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Abstract

I establish a translation invariance property of the Blackwell order over ex-

periments for dichotomies, show that garbling experiments bring them closer

together, and use these facts to define a cardinal measure of informativeness.

Experiment A is inf-norm more informative (INMI) than experiment B if the in-

finity norm of the difference between a perfectly informative experiment and

A is less than the corresponding difference for B. The better experiment is

closer to the fully revealing experiment; the norm of the distance from the

identity matrix is interpreted as a measure of informativeness. This measure

coincides with Blackwell’s order whenever possible, is complete, order invari-

ant, prior-independent, and computationally simple.
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1 Introduction

How do we rank two Blackwell experiments? To answer this question I ask, and

answer, a related question: How close is an experiment to the most desirable, the

ideal - the fully revealing - experiment? The closer, in an appropriate sense, an

experiment is to an ideal experiment, the better it must be. I use this idea to define

a new, complete, order over square experiments that has attractive properties.

In a bedrock contribution (Blackwell (1951, 1953)), David Blackwell established

the equivalence of two notions of ranking experiments ordinally - those of infor-

mativeness, and payoff-richness (as well as the intimately related notion of statis-

tical sufficiency). An experiment is a stochastic mapping from a set of states of the

world to a set of signal realizations.1 Experiment A is Blackwell more informative

("payoff-richer") than experiment B (denoted by A ⪰B B) if every expected utility-

maximizing decision maker (DM) prefers A to B, or equivalently, A is Blackwell-

sufficient for B if there exists a "garbling" matrix Γ such that B = ΓA. This order has

become a cornerstone of work in information economics, providing a completely

unambiguous ranking of information for single expected utility maximizing DMs.

The strength of this result comes at a price: the Blackwell order is not only

partial, but, loosely speaking, very partial: "most" experiments are not ranked.2

This is, perhaps, not surprising - information may be valued differently by DMs

with different preferences.

The fundamental nature of Blackwell’s order, its ubiquity in economics of in-

formation coupled with its partial structure, beg the question: what is the "right"

completion of this order? Say that experiment A is inf-norm more informative than

experiment B (denoted by A ⪰INMI B) if the infinity norm of the difference be-

tween a perfectly informative experiment, and A is less than the norm of the dif-

ference between a perfectly informative experiment and B. In other words, the

1"Experiments" are also known as "information structures", and "signals".
2In order-theoretic terms, ⪰B is a chain of the partially ordered set of experiments.
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better experiment is closer (in the sense of matrix norm distance) to the best possi-

ble - the fully revealing one. This paper establishes that ⪰B ⊊ ⪰INMI : Blackwell

dominance implies INMI dominance.

I then define a function (dINMI , based on the ⪰INMI order) over experiments

which is computed by taking the norm of the matrix difference between an exper-

iment and the identity matrix, and interpret it as a cardinal measure of informa-

tiveness. This measure coincides with Blackwell’s order, but ranks all finite square

experiments, and is one possible completion of the Blackwell order. I work with

dichotomies for initial results, but the main theorem is proved for square matri-

ces of any finite size. There can be many such completions; this paper proposes

one that has a clear economic (and geometric, in the case of dichotomies) intuition,

is computationally simple, prior-independent, conjecturally order invariant, and

as such, very useful in economic contexts. In addition, this order has an attrac-

tive connection with a translation invariance property of ⪰B, which I also establish

here.

A brief review of the literature is in section 2, while section 3 gives the transla-

tion invariance result. Section 4 clarifies this by showing that garbling experiments

brings them closer together in the sense of (matrix) norm of the difference of the

two experiments. Section 5 contains the main result: for a particular matrix norm

(namely, the infinity norm), A ⪰B B implies ∥1 − A∥∞ ≤ ∥1 − B∥∞. Finally, for an

experiment E I define dINMI(E) to be ||1 − E||∞, discuss its properties, make some

observations and a conjecture, and conclude. All proofs appear in the appendix.

2 Related Literature

Questions of evaluating information and quantifying uncertainty are fundamental

in economics of information. The literature on Blackwell’s order (which is but one

approach to quantifying the value of information) has been the subject of persis-
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tent interest, as exemplified by Crémer (1982) and Leshno and Spector (1992), who

provide alternative and illuminating proofs of the original result.

In the Blackwell order, better experiments are always preferred to worse ones

by expected utility maximizers, but it not true in general. Hirshleifer 1971 exhibits

a prominent example where more information does not improve welfare (in that

setting the welfare-decreasing mechanism operates by removing the markets for

ex-ante insurance); this example has also been used to argue that "more informa-

tion is not always good." Radner and Stiglitz (1984) exhibit another example of

this kind - the marginal value of information in their family of decision problems

is "initially" nonpositive. Moscarini and Smith (2002) qualify this by showing that

in large samples (or if information is "cheap"), the law of individual demand for

many pieces of information is, indeed, monotonically decreasing in the price, as

it should. They also produce a generically complete ordering of experiments con-

sisting of multiple i.i.d. samples from the same distribution, and finally, show that

the law of "large" demand for information is essentially logarithmic for prices that

are small enough (and hence the demand is high). The present work differs from

their order in that it defines a complete (not just generically complete) order that

has attractive properties even for a single experiment.

There has been a revival of interest in the questions of valuing information of

late. Recent literature has proceeded by making additional assumptions to obtain

stronger results. For instance, Gossner and Mertens (2001) and Lehrer, Rosenberg,

and Shmaya (2010) study zero-sum games and games where players have common

interests (and therefore these games are "close" to one-person decision problems)

but have private information, respectively, and construct different information or-

dering in their settings. Pęski (2008) completes this line of work by providing a

full characterization of the two orders proposed by Gossner and Mertens (2001) for

zero-sum games (an open problem posed in Gossner and Mertens (2001)). Goss-

ner and Mertens (2020) provide further characterizations (and orders) in the case of
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zero-sum games; notably, just like the present work, they rely on category-theoretic

tools for their results.

Other useful completions of Blackwell’s order have been proposed; Cabrales,

Gossner, and Serrano (2013) and Cabrales, Gossner, and Serrano (2017) study com-

pletions of Blackwell’s order related to entropy. They restrict attention to particular

classes of utility functions in their 2013 work, and evaluate information-price pairs

in the 2017 paper.

And of course, there is no reason to focus only on the Blackwell order; promi-

nent recent orderings of information are presented by Lehmann (1988) and Per-

sico (2000). Lehmann (1988) restricts the class of admissible decision problems

by requiring (among other features) absolute continuity of the distribution func-

tion, and defines a new criterion - effectiveness: experiment F is more effective than

experiment G if for any s, F−1(G(s|θ)|θ) is nondecreasing θ. (Implicitly, θ is the

state, and s is the signal.) This order has appealing interpretations in terms of the

quantile-quantile or percent-percent plots (for which, however, I point the reader

to the original work). Persico (2000) observes that for experiments satisfying the

standard monotone likelihood ratio property (MLRP) and for utility functions sat-

isfying the single crossing property (SCP), Blackwell sufficiency implies Lehmann

effectiveness.3 Blackwell’s order also implies the INMI order studied in the present

paper; however I work with different restrictions (finite state and realization spaces

with equal cardinality) as opposed to the restrictions on the distribution functions,

and MLRP and SCP.

More recently, Frankel and Kamenica (2019) show that a measure of informa-

tion (a function over pairs of beliefs) is "valid" (equal to the difference between

a DM’s expected utility when she is acting optimally under the prior and under

the posterior, both evaluated at the posterior) if and only if it satisfies attractive

3A note on nomenclature: Persico (2000) refers to Lehmann (1988)’s order as "accuracy" instead
of "effectiveness"; the "accuracy" moniker has stuck and survives in the literature. In other words,
Lehmann accuracy and Lehmann effectiveness are the same thing, the former is more well-known
even though it is the latter that was defined by the original author.
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axioms. Importantly, validity is stated for pairs of beliefs; they note that while no

metric (over beliefs) is valid in their sense, I conjecture that the INMI measure is a

representation of a complete order that does satisfy versions of their axioms, refor-

mulated for experiments. They also characterize measures of uncertainty axiomat-

ically, and link the two notions by giving conditions for compatibility of measures

of uncertainty and information.

Mu et al. (2021) study repeated Blackwell experiments; along the way they

provide a new characterization of Blackwell’s order using log-likelihood ratios,

and relate it to the Rényi order (also an extension of the Blackwell order, itself

linked to Kullback-Leibler divergence). They define a function of an experiment

("perfected log-likelihood ratio") and show that ranking these functions according

to first-order stochastic dominance is equivalent to Blackwell’s order.

de Oliveira (2018) is very similar in spirit to the present work; he uses category

theoretic tools to give a new proof of Blackwell’s seminal result on informativeness,

and applies the techniques to a dynamic information acquisition problem. I study

a different problem, but the result on translation invariance of ⪰B has a strong, and

related, category-theoretic flavor.

Finally, the notion of imbuing matrix norms with economic content is not new

to this paper; Aguiar and Serrano (2017) use conceptually similar ideas (albeit in a

different setting). They use the Frobenius norm to measure departures from ratio-

nality, as expressed by the distance between the estimated "Slutsky" matrix (which

may not have the usual properties), and the closest matrix that does have the stan-

dard symmetry, singularity, and negative semidefiniteness properties. Here I use

a different norm (the infinity norm) to capture the distance between the best ex-

periment and the experiment whose value is to be determined, and interpret that

as a measure of informativeness (as opposed to a measure of rationality discussed

by Aguiar and Serrano (2017)). Nonetheless, the general approach is, notably, con-

ceptually analogous.
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3 Setting

There is a state space Ω = {ω1, . . . , ωm} with m ≥ 2, and a signal realization space

S = {s1, . . . , sm}; note that the two sets are assumed to have the same cardinality,

an assumption maintained throughout the paper. A Blackwell experiment is a finite

square stochastic matrix P = {pij} (i.e. pij ≥ 0, and for each j, ∑m
i pij = 1, so that

the matrix is column-stochastic).4 The columns represent the states, the rows rep-

resent the signal realizations, and the matrix entries representing the probabilities

of signal realizations in each state. Denote by 1 the identity matrix, interpreted as

a fully revealing experiment - one in which a signal realization always reveals the

true state. Denote by U a rank one matrix, interpreted as the fully uninformative

experiment - one in which in each state the probability of each signal realization is

equal (i.e., is simply 1
m ).

Experiment A Blackwell dominates experiment B if there exists a stochastic ma-

trix Γ, with ΓA = B. Γ is the garbling (or the stochastic transformation) matrix.

The interpretation is that one can mimic the signal distribution from the worse ex-

periment in each state by "garbling" (or adding noise to) signals from the better

experiment, without knowing anything about the underlying true state.

Sections 4 and 5 restrict attention to 2 × 2 matrices, while section 6 states the

main result for n × n matrices.

4 Translation Invariance

I begin by noting a curious feature of the Blackwell order: partial translation in-

variance. If we garble A (say, using Γ1 as a garbing matrix) to turn it into B, and

then garble both A and B by the same garbling M, we obtain not only that MA

Blackwell-dominates MB (not an entirely surprising result; denote by Γ2 the ma-
4Some include the signal realization space is part of a definition of a Blackwell experiment and

allow for continua of signal realizations; I use this simpler definition - a finite square column-
stochastic matrix - to focus on the elements that are relevant for the results discussed here.
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A B

MA MB

Γ1

M M
Γ2

Figure 1: Translation invariance of ⪰B

trix that garbles MA into MB), but there is an additional relationship between the

mappings Γ1 and Γ2 themselves. Let A =

 a1 1 − a2

1 − a1 a2

 and call an experi-

ment straightforward if {a1, a2} ∈ [1
2 , 1]2.5

Theorem 4.1 (Translation invariance of ⪰B). Let Γ1 be a straightforward 2× 2 garbling

matrix, and take a non-singular 2 × 2 matrix A. Let B = Γ1A (i.e. A ⪰B B). For any

non-singular 2 × 2 matrix M, we have that

1. MA Blackwell-dominates MB, and furthermore,

2. Since there exists Γ1 with Γ1A = B, there exists a matrix Γ2, with Γ2 similar to Γ1

such that Γ2MA = MB

In other words, the diagram in figure 1 commutes.6

The import of the theorem is the garblings Γ1 and Γ2 are similar matrices - in

other words, they represent the same linear transformation, but in different bases.7

Theorem 4.1 states that the garbling M "shifts" any experiment by an amount "pro-

portional" to the initial distance, because the resulting matrices are still ranked,

and the Γ1 and Γ2 matrices have a particular relationship.8 In other words, Black-

well’s order is partially translation invariant; the moniker "partial" is reflects the

5It can be shown that focusing on straightforward experiments involves no loss of generality if
the only object of interest is the distribution of posterior beliefs.

6For a discussion of commutative diagrams Mac Lane (1998) is seminal.
7And thus, the features of the linear transformation that have to do with the characteristic poly-

nomial (which does not depend on the choice of basis), such as the determinant, trace and eigen-
values, but also the rank and the normal forms, are preserved. The matrix M−1 (notably, not M) is
the change of basis matrix.

8Theorem 5.1 further clarifies the meaning of "proportional to the initial distance."
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need for Γ1 to be straightforward. In more mathematical terms, the garbling ma-

trix is a transformation of the matrix of a linear operator. This observation sheds

some light on the idea of Blackwell’s order as a linear transformation.

The restriction on Γ1 is not without loss of generality; the interpretation of as-

suming Γ1 to be straightforward is that such a garbling matrix does not "flip" the

labels of the signal realizations on average. Finally, restricting Γ1 to be straightfor-

ward is a sufficient, but perhaps not a necessary condition.9

Of course, this operation can be repeated - one can continue garbling the ma-

trices B and MA, as illustrated in figure 2:

A B C

MA MB

M1
1 MA

Γ1

M1

Γ1
1

M1

Γ2

M1
1

Figure 2: Repeating the argument

Repeating this procedure, one can consider the "horizontal" and "vertical" limits

of this diagram, illustrated in figure 3: limk→∞ Mk
1Mk−1

1 . . . M1
1 A and limk→∞ Γk

1Γk−1
1 . . . Γ1

1A.

Generally speaking, a stochastic matrix P with the property that limn→∞ Pn = Q,

with Q having all identical rows is said to be stochastic, indecomposable, and aperi-

odic (SIA) (Wolfowitz (1963)). A sufficient condition for the products limk→∞ Γk
1

and limk→∞ Mk
1 to converge is if M1 and Γ1 are Sarymsakov matrices (introduced

in Sarymsakov (1961), redefined in Seneta (1979), and generalized in Xia et al.

(2019)).10 In the present binary setting, this implies that if the garbling matrices

9In fact, the theorem is true for most garblings that are not straightforward, but computations
show that for some (rare, but nondegenerate) cases if Γ1 is not straightforward, Γ2 fails to be
stochastic.

10Whether there is any economically meaningful interpretation of the definition of a Sarymsakov
matrix is unclear, and for this reason, as well as in the interest of brevity, I refrain from discussing
this definition (or the definition of SIA matrices) and refer the reader to the original literature. I note
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are Sarymsakov, the limit exists, and is equal to the completely uninformative ma-

trix U, with all entries equal to 1
2 . In general, the question of characterizing all

such SIA matrices is open, and an active area of research. The relationship be-

tween Blackwell experiments and SIA and Sarymsakov properties in particular, is

an interesting open problem.

A B C . . . lim
k→∞

Γk
1︸ ︷︷ ︸

=U, if Γ1 is SIA

A

M1A M1B

M3
1 A

...

lim
k→∞

Mk
1︸ ︷︷ ︸

=U, if M1 is SIA

A

Γ1

M1

Γ2
1

M1

Γ3
1 Γk

1

Γ2

M2
1

M3
1

Mk
1

Figure 3: Horizontal and vertical limits of repeated garblings

5 Algebraic Properties of the Blackwell Order

I now give a precise meaning to the fact that M "shifts" any experiment by an

amount "proportional" to the initial distance. A natural notion of distance is the

(matrix) norm; for any subordinate (to the vector norm) matrix norm we have

∥MA − MB∥ ≤ ∥M∥∥A − B∥. In fact, in this setting, a stronger result is true.

here simply that this set of mathematical circumstances - the question of convergence of stochastic
matrices to a rank one matrix - has appeared before, and is a complicated (NP-hard, in fact - see
Blondel and Olshevsky (2014)) problem in general. It is intriguing that this condition has emerged
in the context of Blackwell informativeness as well.
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Theorem 5.1. Suppose A is a straightforward 2× 2 experiment, and suppose B is another,

arbitrary 2 × 2 experiment. Then for a matrix norms ∥·∥2, or ∥·∥F we have

∥MA − MB∥ ≤ ∥A − B∥ (1)

Thus, garbling experiments brings them closer together in the sense of norm

differences, for standard matrix norms.11 This sheds some light on the statement

"M "shifts" any experiment by an amount "proportional" to the initial distance."

6 A Cardinal Measure of Informativeness

Restricting attention to a particular norm - the infinity norm, computed by taking

the maximum absolute row sum of the matrix - we get a further result that relates

matrix norms and Blackwell’s order.

Theorem 6.1. Let A and B be two n × n experiments, and suppose that A is straight-

forward. Then A ⪰B B implies ∥1 − A∥∞ ≤ ∥1 − B∥∞. In other words, A ⪰B B ⇒

A ⪰INMI B.

Thus, the further a matrix is from full revelation, the "worse" it is. The norm

is a continuous function,12 and thus, if A ⪰B B are Blackwell ranked experiments,

this completion assigns "nearby" unranked experiments values that are "close" to

the values for A and B. Its interpretation also has the intuitively attractive features

that relate this order to Blackwell and mean preserving spreads; figure 4 illustrates.

Say that f is one representation of ⪰ if A ⪰ B ⇒ f (A) ≥ f (B). Furthermore,

armed with a norm, one can always define a metric: ∥1 − A∥∞ ≜ d(1, A). Putting

11In fact, while the proof relies on properties of the 2-norm and the Frobenius norm, simulations
show that this result is true for a much larger class of norms - all submultiplicative matrix norms -
a class which includes ∥·∥p for p = 1, 2, ∞, and ∥·∥F.

12Where continuity is understood by "continuous in the topology induced by the norm over
the vector space of experiments" (see Barfoot and D’Eleutherio (2002) for details of definition of
addition that makes this set into a vector space), and then by focusing on the subspace topology
that the space of straightforward experiments inherits.
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0 1
2

1
2

1

1

P(ω0|s1)

P
(ω

0|
s 0
)

B

A

1{ω=ω0}

= ||1 − A||∞ = dINMI(A)

=
||1−

B||∞
=

d
INM

I (B)

{E|E ⪰B A}

{E|E ⪰B B}

Figure 4: A ⪰B B ⇒ A ⪰INMI B: Blackwell informativeness and norm differ-
ences.

In this example there are two possible states, ω0 and ω1, and two possible
signal realizations, s0 and s1. The prior probability of ω = ω0 is 1

2 , the true state is
ω0, and A and B are (with abuse of nomenclature) two pairs of posterior beliefs
resulting from the eponymous experiments. The possible posterior beliefs after a
signal realization are on the axes; in light blue is the set of experiments and pos-
terior belief distributions that are Blackwell better than B (and a mean-preserving
spread of posteriors), while in dark blue is the corresponding set for A. E is a
generic experiment (and associated posterior belief distribution).
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these definitions together let dINMI(A) ≜ d(1, A); theorem 5.1 implies that dINMI

is one representation of the Blackwell order. This representation is an extension

(in fact, a completion) of it to elements of the set of straightforward square exper-

iments that are not ranked by ⪰B; in other words, dINMI is a stronger, cardinal

version of the Blackwell order. Note also that dINMI is defined without reference

to a decision problem, and as such, is prior-independent.

I end with a conjecture: note that dINMI(A) ≥ 0 with equality if and only if

A = 1, and furthermore, simulations unmistakeably suggest that dINMI(A
⊗

B) =

dINMI(B
⊗

A),13 where
⊗

is the Kronecker product. In the language of Frankel

and Kamenica (2019) this is (an analogue of a) "valid" measure of information. This

conjecture provides an intriguing potential link between measures of information

and dINMI .

7 Appendix: Proofs

Proof of theorem 3.1. We have that Γ1A = B by assumption; we need to show the

existence of Γ2 with the stated properties. If it exists, we would have Γ2MA = MB.

But then

Γ2MA = MB ⇐⇒ Γ2MA = MΓ1A (2)

⇒ Γ2M = MΓ1 (3)

⇒ Γ2 = MΓ1M−1 (4)

13 A
⊗

B and B
⊗

A are representations of compound experiments where we first observe the
realization of the signal from one, and then the other experiment. The interpretation is important -
an experiment that represents realizations from multiple information has more rows than columns,
while dINMI only ranks square experiments. I exploit the fact that the relevant columns of the
Kronecker product of two matrices are numerically equivalent to a matrix representation of a com-
pound experiment; for example, for two binary experiments, the compound experiment is 4 × 2,
while the Kronecker product is 4 × 4. I construct a square experiment, and ignore the interpreta-
tion of the "extra" columns produced by taking the Kronecker product, while retaining them for the
purposes of matrix norm difference. While matrix and Kronecker products are not commutative,
simulations unequivocally show that dINMI is, althogh the proof is beyond the scope of this note.
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Substituting the resulting matrix verifies what was needed to show; the fact that

Γ1 and Γ2 are similar matrices is immediate from the last equation, which is the

definition of similarity. The last equation also gives an explicit formula for Γ2.

It remains to show that Γ2 is a garbling - that is, stochastic - matrix. Computing

the terms explicitly, we obtain

MΓ1M−1 =

 m1 1 − m2

1 − m1 m2


︸ ︷︷ ︸

M

 γ1 1 − γ2

1 − γ1 γ2


︸ ︷︷ ︸

Γ1

1
|M|

 m2 m2 − 1

m1 − 1 m1


︸ ︷︷ ︸

M−1

=

(5)

=

 γ1 − γ2 + m2 − γ1m2 + γ2m1 γ1 − γ2 − m1 − γ1m2 + γ2m1 + 1

γ2 − γ1 − m2 + γ1m2 − γ2m1 + 1 γ2 − γ1 + m1 + γ1m2 − γ2m1


(6)

where |M| = m1m2 − (1 − m2)(1 − m1) and γ1, γ2 ∈ [1
2 , 1] by assumption. The

columns sum to unity, to confirm that each entry is non-negative one must check

cases. For instance, for γ1 − γ2 + m2 − γ1m2 + γ2m1 to be negative we would need

γ2 and m2 to be as large as possible (equal to one), which yields a contradiction.

This is when the restriction on γ1 and γ2 becomes necessary - without it one can

obtain cases where the columns of Γ2 do sum to one, but one of the terms is nega-

tive.

Proof of theorem 4.1. I show this in a sequence of steps; let 1 denote an 2× 2 identity

matrix.

Step 1) rank(1 − Γ1) ≤ 1 for any 2 × 2 column stochastic matrix Γ1. This is simply

because

1 0

0 1

 −

 γ1 γ2

1 − γ1 1 − γ2

 =

1 − γ1 −γ2

γ1 − 1 γ2

 for any

γ1, γ2 ∈ (0, 1). It is evident that the rank of the resulting matrix is iden-

tically 1. If γ1 = 1 and γ2 = 0 the rank vanishes, since we get the zero
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matrix. We have assumed that this is not the case (i.e. A ̸= B) and thus the

rank must be equal to unity.

Step 2) 0 < rank(A − B) = rank(A − Γ1A) = rank((1 − Γ1)A) ≤ min{rank(1 −

Γ1), rank(A))} = 1.

Step 3) 0 < rank(MA− MB) = rank(M(A−Γ1A)) ≤ min{rank(A−Γ1A), rank(M)} =

1

Step 4) Any rank 1 matrix can be written as an outer product of two vectors (this

is a standard result). Thus A − B = u1uT
2 and MA − MB = v1vT

2 for some

2 × 1 vectors u1, v1, u2, v2.

Step 5) One must have u1 = v1 =

 1

−1

. Let A =

 a1 1 − a2

1 − a1 a2

 and Γ1 = γ1 γ2

1 − γ1 1 − γ2

 for {a1, a2} ∈ [1
2 , 1]2 and {γ1, γ2} ∈ [0, 1]2. Then using

the previous step, the fact that rank(A− B), and the fact that these are 2× 2

matrices, after some algebra, we obtain the result. Furthermore, in the no-

tation used in this step, we must also have u2 =

 a1 − a1γ1 + γ2(a1 − 1)

γ1(a2 − 1)− a2γ2 − a2 + 1

.

Letting M =

 m1 m2

1 − m1 1 − m2

 for {m1, m2} ∈ [0, 1]2, we obtain that

v2 =

a1m1 + [γ2m1 − m2(γ2 − 1)] (a1 − 1)− m2(a1 − 1)− a1 [γ1m1 − m2(γ1 − 1)]

a2m2 + [γ1m1 − m2(γ1 − 1)] (a2 − 1)− m1(a2 − 1)− a2 [γ2m1 − m2(γ2 − 1)]


(7)

Step 6) For a matrix A of rank 1 the Frobenius norm and the p = 2 norm coincide

and are equal to the largest singular value of the matrix, so that ∥A∥F =√
tr(AT A).
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Step 7) Thus ∥A − B∥ =
√

tr(u2uT
1 u1uT

2 ) and ∥MA − MB∥ =
√

tr(v2vT
1 v1vT

2 ). The

required difference is equal to

∥A − B∥ − ∥MA − MB∥ =

=
(

2
[
[a1(1 − γ1 + γ2)− γ2]

2 + [a2(1 − γ2 + γ2) + γ1 − 1]2
]) 1

2 −

−
(

2
[
[(m1 − m2)(a1(1 − γ1 + γ2)− γ2)]

2 + [(m2 − m1)(a2(1 − γ2 + γ2) + γ1 − 1)]2
]) 1

2

≥ 0 (8)

Proof of theorem 5.1. Let B = ΓA, and recall that the matrix infinity norm is the

maximum absolute row sum of the entries: ||A||∞ = maxi ∑j |aij| = ∑n
i=1 ar ′i, ∃r ′.

Note that ||1 − A||∞ = (1 − ar1r1) + ∑n
i ̸=r1

ar1i for some r1, and analogously, ||1 −

B||∞ = (1 − br2r2) + ∑n
i ̸=r2

br2i for some r2. By definition of matrix multiplication,

bij = ∑n
k=1 γikakj.

We wish to show ∥1 − A∥∞ ≤ ∥1 − B∥∞. The contrapositive of this is that for

all square A and Γ,

∥1 − A∥∞ > ∥1 − ΓA∥∞ = ∥1 − B∥∞ ⇒ (9)

1 − ar1r1 +
n

∑
i ̸=r1

ar1i > 1 − br2r2 +
n

∑
i ̸=r2

br2i ⇐⇒ (10)

1 − ar1r1 +
n

∑
i ̸=r1

ar1i > 1 −
n

∑
k=1

γr2kakr2 +
n

∑
i ̸=r2

n

∑
k=1

γr2kaki ⇐⇒ (11)

n

∑
i ̸=r1

ar1i − ar1r1 >
n

∑
i ̸=r2

n

∑
k=1

γr2kaki −
n

∑
k=1

γr2kakr2 (12)
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Setting γr2k to equal the Dirac delta function δr1k since (eq.(7) has to be true for

an arbitrary Γ; note also the change from r1 to r2) we obtain the contradiction that

n

∑
i ̸=r1

ar1i − ar1r1 >
n

∑
i ̸=r2

n

∑
k=1

γr2kaki −
n

∑
k=1

γr2kakr2 =
n

∑
i ̸=r1

ar1i − ar1r1 (13)

This step shows that there exists a Γ for which eq. (7) is false, and we obtain the

contrapositive. The fact that the inequality can be strict can be checked by direct

computation. Thus, ∥1 − A∥∞ ≤ ∥1 − B∥∞ with a strict inequality in nondegener-

ate cases.
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