSm) vary by423

basin and by model, Tables 2 and 3 suggest that favorable MJO phases are associated with better424

forecasting skills for predicting total TC occurrence. Favorable MJO phases are associated with425

better BSSm in the ECMWF and CMA models in most TC basins but not in other models. It is not426
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clear to us why there is no general relationship between favorable MJO and BSSm, since the MJO427

is associated with subseseasonal TC variability. Causal connections between the MJO phases and428

BSSc and BSSm are left for future research.429

6. ACE prediction430

Next, we briefly discuss S2S models’ performance in predicting ACE. As mentioned in Section431

2, the ACE forecasts are analyzed using RPSSc and RPSSm (Section 2d). Due to insufficient432

horizontal grid spacing, most S2S models are unable to simulate either the TC’s core structure or433

the occurrence of the most intense TCs. In the case of the ECMWF model, another reason for434

low intensity values is that TC occurrence was derived using a 1.5o grid, which corresponds to435

a lower resolution than the original model grid (0.5o). The strongest TC winds generated by the436

S2S models are around 50 kt (Lee et al. 2018), except for the BoM model (60-70 kt) which has 2o
437

horizontal resolution. The BoM model, however, might be reaching higher values of wind speed438

than expected, as a 2o horizontal resolution model should not be able to generate storms with such439

strong winds (Davis 2018).440

To correct the low-intensity bias in the S2S models, we apply quantile matching, similar to441

that in Camargo and Barnston (2009). One can also categorize the predicted and observed ACE442

into 6 categories using their respective thresholds. Here we adjust the forecast intensities before443

calculating ACE, so that the observed thresholds are used for all models. Results from the RPSSc444

analyses (Fig. 14) suggest that the ECMWF model is skillful in predicting regional TC intensity445

in all basins at all leads. BoM and MetFr models are skillful in most TC basins. The prediction446

skill scores of the NCEP and CMA models are the lowest among the six S2S models, though447

CMA has positive RPSSc values up to 4 weeks in the SIN. ECMWF has skill in predicting ACE448

anomaly (RPSSm). In the WNP and SIN, the model is skillful up to 2 weeks, while in other basins449
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only at week 1. In the same way that a model’s occurrence prediction skill is influenced by its450

ability in capturing the genesis, the S2S models’ skill predicting ACE is influenced by its ability451

in capturing observed genesis and occurrence. Isolating such impacts is left for a future study, as452

is the calibration of ACE.453

7. Conclusions454

The subseasonal (week 1–4) prediction skills of probabilistic forecasts of TC occurrence (gen-455

esis with subsequent daily position) and accumulated cyclone energy (ACE), at both basin and456

regional spatial scales, are examined using reforecasts from the BoM, CMA, ECMWF, JMA,457

MetFr, and NCEP in the S2S dataset. We use Brier Skill Score (BSS) for evaluating the TC oc-458

currence predictions, and the Ranked Probabilistic Skill Score (RPSS) for ACE. Both quantities459

are evaluated over 15o in latitude × 20o in longitude regions (Fig. 1). The forecasts are defined460

as skillful when they outperform the climatological forecasts, defined by either the seasonal mean461

constant climatology (BSSc and RPSSc) or the monthly-varying climatology (BSSm and RPSSm).462

Thus, BSSc and RPSSc evaluate the models’ ability to forecast the observed TC activity, including463

its seasonality, while BSSm and RPSSm considers only the TC activity deviation from that sea-464

sonality. Additionally, we investigate how the occurrence prediction skill is affected by imperfect465

genesis predictions and how various calibration schemes impact a model’s prediction skill. We466

also systematically examine the dependence of S2S models’ prediction skills on MJO phase.467

Among the six models examined here, the ECMWF model has the best performance (Fig. 3). It468

is skillful in predicting TC occurrence up to 4 weeks in all TC basins, except in the NI where the469

model is skillful up to week 3. The model is also skillful in predicting TC occurrence anomaly470

2–3 weeks in advance. Following the ECMWF are the MetFr and BoM models, which are skillful471

in predicting TC activity 4 weeks in advance in most TC basins. They are not skillful in predicting472
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the TC occurrence anomaly, however. The JMA model is skillful in predicting storm occurrence 2473

weeks in advance, while the CMA and NCEP models have no skill in predicting either TC occur-474

rence or anomalies at all TC basins and leads. The prediction skills of the CMA and NCEP models475

may be limited by their small ensemble sizes as discussed in Lee et al. (2018). In addition to the476

different ensemble sizes, the S2S data periods are also different, which may also affect the S2S477

models’ performance. By examining the BSS conditioned on the same TC (no genesis errors), we478

showed that the most challenging task in subseasonal occurrence predictions is to forecast genesis479

correctly (Fig. 5). In the case of the ECMWF model, correct genesis predictions can improve480

prediction skills (for TC occurrence anomaly) from 2 to 4 weeks. The S2S models’ performance481

for ACE prediction (Fig. 14) follows their performance for the occurrence predictions, since the482

storm frequency largely influences ACE. The ECMWF, MetFr, and BoM model skillfully predict483

ACE up to 3–4 weeks. The ECMWF model is the only one that is skillful in predicting the ACE484

anomaly 2 weeks in advance, however.485

Calibration of the mean probabilistic forecast error has been used for improving TC occurrence486

prediction, e.g. Camp et al. (2018) and Gregory et al. (2019). Here we showed that while calibrat-487

ing the mean bias can reduce the unconditional bias component of the BSS, it does not always lead488

to a reduction of conditional bias (Fig. 6 and Eqs. 13 and 14). As a result, this calibration method489

may lead to lower BSS values (or worse skill). To know whether a calibration of the mean prob-490

abilistic forecast error benefits the BSS evaluation, one can compare the ratio between the mean491

forecast probability (p) and the mean observed probability (o) to the threshold 2po
p2 − 1 (Eqs. 15,492

and 16). The prediction skill of models with large mean bias, such as CMA and NCEP, can be493

significantly improved with this calibration method. To calibrate the mean square probabilistic494

forecast error, the metric that BSS measures, we used the linear regression approach proposed by495

van den Dool et al. (2016). For the in-sample dataset, the linear regression method improves the496
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S2S model prediction skill globally. For the out-of-sample datasets, this method can improve the497

models’ skill everywhere, except in areas where the sample TC size is too small.498

Next, the dependence of the S2S models’ TC forecast skill on MJO is examined using both499

RMM and ROMI. The S2S models’ prediction skill in TC occurrence (including the seasonality)500

is positively related to the favorable MJO phases (Table 2). The relationship between MJO phases501

and the models’ prediction skill for TC occurrence deviation from the seasonality varies by models502

and basin (Table 3). This finding is consistent with our previous work on genesis anomaly predic-503

tion (Lee et al. 2018), which showed that there is no clear relationship between MJO and genesis504

prediction skill. An unexpected result is that the ROMI–defined favorable MJO phases have an505

eastward shift when compared to those defined by RMM (Fig. 9). To the best of our knowledge,506

there has not yet been a satisfying answer in the literature to explain why this is the case.507

Based on our findings and those in Lee et al. (2018), the ECMWF model is the most skillful508

ensemble prediction system for subseasonal TC genesis, occurrence and ACE forecasts in the S2S509

dataset, followed by BoM and MetFr. The forecast skill in predicting the anomaly of TC activity510

from the seasonal climatology remains low, however, even in these models. Genesis prediction is511

the key bottleneck causing this low prediction skill. Our results highlight the importance of im-512

proving our fundamental understanding of TC genesis in order to obtain more skillful subseasonal513

TC predictions. Calibrating subseasonal probabilistic TC predictions is not easy, but a compre-514

hensive calibration method can largely increase models’ prediction skills and should be further515

explored in the future. It should be mentioned that this research and Lee et al. (2018) present the516

prediction skill directly derived from the reforecasts in the S2S dataset. Our results may not reflect517

the latest prediction skill of the operational centers mentioned here because they may have further518

improved since the collections of the S2S dataset. Also, reforecasts in the S2S dataset have small519

ensemble sizes, except for BoM, and both BSS and RPSS punish small ensemble sizes. Such a520
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negative impact maybe even more significant for NCEP and CMA because both models have only521

four members in the S2S datasets. Variants of the RPSS and BSS (Weigel et al. 2007), which take522

into account the ensemble size, may be used in the future to examine model skill if the ensemble523

size was infinite.524
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TABLE 1. Characteristics of the six S2S reforecasts used here. (Adapted from Lee et al. 2018)

Model forecast time Resolution Period Ens. size Frequency & Sample
size

BoM 0–64 days 2o, L17 1981–2013 33 ∼5 days & 2160

CMA 0–61 days 1o, L40 1994–2014 4 daily & 7665

ECMWF 0–46 days 0.25o for first 10 days 1994–2014 11 ∼4 days & 2058

0.5o after day 10, L91

JMA 0–33 days 0.5o, L60 1981–2010 5 ∼10 days & 1079

MetFr 0–61 days ∼0.7o, L91 1993–2014 15 ∼15 days & 528

NCEP 0–44 days ∼1o, L64 1999–2010 4 daily & 4380
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TABLE 2. Pattern correlation coefficients between the lag-plots of TC occurrence anomaly (%) and MJO and

those of BSSc|mjo- BSSc and MJO. Positive (negative) values correspond to favorable (suppressed) MJO phases

having a positive (negative) impact onto BSSc. Correlations significant at the 95% level (p-value < 0.05) are

shown in bold.

635

636

637

638

BSSc v.s. RMM

basins/models BoM CMA ECMWF JMA MetFr NCEP

ni 0.15 0.38 0.58 -0.02 0.23 0.27

wnp 0.29 0.30 0.66 0.32 0.27 0.53

enp -0.25 0.29 0.23 0.52 0.32 -0.08

atl -0.22 0.09 0.17 0.27 -0.01 -0.03

sin 0.61 0.58 0.64 0.05 0.44 0.57

aus 0.38 0.46 0.46 0.17 0.22 0.35

spc 0.31 0.74 0.37 0.08 0.26 0.45

BSSc v.s. ROMI

basins/models BoM CMA ECMWF JMA MetFr NCEP

ni 0.47 0.63 0.38 -0.04 0.16 0.07

wnp 0.55 0.45 0.33 0.09 0.32 0.37

enp 0.13 -0.16 0.27 0.26 0.01 -0.10

atl 0.09 -0.31 0.43 0.22 0.13 -0.00

sin 0.68 0.26 0.34 -0.04 0.23 -0.07

aus 0.57 0.51 0.51 -0.02 0.28 0.23

spc 0.25 0.35 0.33 -0.18 0.29 0.63

33



TABLE 3. Similar to Table 2, but for BSSm

BSSm v.s. RMM

basins/models BoM CMA ECMWF JMA MetFr NCEP

ni -0.12 0.25 0.42 -0.06 0.13 0.17

wnp -0.26 0.20 0.13 -0.10 -0.21 0.09

enp -0.37 0.29 -0.07 0.21 -0.05 -0.16

atl -0.49 0.11 0.28 0.01 -0.23 0.05

sin 0.36 0.17 0.35 -0.06 0.12 0.45

aus -0.44 0.28 0.24 0.02 -0.03 -0.05

spc -0.41 0.74 -0.10 0.15 0.00 0.34

BSSm v.s. ROMI

basins/models BoM CMA ECMWF JMA MetFr NCEP

ni 0.05 0.53 0.14 -0.21 0.11 -0.02

wnp -0.26 0.46 -0.10 -0.20 0.05 0.18

enp -0.26 -0.03 -0.36 0.07 -0.12 0.06

atl -0.17 -0.41 0.14 0.07 -0.26 0.04

sin 0.28 -0.23 0.15 -0.42 0.10 -0.24

aus -0.46 0.27 0.28 -0.19 0.01 -0.34

spc -0.59 0.35 -0.26 -0.23 0.25 0.52
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FIG. 1. The verification areas for seven TC basins. The verification is conducted over regions of 20o in

longitude × 15o in latitude, and there are a total of 303 regions (11×33 grids minus southern Atlantic and

eastern South Pacific). The regions overlap by 10o in longitude and 7.5 o in latitude.
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FIG. 2. (a) All TC tracks (colored lines) predicted from an ECMWF forecast initialized at August 20, 2005.

There are 11 ensemble members for the ECMWF model and one color per ensemble member. Forecast storm

centers (occurrence) at lead times 8 – 14 days (week 2) are marked by colored circles. The corresponding

observed TC tracks and storm centers are marked in black lines and circles. (b) Week 2 forecast probability of

storm occurrence (Eq. 3). (c) Week 2 forecast after calibration (Eq. 8). (d) Difference between (b) and (c).
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FIG. 3. Basin-wide BSSc (dashed lines) and BSSm (solid lines) for TC occurrence prediction in the S2S models.
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FIG. 4. Global map of ECMWF week 2 TC occurrence skill scores for (a) BSSc (seasonal mean constant

climatology), (b) BSSm (seasonal monthly varying climatology).
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FIG. 5. Basin-wide ECMWF BSSm (black lines), BSSm|TC (gray lines), BSSm|gen (green dashed lines),

BSSm|mean (green solid lines), and BSSm|linear (pink lines) calculated with the whole forecast data. BSSm|linear,out

(red lines) are similar to BSSm|linear but use the out-of-sample data. See Sections 3 and 4 for details.
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FIG. 6. Global map of calibrated ECMWF week 2 TC occurrence skill score for (a) BSSm|mean, (c) BSSm|linear,

and (e) BSSm|linear, out. (b) and (d) are the differences between (a) and (c) to the BSSm, respectively, in Fig. 4b.

(f) is the difference between BSSm|linear, out and the corresponding BSSm from the same out-of-sample period

(not shown).
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FIG. 7. (a) Week 2 ECMWF forecasts’ ratio between the mean forecast probability and observed probability.

(b) Global maps of 2po
p2 −1 (c) Areas where the calibration scheme has a positive (negative) impact are marked

in red (blue). Regions where the ECMWF model has low biases (the values in (a) is smaller than 1) are labeled

by gray dots in all three figures. (see Section 4 for details).
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FIG. 8. Basin-wide BSSm|linear,out of TC occurrence prediction in the S2S models.
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FIG. 9. Candy plots for the MJO–TC relationship in the observations. The color of each candy indicates the

PDF (%) of TC frequency in the corresponding MJO phase in the basin. The sum of the circles across the MJO

phases in each basin is 100%. The black circle at the edge indicates that the value is above the 90th percentile

while the cross symbol (X) at the center means the value is below the 10th percentile. (a) uses RMM to define

MJO phases while (b) uses ROMI. We use only the data from MJO events with a magnitude larger than 1.
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FIG. 10. Observed lag-plot of TC occurrence anomaly (%) based on RMM and ROMI. Gray dots show where

the anomaly is statistically significant. Data are normalized by the number of the MJO days in each phase.

713

714

46



FIG. 11. Similar to Fig. 9 but for week 2 forecasts of the S2S models.The % in the title of each figure shows

the pattern correlation between model simulations and observations from Fig. 9
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FIG. 12. ECMWF lag-plot of BSSc anomaly (BSSc|mjo-BSSc) based on the ROMI index. BSSc|mjo is the

BSSc using only forecasts at specified MJO phases. Note that the color scheme is centered at 0, and thus reddish

(bluish) color indicates positive (negative) contribution from MJO favorable (suppressed) phases. We only use

data for MJO events with magnitudes larger than 1. The contours show the simulated MJO–TC relationships,

similar to those shown in Fig. 10.
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FIG. 13. Similar to Fig. 12 but for BSSm.
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FIG. 14. RPSSc and RPSSm for ACE predictions in the S2S models.

50


