[1] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters. In OSDI 2004, pages 137-150, 2004. [ bib | .html ]
[2] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing tool. Commun. ACM, 53(1):72-77, 2010. [ bib | DOI | http ]
[3] Jeffrey Dean. Experiences with mapreduce, an abstraction for large-scale computation. In PACT '06: Proceedings of the 15th international conference on Parallel architectures and compilation techniques, page 1, New York, NY, USA, 2006. ACM. [ bib | DOI | http ]
[4] Jeffrey Dean. Handling large datasets at google: Current systems and future designs., 2008. [ bib | .pdf ]
[5] Luiz André Barroso, Jeffrey Dean, and Urs Hölzle. Web search for a planet: The google cluster architecture. IEEE Micro, 23(2):22-28, 2003. [ bib ]
[6] Jeffrey Dean. Challenges in building large-scale information retrieval systems: invited talk. In WSDM '09: Proceedings of the Second ACM International Conference on Web Search and Data Mining, pages 1-1, New York, NY, USA, 2009. ACM. [ bib | DOI | .pdf ]
[7] Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan. Interpreting the data: Parallel analysis with sawzall. Sci. Program., 13(4):277-298, October 2005. [ bib | http ]
[8] Christopher Olston, Benjamin Reed, Utkarsh Srivastava, Ravi Kumar, and Andrew Tomkins. Pig latin: a not-so-foreign language for data processing. In SIGMOD '08: Proceedings of the 2008 ACM SIGMOD international conference on Management of data, pages 1099-1110, New York, NY, USA, 2008. ACM. [ bib | DOI | http ]
[9] Sanjay Ghemawat, Howard Gobioff, and Shun T. Leung. The google file system. SIGOPS Oper. Syst. Rev., 37(5):29-43, December 2003. [ bib | DOI | http ]
[10] Cheng T. Chu, Sang K. Kim, Yi A. Lin, Yuanyuan Yu, Gary R. Bradski, Andrew Y. Ng, and Kunle Olukotun. Map-reduce for machine learning on multicore. In Bernhard Schölkopf, John C. Platt, and Thomas Hoffman, editors, NIPS, pages 281-288. MIT Press, 2006. [ bib | .pdf ]
[11] Michael Stonebraker, Daniel Abadi, David J. DeWitt, Sam Madden, Erik Paulson, Andrew Pavlo, and Alexander Rasin. Mapreduce and parallel dbmss: friends or foes? Commun. ACM, 53(1):64-71, 2010. [ bib | DOI | http ]
[12] David J. DeWitt and Michael Stonebraker. Mapreduce: A major step backwards. [ bib | http ]
[13] Ralf Lämmel. Google's mapreduce programming model - revisited. Science of Computer Programming, 70(1):1 - 30, 2008. [ bib | DOI | http ]
[14] Jimmy Lin and Chris Dyer. Data-Intensive Text Processing with MapReduce. [ bib | .html ]
[15] Jimmy Lin. Brute force and indexed approaches to pairwise document similarity comparisons with mapreduce. In SIGIR '09: Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pages 155-162, New York, NY, USA, 2009. ACM. [ bib | DOI | http ]
[16] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary Bradski, and Christos Kozyrakis. Evaluating mapreduce for multi-core and multiprocessor systems. In HPCA '07: Proceedings of the 2007 IEEE 13th International Symposium on High Performance Computer Architecture, volume 0, pages 13-24, Washington, DC, USA, February 2007. IEEE Computer Society. [ bib | DOI | http ]
[17] Richard M. Yoo, Anthony Romano, and Christos Kozyrakis. Phoenix rebirth: Scalable mapreduce on a large-scale shared-memory system. In IISWC, pages 198-207. IEEE, 2009. [ bib | .pdf ]
[18] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Y. Katz, and Ion Stoica. Improving mapreduce performance in heterogeneous environments. [ bib | http ]
[19] Chao Tian, Haojie Zhou, Yongqiang He, and Li Zha. A dynamic mapreduce scheduler for heterogeneous workloads. In GCC '09: Proceedings of the 2009 Eighth International Conference on Grid and Cooperative Computing, pages 218-224, Washington, DC, USA, 2009. IEEE Computer Society. [ bib | DOI | http ]
[20] Michael C. Schatz. Cloudburst: highly sensitive read mapping with mapreduce. Bioinformatics (Oxford, England), 25(11):1363-1369, June 2009. [ bib | DOI | http ]
[21] Jaliya Ekanayake, Shrideep Pallickara, and Geoffrey Fox. Mapreduce for data intensive scientific analyses. eScience, IEEE International Conference on, 0:277-284, 2008. [ bib | http ]
[22] Andrew Pavlo, Erik Paulson, Alexander Rasin, Daniel J. Abadi, David J. DeWitt, Samuel Madden, and Michael Stonebraker. A comparison of approaches to large-scale data analysis. In SIGMOD '09: Proceedings of the 35th SIGMOD international conference on Management of data, pages 165-178, New York, NY, USA, 2009. ACM. [ bib | DOI ]
[23] Makho Ngazimbi. Data clustering with mapreduce. Master's thesis, Boise State University, 2009. [ bib | .pdf ]
[24] Hung-chih Yang, Ali Dasdan, Ruey-Lung Hsiao, and D. Stott Parker. Map-reduce-merge: simplified relational data processing on large clusters. In SIGMOD '07: Proceedings of the 2007 ACM SIGMOD international conference on Management of data, pages 1029-1040, New York, NY, USA, 2007. ACM. [ bib | http ]
[25] Mike Cafarella and Doug Cutting. Building nutch: Open source search: A case study in writing an open source search engine. ACM Queue, 2(2), April 2004. [ bib | http ]
[26] Tom White. Hadoop: The Definitive Guide. O'Reilly Media, 1 edition, June 2009. [ bib ]
[27] Kiyoung Kim, Kyungho Jeon, Hyuck Han, Shin G. Kim, Hyungsoo Jung, and Heon Y. Yeom. Mrbench: A benchmark for mapreduce framework. In ICPADS '08: Proceedings of the 2008 14th IEEE International Conference on Parallel and Distributed Systems, pages 11-18, Washington, DC, USA, 2008. IEEE Computer Society. [ bib | DOI | http ]
[28] Jonathan Cohen. Graph twiddling in a mapreduce world. Computing in Science and Engineering, 11(4):29-41, July 2009. [ bib | DOI | http ]
[29] Foto N. Afrati and Jeffrey D. Ullman. A new computation model for cluster computing. Technical report, National Tecghnical Univ. of Athens/Stanford University, December 2009. [ bib | http ]
[30] Foto N. Afrati and Jeffrey D. Ullman. Optimizing joins in a mapreduce environment, 2010. [ bib | .pdf ]
[31] Jerome Boulon et al. Chukwa, a large-scale monitoring system. In Cloud Computing and its Applications, pages 1-5, 2008. [ bib | .pdf ]
[32] Jiaqi Tan, Xinghao Pan, Soila Kavulya, Rajeev G, and Priya Narasimhan. Salsa: Analyzing logs as state machines 1. 2009. [ bib | http ]
[33] Oliver J. Haggarty, William J. Knottenbelt, and Jeremy T. Bradley. Distributed response time analysis of gspn models with mapreduce. SIMULATION, 85(8):497-509, August 2009. [ bib | DOI | http ]
[34] Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer. A map reduce framework for programming graphics processors. In In Workshop on Software Tools for MultiCore Systems, 2008. [ bib | http ]
[35] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju, and Tuyong Wang. Mars: a mapreduce framework on graphics processors. In PACT '08: Proceedings of the 17th international conference on Parallel architectures and compilation techniques, pages 260-269, New York, NY, USA, 2008. ACM. [ bib | DOI ]
[36] Jeremy Archuleta, Yong Cao, Tom Scogland, and Wu chun Feng. Multi-dimensional characterization of temporal data mining on graphics processors. Parallel and Distributed Processing Symposium, International, 0:1-12, 2009. [ bib | DOI ]
[37] Yi Shan, Bo Wang, Jing Yan, Yu Wang, Ningyi Xu, and Huazhong Yang. Fpmr: Mapreduce framework on fpga. In FPGA '10: Proceedings of the 18th annual ACM/SIGDA international symposium on Field programmable gate arrays, pages 93-102, New York, NY, USA, 2010. ACM. [ bib | DOI ]
[38] Javier Tordable. Mapreduce for integer factorization. Jan 2010. [ bib | arXiv | http ]
[39] Christopher Dyer, Aaron Cordova, Alex Mont, and Jimmy Lin. Fast, easy, and cheap: construction of statistical machine translation models with mapreduce. In StatMT '08: Proceedings of the Third Workshop on Statistical Machine Translation, pages 199-207, Morristown, NJ, USA, 2008. Association for Computational Linguistics. [ bib ]
[40] Johannes Gehrke. Technical perspective data stream processing: when you only get one look. Commun. ACM, 52(10):96-96, 2009. [ bib | DOI ]
[41] Azza Abouzeid, Kamil Bajda-Pawlikowski, Daniel Abadi, Avi Silberschatz, and Alexander Rasin. Hadoopdb: an architectural hybrid of mapreduce and dbms technologies for analytical workloads. Proc. VLDB Endow., 2(1):922-933, 2009. [ bib ]
[42] Chao Jin and Rajkumar Buyya. Mapreduce programming model for .net-based cloud computing. In Henk Sips, Dick Epema, and Hai-Xiang Lin, editors, Euro-Par 2009 Parallel Processing, volume 5704, chapter 41, pages 417-428. Springer Berlin Heidelberg, Berlin, Heidelberg, 2009. [ bib | DOI | http ]
[43] Edward Y. Chang, Kaihua Zhu, Hao Wang, Hongjie Bai, Jian Li, Zhihuan Qiu, and Hang Cui. Psvm: Parallelizing support vector machines on distributed computers. 2009. [ bib | http ]
[44] Richard E. Ladner and Michael J. Fischer. Parallel prefix computation. J. ACM, 27(4):831-838, 1980. [ bib | DOI ]
[45] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed storage system for structured data. ACM Trans. Comput. Syst., 26(2):1-26, June 2008. [ bib | DOI | .html ]
[46] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. Dryad: distributed data-parallel programs from sequential building blocks. In EuroSys '07: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems 2007, pages 59-72, New York, NY, USA, 2007. ACM. [ bib | DOI | http ]
[47] Giuseppe Decandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo: amazon's highly available key-value store. SIGOPS Oper. Syst. Rev., 41(6):205-220, 2007. [ bib | DOI | .pdf ]
[48] Brian D. Halligan, Joey F. Geiger, Andrew K. Vallejos, Andrew S. Greene, and Simon N. Twigger. Low cost, scalable proteomics data analysis using amazon's cloud computing services and open source search algorithms. Journal of Proteome Research, 8(6):3148-3153, June 2009. [ bib | DOI | http ]
[49] Yan Varley. No Relation: The Mixed Blessings of Non-Relational Databases. PhD thesis, The University of Texas at Austin, 2009. [ bib | .pdf ]
[50] Jon Feldman, S. Muthukrishnan, Anastasios Sidiropoulos, Cliff Stein, and Zoya Svitkina. On the complexity of processing massive, unordered, distributed data, May 2007. [ bib | arXiv | http ]
[51] Yunhong G. Robert Grossman. Data mining using high performance data clouds: Experimental studies using sector and sphere. [ bib ]
[52] Guy Blelloch. Scans as primitive parallel operations. IEEE Transactions on Computers, 38:1526-1538, 1987. [ bib | http ]
[53] Guy Blelloch. Programming parallel algorithms. Commun. ACM, 39(3):85-97, 1996. [ bib | DOI ]
[54] Magnus Ekman and Per Stenstrom. A robust main-memory compression scheme. SIGARCH Comput. Archit. News, 33(2):74-85, 2005. [ bib | DOI | .PDF ]
[55] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active disks: programming model, algorithms and evaluation. SIGPLAN Not., 33(11):81-91, 1998. [ bib | DOI ]
[56] Michael Zeller, Robert Grossman, Christoph Lingenfelder, Michael R. Berthold, Erik Marcade, Rick Pechter, Mike Hoskins, Wayne Thompson, and Rich Holada. Open standards and cloud computing: Kdd-2009 panel report. In KDD '09: Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 11-18, New York, NY, USA, 2009. ACM. [ bib | DOI ]
[57] U. Kang, Charalampos E. Tsourakakis, and Christos Faloutsos. Pegasus: A peta-scale graph mining system. Data Mining, IEEE International Conference on, 0:229-238, 2009. [ bib | DOI ]
[58] Malcolm P. Atkinson, Jano I. van Hemert, Liangxiu Han, Ally Hume, and Chee Sun Liew. A distributed architecture for data mining and integration. In DADC '09: Proceedings of the second international workshop on Data-aware distributed computing, pages 11-20, New York, NY, USA, 2009. ACM. [ bib | DOI ]
[59] Robert L. Grossman and Yunhong Gu. On the varieties of clouds for data intensive computing. IEEE Data Eng. Bull., 32(1):44-50, 2009. [ bib ]
[60] Roman Dementiev. Algorithm engineering for large data sets. 2006. [ bib | http ]

This file was generated by bibtex2html 1.94.