

PSCAD Simulation of Grid-Tied Photovoltaic Systems and Total Harmonic Distortion Analysis

Abdulrahman Kalbat

Columbia University in the City of New York

(Teaching Assistant at UAE University "currently on leave")

October 4th, 2013

Paper Structure

- PSCAD Model of Grid-Tied Photovoltaic System
 - Detailed description of all model components and the control blocks
- Total Harmonic Distortion (THD) Analysis
 - IEEE Std 929- 2000 "IEEE Recommended Practice for Utility Interface
 - of Photovoltaic (PV) Systems"
 - THD analysis using PSCAD
 - Effects of solar irradiation on both current and voltage THD

Model provided by PSCAD support team

Columbia University

Operating at Maximum Power Point

Incremental Conductance Tracking Algorithm $\begin{cases} \Delta I / \Delta V = -I / V, & \text{at MPP} \\ \Delta I / \Delta V > -I / V, & \text{left of MPP} \end{cases}$ $\Delta I/\Delta V < -I/V$, right of MPP

- Voltage adjustment (step up or down)
- Galvanic insolation

Total Harmonic Distortion (THD) Analysis

Total Harmonic Distortion (THD) Analysis

- Harmonics:
 - are sinusoidal components of a periodic wave having a frequency that is at multiples of the fundamental frequency
- Generated in PV systems by the converters that are using switching techniques that generate signals that are not perfect sinusoidal.
- Utility grid is already being injected with harmonics by the non-linear load
 - Connecting PV systems will add a stress on the power quality of the grid.

IEEE Std 929- 2000

- "IEEE Recommended Practice for Utility Interface of Photovoltaic (PV) Systems"
 - 1. Total harmonic current distortion shall be less than 5% of the fundamental frequency current at rated inverter output.
 - 2. Each individual harmonic shall be limited as follows
 - If odd harmonic \rightarrow limits in the table
 - If even harmonic \rightarrow less than 25% of the odd harmonic limits listed

Odd Harmonic	Distortion Limit
$3^{rd} - 9^{th}$	< 4.0 %
$11^{th} - 15^{th}$	<~2.0~%
$17^{th} - 21^{st}$	< 1.5 %
$23^{rd} - 33^{rd}$	<~0.6~%
Above the 33^{rd}	<~0.3~%

Abdulrahman Kalbat

Columbia University

IEEE Std 929- 2000

- This standard is valid for medium and high voltage level electric utility
 - Simulated grid is 11 kV 60 Hz system (medium)

Voltage Class	Nominal Line-Line RMS Voltage
Low Voltage	< 600 V
Medium Voltage	600 V - 69 kV
High Voltage	$69 \ kV - 230 \ kV$
Extra High Voltage	$230 \ kV - 1100 \ kV$
Ultra High Voltage	$> 1100 \ kV$

- Calculation of Total Harmonic Distortion
 - Fast Fourier Transform (FFT) → Harmonic frequency components magnitude (each index)
 - 2. Using harmonic frequency components
 - Total Harmonic Distortion (%)
 - Individual Harmonic Distortion (%)

Abdulrahman Kalbat

Columbia University

- IEEE Std 929- 2000
 - Total harmonic current distortion shall be less than 5% of the

fundamental frequency current at rated inverter output.

Columbia University

- IEEE Std 929- 2000
 - Each individual harmonic shall be limited as follows
 - If odd harmonic \rightarrow limits in the table
 - If even harmonic \rightarrow less than 25% of the odd harmonic limits listed

Abdulrahman Kalbat

Columbia University

- Expanding the harmonic index to 63
 - The harmonics with indices from 38 to 46 are violating the distortion

limits, which is 0.3%

Abdulrahman Kalbat

Columbia University

- IEEE Std 929- 2000
 - Limits were established for THD of the current at PCC
- It is a common practice, especially in the case of grid-tied PVs, to pay more attention to current THD analysis.
- WHY?

- Current THD Vs. Solar Irradiation
 - Current THD decreases as the Solar Irradiation increases

Abdulrahman Kalbat

Columbia University

- Voltage THD Vs. Solar Irradiation
 - Voltage THD is not affected by the varying Solar Irradiation

Columbia University

- Current THD Vs. Solar Irradiation
 - PV systems operating under low solar irradiation values inject more

current harmonics into the utility grid than at high irradiation values.

Abdulrahman Kalbat

Columbia University

- This problem might force PV system operators to
 - Disconnect the PV system from the grid to avoid paying the high THD levels penalty specified by the utility operator.
 - Use better filtering techniques
 - Passive filters (RLC)
 - Shunt Active Power Filters (used for harmonic compensation)

Thank You

Contact Information

Abdulrahman Kalbat

ak3369@columbia.edu

akalbat@uaeu.ac.ae