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Abstract

This paper studies the sources of agglomeration economies in cities. We begin
by introducing a simple dynamic spatial equilibrium model that incorporates
spillovers within and across industries, as well as city-size effects. The model
generates a dynamic panel-data estimation equation. We implement the ap-
proach using detailed new data describing the industry composition of 31 En-
glish cities from 1851-1911. We find that industries grow faster in cities where
they have more local suppliers or other occupationally-similar industries. In-
dustries do not grow more rapidly in locations in which they are already large,
though there can be exceptions. Thus, dynamic agglomeration appears to be
driven by cross-industry effects. Once we control for these cross-industry ag-
glomeration effects, we find a strong negative relationship between city size and
city-industry growth. This allows us to construct the first estimate of the aggre-
gate strength of the cross-industry agglomeration forces. Our results suggest a
lower bound estimate of the overall strength of agglomeration forces equivalent
to a city-size divergence rate of 2.1-3.3% per decade.
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1 Introduction

What are the key factors driving city growth over the long term? One of the leading

answers to this question, dating back to Marshall (1890), is that firms may benefit

from proximity to one another through agglomeration economies. While compelling,

this explanation raises further questions about the nature of these agglomeration

economies. Do firm primarily benefit from proximity to other firms in the same in-

dustry, or, as suggested by Jacobs (1969), is proximity to other related industries

more important? Or is overall city size the key factor in determining agglomeration

economies? How do these forces vary across industries? How do these benefits com-

pare to the cost of proximity arising through congestion forces? How can we separate

all of these features from the fixed locational advantages of cities? These are impor-

tant questions for our understanding of cities. Their answers also have implications

for the design of place-based policies, which can top $80 billion per year in the U.S.

and are also widely used in other countries.1

Not surprisingly, there is a large body of existing research exploring the nature of

agglomeration economies. This study draws on two important existing strands of this

literature.2 One approach uses long-differences in the growth of city-industries over

time and relates them to rough measures of initial conditions in a city, such as an

industry’s share of city employment or the Herfindahl index over major city-industries

(Glaeser et al. (1992), Henderson et al. (1995)). The main concern with this line of

research is that it ignores much of the richness and heterogeneity that are likely to

characterize agglomeration economies. A more recent approach allows for a richer set

of inter-industry relationships using connection matrices based on input-output flows,

1The New York Times has constructed a database of incentives awarded by cities, coun-
ties and states to attract companies to locate in their area. The database is available at
http://www.nytimes.com/interactive/2012/12/01/us/government-incentives.html.

2There are several other strands of the agglomeration literature which are less directly related to
this paper. One strand focuses on addressing identification issues by comparing outcomes in similar
locations, where some locations receive a plausibly exogenous shock to the level of local economic
activity (Greenstone et al. (2010), Kline & Moretti (2013), Hanlon (2014)). This approach has the
advantage of more cleanly identifying the causal impact of changes in local economic activity, but it
may also be less generalizable and more difficult to apply to policy analysis. Thus, we view this line
of work as complementary to the our approach. Other alternative approaches use individual-level
wage data (Glaeser & Mar (2001), Combes et al. (2008), Combes et al. (2011)) or firm-level data
(Dumais et al. (2002), Rosenthal & Strange (2003), Combes et al. (2012)) to investigate the effects
of city size. See Rosenthal & Strange (2004) and Combes & Gobillon (Forthcoming) for reviews of
this literature.
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labor force similarity, or technology spillovers. These connections are then compared

to a cross-section of industry locations (Rosenthal & Strange (2001), Ellison et al.

(2010), Faggio et al. (2013)).3 A limitation of this type of static exercise is that it is

more difficult to control for locational fundamentals in cross-sectional regressions.

This study offers an alternative approach that builds on previous work, but

also seeks to address some of the remaining issues facing the literature. To be-

gin, we ground our estimation strategy in a dynamic spatial equilibrium model of

city-industry growth. While simple, our model serves both to discipline our empir-

ical exercise and to highlight potential concerns in the estimation of agglomeration

economies. The theory delivers a relationship between local employment growth in

industry i during a period and the local level of employment in all industries at the

beginning of the period, weighted by a vector of parameters representing the strength

of spillovers between industry pairs, the strength of spillovers across firms within

industry i, time-varying city effects, and shocks to industry growth at the national

level.

To implement this approach, we build a uniquely rich long-run dataset describing

the industrial composition of English cities over six decades. These new data, which

we digitized from original sources, cover 31 of the largest English cities (based on 1851

population) for the period 1851-1911. The data come from the Census of Population,

which was taken every decade. These data have two unique features. First, they come

from a full census, not a sample of the census, which is important in reducing error

when cutting the data by city and industry. Second, the 23 industry groups that we

use in the analysis cover nearly the entire private sector economy of each city. We

add to this four measures of inter-industry connections reflecting input and output

linkages and the demographic and occupational similarity of industry workforces.

Motivated by the theory, we offer a panel-data econometric approach to estimating

agglomeration economies that builds on previous work by Henderson (1997).4 The use

of panel data offers well-known advantages over the cross-sectional or long-difference

approaches used in most of the existing literature. Following Ellison et al. (2010), we

parameterize the pattern of connections between industries using the matrices of in-

3These studies are part of a broader literature looking at the impact of inter-industry connections,
particularly through input-output linkages, that includes work by Amiti & Cameron (2007) and
Lopez & Sudekum (2009).

4A similar approach is explored in Dumais et al. (1997). See also Combes (2000) and Dekle
(2002).
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dustry connections that we have constructed. Also, to help strengthen identification,

we use an instrumental variable approach in which we interact lagged city-industry

employment with industry employment growth in all other cities to generate predicted

employment in industry j in a period.5 This predicted employment level is then used

as an instrument for actual employment in industry j which will be independent of

contemporaneous local shocks. Put another way, we take advantage of the national

industry growth rate to generate predicted industry employment levels within a city

that are plausibly exogenous to local spillovers in the current period.

One contribution of this paper is to estimate the importance of dynamic agglomo-

eration forces related to industry scale, cross-industry connections, and city-size in a

unified framework, while controlling for fixed city-industry factors and time-varying

industry-specific shocks. We find that (1) cross-industry effects are important, and

occur largely through the presence of local suppliers and occupationally similar labor

pools, (2) the net effect of within-industry agglomeration forces are generally negative,

with a small number of exceptions, and (3) city size has a clear negative relationship

to city growth. The presence of local buyers appears to have little positive influence

on city-industry growth. Our methodology also allows us to examine heterogeneity

in the extent to which industries produce and benefit from agglomeration forces.

We provide a variety of tests examining the robustness of these results. For exam-

ple, we show that our results are not substantially changed if we drop particular cities

or particular industries. They are also robust to using an alternative set of matrices

measuring cross-industry connections as well as a more aggregated set of industry

definitions. In addition, we have constructed a new matrix of industry technology

similarity using patent data that can be used to investigate agglomeration forces op-

erating through this channel. Including this technological similarity matrix does not

substantially impact our main results. We also show that incorporating cross-city

effects, such as market potential or cross-city industry spillovers has little impact on

our results. These cross-city factors appear to be relatively weak compared to the

within-city effects that we observe.

A second contribution of this paper is to produce an estimate of the aggregate

strength of the agglomeration forces captured by our measures. This is done by

comparing actual city growth in a decade to the estimated city-time fixed effect for

5This approach is somewhat similar to the technique used in Bartik (1991).
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that decade from a model that includes the cross-industry connection variables. The

wedge between actual city growth and the estimated fixed effect must be equal to the

total impact of the agglomeration force. These results suggest that the agglomeration

forces captured by our empirical model are equivalent to a decadal city-size divergence

rate of 2.1-3.3%. This is likely to be a lower bound estimate as it will not reflect any

agglomeration forces not captured by our measures of cross-industry connections. To

our knowledge this is the first paper to show how the aggregate strength of these

many cross-industry connections can be measured.

The next section presents our theoretical framework, while Section 3 describes

the data. The empirical approach is presented in Section 4. Section 5 presents

the main results, while Sections 6 and 7 investigate the robustness of our results to

using alternative connection matrices or to including of cross-city effects. Section 8

concludes.

2 Theory

In this section, we build a simple model of city growth incorporating localized spillovers

within and across industries and use it to derive our empirical specification. Authors

such as Combes & Gobillon (Forthcoming) have highlighted the need to ground em-

pirical studies of agglomeration economies in theory.6 Grounding our analysis in

theory can help us interpret the results while also being transparent about potential

concerns. However, it is important to keep in mind that theories other than the one

offered here may also generate a similar empirical specification. Thus, our analysis

should not be interpreted as a test of the particular mechanisms described by the

theory.

The model is dynamic in discrete time. The dynamics of the model are driven by

spillovers within and across industries which depend on industry employment and a

matrix of parameters reflecting the extent to which any industry benefits from learning

6In a recent handbook chapter on agglomeration economies, Combes & Gobillon (Forthcoming)
write (p. 87), “this strand of the literature is an interesting effort to identify the mechanisms under-
lying agglomeration economies...Ultimately though, it is very difficult to give a clear interpretation
of the results, and conclusions are mostly descriptive. This is due to the weak links between esti-
mated specifications and theoretical models...the presence and channels of endogeneity are difficult
to assess, and it is hard to conclude that some instruments are valid, as estimated specifications
have usually not been derived from any precise theoretical framework.”

4



generated by employment in other industries (i.e., learning-by-doing spillovers). These

dynamic effects are external to firms, so they will not influence the static allocation

of economic activity across space that is obtained given a distribution of technology

levels. Thus, we can begin by solving the allocation of employment across space in

any particular period. We then consider how the allocation in one period affects the

evolution of technology and thus, the allocation of employment in the next period.

The benefit of such a simple dynamic system is that it allows the model to incorporate

a rich pattern of inter-industry connections.

The theory focuses on localized spillovers that affect industry technology and

thereby influence industry growth rates. In this respect it is related to the endogenous

growth literature, particularly Romer (1986) and Lucas (1988). This is obviously not

the only potential agglomeration force that may lie behind our results; alternative

models may yield an estimation equation that matches the one we apply. However,

because we are interested in dynamic agglomeration, focusing on technology growth

is the natural starting point.

To keep things simple, our baseline model omits some additional features, such as

capital and intermediate inputs, that one might want to consider. In Appendix A.1,

we describe a more complex model that incorporates these features and show that it

delivers essentially the same estimating equation. There are two important simplify-

ing assumptions in our theory. First, as in most urban models, goods and services

are freely traded across locations. Second, the production function parameters do not

vary across industries. In Appendix A.1 we discuss the implications of altering these

assumptions.

2.1 Allocation within a static period

We begin by describing how the model allocates population and economic activity

across geographic space within a static period, taking technology levels as given. The

economy is composed of many cities indexed by c = {1, ...C} and many industries

indexed by i = {1, ...I}. Each industry produces one type of final good so final goods

are also indexed by i.

Individuals are identical and consume an index of final goods given by Dt. The

corresponding price index is Pt. These indices take a CES form,

5



Dt =

(∑
i

γitx
σ−1
σ

it

) σ
σ−1

, Pt =

(∑
i

γσitp
1−σ
it

) 1
1−σ

where xi is the quantity of good i consumed, γit is a time-varying preference parameter

that determines the importance of the different final goods to consumers, pit is the

price of final good i, and σ is the (constant) elasticity of substitution between final

goods. It follows that the overall demand for any final good is,

xit = DtP
σ
t p
−σ
it γ

σ
it. (1)

Production is undertaken by many perfectly competitive firms in each industry,

indexed by f . Output by firm f in industry i is given by,

xicft = AictL
α
icftR

1−α
icft , (2)

where Aict is technology, Licft is labor input, and Ricft is another input which we

call resources. These resources play the role of locational fundamentals in our model.

Note that technology is not specific to any particular firm but that it is specific to

each industry-location. This represents the idea that within industry-locations, firms

are able to monitor and copy their competitors relatively easily, while information

flows more slowly across locations.

Labor can move costlessly across locations to achieve spatial equilibrium. This

is a standard assumption in urban economic models and one that seems reasonable

over the longer time horizons that we consider. The overall supply of labor to the

economy depends on an exogenous outside option wage w̄t that can be thought of as

the wage that must be offered to attract immigrants or workers from rural areas to

move to the cities. Thus, more successful cities, where technology grows more rapidly,

will experience greater population growth.

We also incorporate city-specific factors into our framework. Here we have in

mind city-wide congestion forces (e.g., housing prices), city-wide amenities, and the

quality of city institutions. We incorporate these features in a reduced-form way by

including a term λct > 0 that represents a location-specific factor that affects the

6



firm’s cost of employing labor. The effective wage rate paid by firms in location c is

then w̄tλct. In practice, this term will capture any fixed or time-varying city amenities

or disamenities that affect all industries in the city.

In contrast to labor, resources are fixed geographically. They are also industry-

specific, so that in equilibrium
∑
f Ricft = R̄ic, where R̄ic is fixed for each industry-

location and does not vary across time, though the level of R̄ic does vary across

locations. This approach follows Jones (1975) and has recently been used to study

the regional effects of international trade by Kovak (2013) and Dix-Carneiro & Kovak

(2014). These fixed resources will be important for generating an initial distribution

of industries across cities in our model, and allowing multiple cities to compete in the

same industry in any period despite variation in technology levels across cities.

Firms solve:

max
Licft,Ricft

pitAictL
α
icftR

1−α
icft − w̄tλctLicft − rictRicft.

Using the first order conditions, and summing over all firms in a city-industry, we

obtain the following expression for employment in industry i and location c7:

Lict = A
1

1−α
ict p

1
1−α
it

(
α

w̄tλct

) 1
1−α

R̄ic. (3)

This expression tells us that employment in any industry i and location c will de-

pend on technology in that industry-location, the fixed resource endowment for that

industry-location, factors that affect the industry in all locations (pit), city-specific

factors (λct), and factors that affect the economy as a whole (w̄t).

To close the static model, we need only ensure that income in the economy is

equal to expenditures. This occurs when,

DtPt +Mt = w̄t
∑
c

λct
∑
i

Lict +
∑
i

∑
c

rictR̄ic.

where Mt represents net expenditures on imports. For a closed economy model we

7With constant returns to scale production technology and external spillovers, we are agnostic
about the size of individual firms in the model. We require only that there are sufficiently many
firms, and no firms are too large, so that the assumption of perfect competition between firms holds.
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can set Mt to zero and then solve for the equilibrium price levels in the economy.8

Alternatively, we can consider a (small) open economy case where prices are given

and solve for Mt. We are agnostic between these two approaches.

2.2 Dynamics: Technology growth over time

Technological progress in the model occurs through localized learning-by-doing spillovers

that are external to firms. One implication is that firms are not forward looking when

making their employment decisions within any particular period. Following the ap-

proach of Glaeser et al. (1992), we write the growth rate in technology as,

ln
(
Aict+1

Aict

)
= Sict + εict, (4)

where Sict represent the amount of spillovers available to a city-industry in a period.

Some of the factors that we might consider including in this term are:

Sict = f
(

within-industry spillovers, cross-industry spillovers,

national industry technology growth, city-level aggregate spillovers
)
.

We can use Equation 4 to translate the growth in (unobservable) city-industry

technology into the growth of (observable) city-industry employment. We start with

Equation 3 for period t+ 1, take logs, plug in Equation 4, and then plug in Equation

3 again (also in logs), to obtain,

8To solve for the price levels in the closed economy case, we use the first order conditions from
the firm’s maximization problem and Equation 3 to obtain,

pit =

(
α

w̄t

) α
ασ−α−σ

(∑
c

A
1

1−α
ict R̄icλ

α
α−1

ct

) 1−α
ασ−α−σ

(DtP
σ
t )

α−1
ασ−α−σ γ

σ(α−1)
ασ−α−σ
it .

This equation tells us that in the closed-economy case, changes in the price level for goods produced
by industry i will depend on both shifts in the level of demand for goods produced by industry i
represented by γit, as well as changes in the overall level of technology in that industry (adjusted
for resource abundance), represented by the summation over Aict terms.
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ln(Lict+1)− ln(Lict) =

(
1

1− α

)[
Sict +

[
ln(Pit+1)− ln(pit)

]
(5)

+
[

ln(λct+1)− ln(λct)
]

+
[

ln(w̄t+1)− ln(w̄t)
]

+ eict

]
.

where eict = εict+1 − εict is the error term. Note that by taking a first difference

here, the locational fundamentals term R̄ic has dropped out. We are left with an

expression relating growth in a city-industry to spillovers, city-wide growth trends,

national industry growth, and an aggregate national wage term.

The last step we need is to place more structure on the spillovers term. Existing

empirical evidence provides little guidance on what form this function should take.

In the absence of empirical guidance, we choose a fairly simple approach in which

technology growth is a linear function of log employment, so that

Sict =
∑
k

τki max(ln(Lkct), 0) + ξit + ψct (6)

where each τki ∈ (0, 1) is a parameter that determines the level of spillovers from in-

dustry k to industry i. While admittedly arbitrary, this functional form incorporates

a number of desirable features. If there is very little employment in industry k in

location c (Lkct ≤ 1), then industry k makes no contribution to technology growth

in industry i. Similarly, if τki = 0 then industry k makes no contribution to technol-

ogy growth in industry i. The marginal benefit generated by an additional unit of

employment is also diminishing as employment rises. This functional form does rule

out complementarity between technological spillovers from different industries. While

such complementarities may exist, an exploration of these more complex interactions

is beyond the scope of the current paper.

One feature of Equation 4 is that it will exhibit scale effects. While this may be a

concern in other types of models, it is a desirable feature in a model of agglomeration

economies, where these positive scale effects will be balanced by offsetting congestion

forces, represented by the λct terms.

Plugging Equation 6 into Equation 5, we obtain our estimation equation:

9



ln(Lict+1)− ln(Lict) =

(
1

1− α

)[
τii ln(Lict) +

∑
k 6=i

τki ln(Lkct)

+
[

ln(Pit+1)− ln(Pit)
]

+ ξit

+
[

ln(λct+1)− ln(λct)
]

+ ψct (7)

+
[

ln(w̄t+1)− ln(w̄t)
]]

+ eict.

This equation expresses the change in log employment in industry i and location c

in terms of (1) within-industry spillovers generated by employment in industry i, (2)

cross-industry spillovers from other industries, (3) national industry-specific factors

that affect industry i in all locations, (4) city-specific factors that affect all industries

in a location, and (5) aggregate changes in the wage (and thus national labor supply)

that affect all industries and locations. To highlight that this expression incorporates

both within and cross-industry spillovers we have pulled the within-industry spillover

term out of the summation.

This expression for city-industry growth will motivate our empirical specification.

One feature that is worth noting here is that we have two factors, city-level aggregate

spillovers (ψct) and other time-varying city factors (λct), both of which vary at the

city-year level. Empirically we will not be able to separate these positive and negative

effects and so we will only be able to identify their net impact. Similarly, we cannot

separate positive and negative effects that vary at the industry-year level.

There are at least two promising alternative theories that may yield an empiri-

cal specification similar to the expression generated by our model. One such theory

could combine static inter-industry connections, such as pecuniary spillovers through

intermediate-goods sales, with changing transport costs.9 A second alternative com-

bines static agglomeration forces with a friction that results in a slow transition to-

wards the static equilibrium. Our empirical exercises cannot make a sharp distinction

between the mechanisms described in our framework and these alternatives, so they

should not be interpreted as a direct test of the particular agglomeration mechanism

described by the theory.

9Further discussion of a theory of this type is available in Appendix A.1.
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3 Empirical setting and data

This study looks at English cities over the period 1851-1911. This historical setting

offers several advantages when studying agglomeration economies. First, there was a

very limited amount of government involvement in the economy, and particularly for

our purposes, the lack of place-based economic interventions. In modern economies

these interventions can be large (Greenstone & Moretti (2004), Kline & Moretti

(2013)), perhaps large enough to impact estimates of agglomeration economies. Sec-

ond, this period was characterized by fairly high levels of labor mobility; some au-

thors, such as Baines (1994) argue that internal migration was easier during this

period than it is in Britain today.10 Third, local governments placed very few limits

on development. The first town planning act in Britain was passed in 1909, at the

very end of our period, was limited in its extent, and was implemented too slowly to

have substantially impacted the period we study.11 This contrasts sharply with many

modern economies, where limits on local development have a substantial impact on

city growth (Glaeser et al. (2005)). Fourth, even in 1851 the urban system in Britain

was well-established. For instance, Dittmar (2011) argues that Gibrat’s law emerged

in Europe by 1800, suggesting that the urban system was close to spatial equilibrium

during this period. This is a good fit for our model, where the economy is in spatial

equilibrium period-by-period.12

The main database used in this study was constructed from thousands of pages of

original British Census of Population summary reports. The decennial Census data

were collected by trained registrars during a relatively short time period, usually a

few days in April of each census year. As part of the census, individuals were asked

to provide one or more occupations, but the reported occupations correspond more

closely to industries than to what we think of as occupations today.13

10Baines writes, “Although it is notoriously difficult to measure, we can be fairly sure that internal
migration rates were high in the nineteenth century...We could also say that both the housing and
labor markets were more open than today and that migrants were less likely to be deterred by the
problems of educating children or looking after relatives.”

11The 1909 town planning act allowed British cities to implement town planning in a limited way,
but did not make such planning mandatory. Sutcliffe (1988) reports that by 1913 only 66 towns
were preparing town planning schemes and in only three towns had such schemes been approved by
the Local Government Board, the main oversight body.

12In contrast, Desmet & Rappaport (2014) find that Gibrat’s law didn’t emerge in the U.S. until
the middle of the 20th century due to the entry of new locations, which suggests that the U.S. was
on a long transition path over that period and could have been far from spatial equilibrium.

13In fact, in 1921 the Census office renamed what had previously been called “occupation” to be
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A unique feature of this database is that the information is drawn from a full

census. Virtually every person in the towns we study provided information on their

occupation and all of these answers are reflected in the employment counts in our

data. This contrasts with data based on census samples, which often use just 5% and

sometimes just 1% of the available data.14

The database includes the 31 cities for which occupation data were reported in

each year from 1851-1911. These cities include 28-34% of the English population over

the period we study. The geographic extent of these cities does change over time as

the cities grow, a feature that we view as desirable for the purposes of our study.15

Table 1 provides a list of the cities included in the database, as well as the 1851

population of each city, the number of workers in the city in 1851, and the number of

workers in 1851 that are working in one of the industry groups that are used in the

analysis.16 A map showing the location of these cities in England is available in the

Appendix. In general, our analysis industries cover most of the working population

of the cities.

The occupations listed in the census reports closely correspond to industries, an

important feature for our purposes. Examples from 1851 include “Banker”, “Glass

Manufacture” or “Cotton manufacture”. The database does include a few occupa-

tions that do not directly correspond to industries, such as “Labourer”, “Mechanic”,

or “Gentleman”, but these are a relatively small share of the population. These

categories are not included in the analysis.

A major challenge faced in using these data is that the occupational categories

listed in the census reports varied over time. To deal with this issue we combined

multiple industries in order to construct consistent industry groupings over the study

“industry” and then introduced a new set of data on actual occupations.
14We have experimented with data based on a census sample (from the U.S.) and found that, when

cutting the data to the city-industry level, sampling error has a substantial effect on the consistency
and robustness of the results obtained even when the analysis is confined only to large cities.

15Other studies in the same vein, such as Michaels et al. (2013), also use metropolitan boundaries
that expand over time. The alternative is working with fixed geographic units. While that may
be preferred for some types of work, given the growth that characterizes most of the cities in our
sample, using fixed geographic units would mean either that the early observations would include a
substantial portion of rural land surrounding the city, or that a substantial portion of city growth
would not be part of our sample in the later years. Either of these options is undesirable.

16Much of the remaining working population is employed by the government or in agricultural
work. For example, in Portsmouth, the large gap between working population and workers in the
analysis industries is due to the fact that this was a major base for the Royal Navy.
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Table 1: Cities in the primary analysis database

Population Working population Workers in analysis
City in 1851 in 1851 industries in 1851
Bath 54,240 27,623 23,609
Birmingham 232,841 111,992 101,546
Blackburn 46,536 26,211 24,458
Bolton 61,171 31,211 28,885
Bradford 103,778 58,408 55,223
Brighton 69,673 32,949 27,954
Bristol 137,328 64,025 54,962
Derby 40,609 19,299 16,787
Gateshead 25,568 18,058 8,562
Halifax 33,582 18,058 16,488
Huddersfield 30,880 13,922 12,465
Kingston-upon-Hull 84,690 36,983 31,513
Ipswich 32,914 14,660 11,996
Leeds 172,270 83,570 7 4,959
Leicester 60,496 31,140 28,481
Liverpool 375,955 165,300 142,197
London 2,362,236 1,088,285 930,797
Manchester 401,321 204,688 187,000
Newcastle-upon-Tyne 87,784 38,564 33,271
Northampton 26,657 13,626 12,062
Norwich 68,195 34,114 29,710
Nottingham 57,407 33,967 31,106
Oldham 72,357 38,853 35,958
Portsmouth 72,096 31,345 19,039
Preston 69,542 36,864 33,085
Sheffield 135,310 58,551 53,472
South Shields 28,974 11,114 10,028
Southampton 35,305 14,999 12,215
Stockport 53,835 30,128 27,836
Sunderland 63,897 24,779 21,639
Wolverhampton 49,985 22,727 19,851
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period. Individual categories in the years were combined into industry groups based

on (1) the census’ occupation classes, and (2) the name of the occupation. This

process generates 26 consistent private sector occupation categories. Of these, 23 can

be matched to the connections matrices used in the analysis. Table 2 describes the

industries included in the database.

Table 2: Industries in the primary analysis database with 1851 employment

Manufacturing Services and Professional
Chemicals & drugs 18,514 Professionals* 40,733
Clothing, shoes, etc. 328,669 General services 460,885
Instruments & jewelry* 31,048 Merchant, agent, accountant, etc. 58,172
Earthenware & bricks 19,580 Messenger, porter, etc. 72,155
Leather & hair goods 26,737 Shopkeeper, salesmen, etc. 27,232
Metal & Machines 167,052
Oil, soap, etc. 12,188
Paper and publishing 42,578 Transportation services
Shipbuilding 14,498 Railway transport 10,699
Textiles 315,646 Road transport 35,207
Vehicles 9,021 Sea & canal transport 66,360
Wood & furniture 69,648

Food, etc. Others industries
Food processing 113,610 Construction 137,056
Spiritous drinks, etc. 8,179 Mining 24,505
Tobacconists* 3,224 Water & gas services 3,914

Industries marked with a * are available in the database but are not used in the baseline analysis
because they cannot be linked to categories in the 1907 British input-output table.

To gain some understanding of these data, Table 3 describes the pattern of indus-

try agglomeration across the analysis cities using the index from Ellison & Glaeser

(1997). We can see that Britain’s main manufacturing and export industries, such as

“Textiles”, “Metal & Machines”, and “Shipbuilding” show high levels of geographic

agglomeration.17 Many non-traded services or retail industries, including “Merchants,

agents, etc.”, “Construction”, and “Shopkeepers, salesmen, etc.” show low levels of

agglomeration. It is somewhat surprising that a few of the service industries, such

as “Professionals” and “General services” show evidence of agglomeration. Table 12

17Shipbuilding shows an upward trend reflecting the shift to capital-intensive iron ships.
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in the Appendix shows that this pattern is driven by London. Overall, the median

level of industry agglomeration is between 0.020 and 0.027. This is comparable to

the levels reported for the modern U.S. economy by Ellison & Glaeser (1997) and

somewhat larger than the levels reported for the modern British economy by Faggio

et al. (2013).18

This study also requires a set of matrices measuring the pattern of connections

between industries. These measures should reflect the channels through which ideas

may flow between industries. Existing literature provides some guidance here. Mar-

shall (1890) suggested that firms may benefit from connections operating through

input-output flows, the sharing of labor pools, or other types of technology spillovers.

The use of input-output connections is supported by recent literature showing that

firms share information with their customers or suppliers. For example, Javorcik

(2004) and Kugler (2006) provide evidence that the presence of foreign firms (FDI)

affects the productivity of upstream and downstream domestic firms. To reflect this

channel, we use an input-output table constructed by Thomas (1987) based on the

1907 British Census of Production (Britain’s first industrial census). This matrix is

divided into 41 industry groups. We construct two variables: IOinij, which gives

the share of industry i’s intermediate inputs that are sourced from industry j, and

IOoutij which gives the share of industry i’s sales of intermediate goods that are

purchased by industry j. The main drawback in using these matrices is that they are

for intermediate goods; they will not capture the pattern of capital goods flows.

18Using industry data for 459 manufacturing industries at the four-digit level and 50 states, Ellison
& Glaeser (1997) calculate a mean agglomeration index of 0.051 and a median of 0.026. For Britain,
Faggio et al. (2013) calculate industry agglomeration using 94 3-digit manufacturing industries and
84 urban travel-to-work areas. They obtain a mean agglomeration index of 0.027 and a median of
0.009. Kim (1995) calculates an alternative measure of agglomeration for the U.S. during the late
19th and early 20th centuries, but given that he studies only manufacturing industries, and given
the substantial differences between his industry definitions and our own, it is difficult to directly
compare these patterns with his results.
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Table 3: Industry agglomeration patterns based on the Ellison & Glaeser index

This table reports industry agglomeration in each year based on the index from Ellison & Glaeser
(1997). This approach adjusts for the size of plants in an industry using an industry Herfindahl
index. We construct these Herfindahl indices using the firm size data reported in the 1851 Census
and apply the same Herfindahl for all years, since firm-size data are not reported in later Censuses.
This may introduce bias for some industries, such as shipbuilding, where evidence suggests that the
average size of firms increased substantially over the study period. Some analysis industries are not
included in this table due to lack of firm size data.

Another channel for knowledge flow is the movement of workers, who may carry

ideas between industries. Research by Poole (2013) and Balsvik (2011), using data

from Brazil and Norway, respectively, has highlighted this channel of knowledge flow.

To reflect this channel, we construct two different measures of the similarity of the

workforces used by different industries. The first measure is based on the demographic

characteristics of workers (their age and gender) from the 1851 Census. These features
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had an important influence on the types of jobs a worker could hold during the period

we study.19 For any two industries, our demographic-based measure of labor force

similarity, EMPij, is constructed by dividing workers in each industry into these

four available bins (male/female and over20/under20) and calculating the correlation

in shares across the industries. A second measure of labor-force similarity, based

on the occupations found in each industry, is more similar to the measures used in

previous studies. This measure is built using U.S. census data from 1880, which

reports the occupational breakdown of employment by industry. We map the U.S.

industry categories to the categories available in our analysis data. Then, for any

two industries our occupation-based measure of labor force similarity, OCCij is the

correlation in the vector of employment shares for each occupation.

In addition to the primary inter-industry connection matrices described above, we

will also conduct robustness exercises in Section 6 using two additional matrices. One

of these is an input-output table for 1841 constructed by Horrell et al. (1994). This

table is used to construct a matrix of supplier industries, IOin1841 and customer in-

dustries, IOout1841, mirroring those available from the 1907 table. These matrices,

which can be used with 12 more aggregated industry categories, have the advan-

tage that they come from a decade prior to the first observation in the city-industry

database. This can help us deal with potential concerns related to the endogeneity

of the pattern of input-output connections, as well as concerns that these patterns

may have changed substantially over the study period. We have also constructed a

matrix reflecting the technological similarity of industries. This matrix, which we call

TECH, is based on patent data from 1800-1841 which have been hand-matched to

industry categories by Nuvolari & Tartari (2011). Technological similarity between

industries i and j is measured based on the share of inventors patenting in industry

i that also patent in industry j, under the assumption that it is easier for inventors

to move back and forth between more technologically similar industries. This matrix

is available for nine aggregated industry categories related to manufacturing, mining,

construction, or utilities.

Finally, we have collected data on a variety of other industry and city charac-

teristics. The 1851 Census of Population was particularly detailed, and provides

information on firm sizes in each industry at the national level. From the 1907 input-

19For example, textile industries employed substantial amounts of female and child labor, while
metal and heavy machinery industry jobs were almost exclusively reserved for adult males.
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output table, we have measures of the share of industry output that is sold directly

to households, as well as the share exported abroad. The 1907 Census of Production

provides us with information on the total wage bill of each industry and the value of

output for each industry. These are used to construct, for each industry, estimates of

the ratio of labor cost to total sales and, together with the input-output table, the

ratio of intermediate cost to total sales. Finally, we collect data on the distance be-

tween cities (as the crow flies) from Google Maps, which we will use when considering

cross-city effects in Section 7.

4 Empirical approach

The starting point for our analysis is based on Equation 7, which represents the growth

rate of a city-industry as a function of the learning spillovers as well as time-varying

city-specific and national industry-specific factors. Rewriting this as a regression

equation we have,

4 ln(Lict+1) = τ̃ii ln(Lict) +
∑
k 6=i

τ̃ki ln(Lkct) + θct + φit + eict (8)

where 4 is the first difference operator, τ̃ii and τ̃ki include the coefficient
(

1
1−α

)
, θct

is a full set of city-year effects and φit is a full set of industry-year effects. The first

term on the right hand side represents within-industry spillovers, while the second

term represents cross-industry spillovers.20

One issue with Equation 8 is that there are too many parameters for us to credibly

estimate given the available data. In order to reduce the number of parameters, we

need to put additional structure on the spillover terms. As discussed in the previous

section, the recent literature on knowledge spillovers motivates us to parametrize

the connections between industries using the available input-output and labor force

similarity matrices:

20We purposely omitted the last term of Equation 7, 4 ln(w̄t+1), because although it could be
estimated as a year-specific constant, it would be collinear with both the (summation of) industry-
year and city-year effects. Moreover, in any given year we also need to drop one of the city or
industry dummies in order to avoid collinearity. In all specifications we chose to drop the industry-
year dummies associated with the “General services” sector.
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τ̃ki = β1IOinki + β2IOoutki + β3EMPki + β4OCCki ∀ i, k

Substituting this into 8 we obtain:

4 ln(Lict+1) = τ̃ii ln(Lict) + β1
∑
k 6=i

IOinki ln(Lkct) + β2
∑
k 6=i

IOoutki ln(Lkct)

+ β3
∑
k 6=i

EMPki ln(Lkct) + β4
∑
k 6=i

OCCki ln(Lkct) + θct + φit + eict (9)

Instead of a large number of parameters measuring spillovers across industries, Equa-

tion 9 now contains only four parameters multiplying four (weighted) summations of

log employment. Summary statistics for the summed cross-industry spillover terms

are available in Appendix Table 13.

There is a clear parallel between the specification in Equation 9 and the empirical

approach used in the convergence literature (Barro & Sala-i Martin (1992)). A central

debate in this literature has revolved around the inclusion of fixed effects for the

cross-sectional units (see, e.g., Caselli et al. (1996)). In our context, the inclusion of

such characteristics could help control for location and industry-specific factors that

affect the growth rate of industry and are correlated with initial employment levels.

However, the inclusion of city-industry fixed effects in Equation 9 will introduce a

mechanical bias in our estimated coefficients (Hurwicz (1950), Nickell (1981)). This

bias is a particular concern in a setting where the time-series is limited. Solutions to

these issues have been offered by Arellano & Bond (1991), Blundell & Bond (1998),

and others, yet these procedures can also generate biased results, as shown by Hauk Jr.

& Wacziarg (2009). In a recent review, Barro (2012) uses data covering 40-plus years

and argues (p. 20) that in this setting, “the most reliable estimates of convergence

rates come from systems that exclude country fixed effects but include an array of X

variables to mitigate the consequence of omitted variables.” Our approach essentially

follows this advice, but with the additional advantage that we have two cross-sectional

dimensions, which allows for the inclusion of flexible controls in the form of time-

varying city and industry fixed effects.
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There are two issues to address at this point. First, there could be a measurement

error in Lict. Since this variable appears both on the left and right hand side, this

would mechanically generate an attenuation bias in our within-industry spillover es-

timates. Moreover, since Lict is correlated with the other explanatory variables, such

measurement error would also bias the remaining estimates. We deal with measure-

ment error in Lict on the right hand side by instrumenting it with lagged city-industry

employment.21 This approach is somewhat similar to the approach introduced by

Bartik (1991). Under the assumption that the measurement error in any given city-

industry pair is iid across cities and time, our instrument is LInstict = Lict−1 × gi−ct,
where Lict−1 is the lag of Lict and gi−ct is the decennial growth rate in industry i

computed using employment levels in all cities except city c.

Second, we are also concerned that there may be omitted variables that affect both

the level of employment in industry j and the growth in employment in industry i.

Such variables could potentially bias our estimated coefficients on both the cross-

industry and (when j = i) the within-industry spillovers. For instance, if there

is some factor not included in our model which causes growth in two industries i

and k 6= i in the same city, a naive estimation would impute such growth to the

spillover effect from k to i, thus biasing the estimated spillover upward. Our lagged

instrumentation approach can also help us deal with these concerns. Specifically,

when using instruments with a one-decade lag to address endogeneity concerns the

exclusion restriction is that there is not some omitted variable that is correlated with

employment in some industry k in period t and affects employment growth in industry

i from period t+ 1 to t+ 2. Moreover, the omited variable cannot affect growth in all

industries in a location, else it would be captured by the city-year fixed effect, nor can

it affect the growth rate in industry i in all cities.22 Thus, while our approach does not

allow us to rule out all possible confounding factors, it allows us to narrow the set of

potential confounding forces relative to most previous work in this area. Now, for the

cross-industry case, the summation terms in Equation 9 such as
∑
k 6=i IOinki ln(Lkct)

are instrumented with
∑
k 6=i IOinki ln(LInstkct ), where LInstkct is computed as described

above.

21This approach is inspired in part by Combes et al. (2011), who discuss the possibility of using
lagged instrumentation to study agglomeration economies.

22The results are not sensitive to the length of the lag used in the instrumentation. We have
experimented with two- and three-decade lags and obtained essentially the same results.
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The estimation is performed using OLS or, when using instruments, two-stage

least squares. Correlated errors are a concern in these regressions. Specifically, we

are concerned about serial correlation, which Bertrand et al. (2004) argue can be a

serious concern in panel data regressions, though this is perhaps less of a concern for

us given the relatively small time dimension in our data. A second concern is that

industries within the same city are likely to have correlated errors. A third concern,

highlighted by Conley (1999) and more recently by Barrios et al. (2012), is spatial

correlation occurring across cities. Here the greatest concern is that error terms may

be correlated within the same industry across cities (though the results presented in

section 7 suggest that cross-city effects are modest).

To deal with all of these concerns we use multi-dimensional clustered standard

errors following work by Cameron et al. (2011) and Thompson (2011). We cluster

by (1) city-industry, which allows for serial correlation; (2) city-year, which allows

correlated errors across industries in the same city and year; and (3) industry-year,

which allows for spatial correlation across cities within the same industry and year.

This method relies on asymptotic results based on the dimension with the fewest

number of clusters. In our case this is 23 industries × 6 years = 138, which should be

large enough to avoid serious small-sample concerns. Because using multi-dimensional

standard errors is not yet standard in the literature, we also report more conventional

robust standard errors in all results tables.

To simplify the exposition, we will hereafter collectively refer to the set of regres-

sors ln(Lict), for i = 1...I as the within variables. Similarly, with a small abuse of

notation the term
∑
k 6=i IOinki ln(Lkct) is referred to as IOin, and so on for IOout,

EMP , and OCC. We collectively refer to the latter terms as the between regressors

since they are the parametrized counterpart of the spillovers across industries.

5 Main results

Our main regression results are based on the specification described in Equation 9.

Regressions based on this specification generate results that can tell us about cross-

industry spillovers, within-industry spillovers, and city-wide factors. In the following

subsections, we will discuss results related to each of these in turn, but it is important

to keep in mind that these results are coming out of regressions in which all of these
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factors are present. We begin by considering the pattern of spillovers across industries.

5.1 Cross-industry spillovers

Our estimation strategy involves using four measures for the pattern of cross-industry

spillovers: forward input-output linkages, backward input-output linkages, and two

measures of labor force similarity. We begin our analysis, in Table 4 by looking at

results that include only one of these proxies at a time. Columns 1-3 include only the

forward input-output linkages; Columns 1 presents OLS results; Column 2 presents

results with lagged instrumentation on the within terms; and Column 3 uses lagged

instrumentation for both the within and between terms. A similar pattern is used for

backward input-output linkages in Columns 4-6, the demographic-based labor force

similarity measure in Columns 7-9, and the occupation-based labor force similarity

measure in Columns 10-12.

These results show strong positive spillovers through forward input-output con-

nections, suggesting that local suppliers play an important role in industry growth.

The importance of local suppliers to industry growth is perhaps the clearest and most

robust result emerging from our analysis. In terms of magnitude, the coefficients in

Table 4 suggest that a one standard deviation increase in the local presence of sup-

plier industries (IOin) would result in an increase in city-industry growth of 13.9-19.3

percent. There is little evidence of positive effects operating through local buyers.

The results do provide some evidince that the presence of other industries using sim-

ilar labor pools may increase growth, particularly when using the more detailed OCC

measure. A comparison across columns for each spillover measure shows that the IV

results do not differ from the OLS results in a statistically significant way, suggesting

that any measurement error or omitted variables concerns addressed by instruments

are not generating substantial bias in the OLS results.

We do not report first-stage regression results for our instrumental variables re-

gressions because these involve a very large number of first-stage regressions. Instead,

for each specification we report the test statistics for the Lagrange Multiplier under-

identification test based on Kleibergen & Paap (2006) as well as the test static for

weak instruments test based on the Kleibergen-Paap Wald statistic.23 It is clear from

23These test statistics are calculated under robust standard errors because the methodology for
calculating these test statistics under multidimensional standard errors is still being refined.

22



these statistics that weak instruments are not a substantial concern in any of the

specifications used in this study.

Table 4: OLS and IV regressions including only one spillover path at a time

(1) (2) (3) (4) (5) (6)

IOin 0.0588*** 0.0446*** 0.0423***
(0.0127) (0.0112) (0.0113)
[0.0076] [0.0080] [0.0082]

IOout -0.0025 -0.0101 -0.0138
(0.0108) (0.0112) (0.0114)
[0.0063] [0.0069] [0.0067]

Observations 4,263 3,549 3,549 4,263 3,549 3,549
Estimation ols 2sls 2sls ols 2sls 2sls

Instrumented none wtn wtn-btn none wtn wtn-btn
KP under id. 568.74 631.43 425.22 433.12
KP weak id. 262.97 268.98 195.55 193.68

(7) (8) (9) (10) (11) (12)

EMP 0.0009 0.0022* 0.0017
(0.0016) (0.0013) (0.0014)
[0.0009] [0.0010] [0.0010]

OCC 0.0057* 0.0057* 0.0059*
(0.0030) (0.0032) (0.0032)
[0.0017] [0.0019] [0.0019]

Observations 4,263 3,549 3,549 4,263 3,549 3,549
Estimation ols 2sls 2sls ols 2sls 2sls

Instrumented none wtn wtn-btn none wtn wtn-btn
KP under id. 481.15 465.41 350.76 328.59
KP weak id. 235.06 195.09 162.3 133.28

Multi-level clustered standard errors by city-industry, city-year, and industry-year in paren-
thesis. Significance levels based on clustered standard errors: *** p<0.01, ** p<0.05, *
p<0.1. Robust standard errors in brackets. Regressors within, city-by-year and industry-
by-year fixed effects are included in all regressions but not displayed. 2SLS regressions use
lagged instruments. Note that the number of observations falls for the instrumented regres-
sions because the instruments require a lagged employment term. Thus, data from 1851 are
not available for these regressions. Acronyms: wtn = within, btn = between. “KP under
id.” denotes the test statistic for the Lagrange Multiplier underidentification test based on
Kleibergen & Paap (2006). “KP weak id.” denotes the test statistic for a weak instruments
test based on the Kleibergen-Paap Wald statistic.

Table 5 considers all four channels simultaneously. Columns 1 presents OLS re-

sults. In Column 2 we instrument the within terms. In Column 3 we use instruments

for both the within and between terms. The results are generally similar to those

23



from Table 4; the presence of local suppliers or industries employing a similar labor

force both appear to enhance city-industry growth. The presence of local buyers has

no positive effect. In the Appendix, we investigate the robustness of these results to

dropping individual industries or individual cities from the analysis database. These

exercises show that the significance of the estimates on the IOin and OCC channels

are robust to dropping any city or any industry. However, the estimated coefficient

and confidence levels for the IOout coefficient is sensitive to the exclusion of particular

industries.

Table 5: Results with all cross-industry spillover channels

(1) (2) (3)
IOin 0.0763*** 0.0628*** 0.0626***

(0.0169) (0.0157) (0.0159)
[0.0085] [0.0089] [0.0091]

IOout -0.0050 -0.0143 -0.0176
(0.0095) (0.0105) (0.0110)
[0.0072] [0.0081] [0.0079]

EMP 0.0001 0.0020* 0.0016
(0.0016) (0.0012) (0.0013)
[0.0009] [0.0010] [0.0010]

OCC 0.0086*** 0.0069** 0.0068**
(0.0029) (0.0032) (0.0032)
[0.0019] [0.0022] [0.0022]

Observations 4,263 3,549 3,549
Estimation ols 2sls 2sls

Instrumented none wtn wtn-btn
KP under id. 433.62 449.52
KP weak id. 163.5 113.73

Multi-level clustered standard errors by city-industry, city-year, and industry-year in parenthesis.
Significance levels based on clustered standard errors: *** p<0.01, ** p<0.05, * p<0.1. Robust
standard errors in brackets. Regressors within, city-by-year and industry-by-year fixed effects
are included in all regressions but not displayed. 2SLS regressions use lagged instruments. Note
that the number of observations falls for the instrumented regressions in columns 3-6 because the
instruments require a lagged employment term. Thus, data from 1851 are not available for these
regressions. Acronyms: wtn = within, btn = between. “KP under id.” denotes the test statistic
for the Lagrange Multiplier underidentification test based on Kleibergen & Paap (2006). “KP
weak id.” denotes the test statistic for a weak instruments test based on the Kleibergen-Paap
Wald statistic.

Based on the results from Column 3 of Table 5, a one standard deviation increase
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(3.24) in the presence of local suppliers (the IOin channel) increases city-industry

growth by 20%. Turning the the occupational similarity channel, OCC, a one stan-

dard deviation leads to a 17% increase in city industry growth when using the results

from Column 3 of Table 5. Thus, both of these channels appear to exert a substantial

positive effect on city-industry growth.

The results presented so far describe coefficients generated using all industries,

where each industry is given equal weight. We may be concerned that these results

are being driven primarily by smaller industries or smaller cities. To check this,

we have also calculate weighted regressions, where the set of observations for each

city-industry is weighted based on employment in that city-industry in 1851.24 The

results are presented in Table 6. These weighted regressions continue to highlight the

important role played by local suppliers. Thus, this result is not driven by smaller

industries or cities. However, we no longer observe positive results associated with

the occupational similarity measure. This suggests that the positive impact of local

industries employing similar workers observed in Table 5 is being driven by smaller

industries, an interesting result in itself.

The results discussed so far reveal average patterns across all industries. An ad-

ditional advantage of our empirical approach is that it is also possible to estimate

industry-specific coeffients in order to look for (1) heterogeneity in the industries that

benefit from each type of inter-industry connection or (2) heterogeneity in the in-

dustries that produce each type of inter-industry connections. In Appendix A.3.2,

we estimate industry-specific coefficients for both spillover-benefiting and spillover-

producing industries and then compare them to a set of available industry character-

istics such as firm size, export and final goods sales shares, and labor or intermediate

cost shares. With only 20 estimated industry coefficients we cannot draw strong

conclusions from these relationships. However, our results do suggest several inter-

esting patterns. The strongest result is that industries that benefit from or produce

spillovers through the OCC channel tend to have a higher labor cost to sales ratio,

a finding that is reasonable if not surprising. We also observe a consistent negative

relationship between firm size and all types of inter-industry connections. While this

relationship is not statistically significant, it is consistent across all spillover types

24Specifically, this is done by weighting the importance of each city-industry observation based on
the number of workers it represented in 1851. We base the weights for all years on initial city-industry
employment to avoid the potential for endogeneity in the city-industry weights.
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and it fits well with existing work highlighting the importance of inter-industry con-

nections for smaller firms Chinitz (1961). Next, we consider within-industry effects.

Table 6: Weighted regression results with all cross-industry spillover channels

(1) (2) (3)
IOin 0.0303** 0.0317*** 0.0363***

(0.0136) (0.0120) (0.0126)
[0.0083] [0.0089] [0.0092]

IOout -0.0037 -0.0109 -0.0106
(0.0130) (0.0139) (0.0143)
[0.0081] [0.0088] [0.0088]

EMP 0.0002 0.0008 0.0007
(0.0009) (0.0008) (0.0009)
[0.0006] [0.0006] [0.0006]

OCC -0.0023 -0.0022 -0.0014
(0.0028) (0.0029) (0.0029)
[0.0017] [0.0020] [0.0019]

Observations 4,253 3,541 3,541
Estimation ols 2sls 2sls

Instrumented none wtn wtn-btn
KP under id. 87.14 89.11
KP weak id. 37.13 34.55

Multi-level clustered standard errors by city-industry, city-year, and industry-year in parenthesis.
Significance levels based on clustered standard errors: *** p<0.01, ** p<0.05, * p<0.1. Robust
standard errors in brackets. Regressors within, city-by-year and industry-by-year fixed effects
are included in all regressions but not displayed. 2SLS regressions use lagged instruments. Note
that the number of observations falls for the instrumented regressions in columns 3-6 because the
instruments require a lagged employment term. Thus, data from 1851 are not available for these
regressions. Acronyms: wtn = within, btn = between. “KP under id.” denotes the test statistic
for the Lagrange Multiplier underidentification test based on Kleibergen & Paap (2006). “KP
weak id.” denotes the test statistic for a weak instruments test based on the Kleibergen-Paap
Wald statistic.

5.2 Within-industry spillovers

Our analysis can also help us understand the strength of within-industry spillovers,

reflected in the ln(Lict) term in Equation 8.25 When analyzing these results, it is

important to keep in mind that they reflect the net effect of within-industry agglom-

25In a static context these are often referred to as localization economies.
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eration forces, which may be generated through a balance between agglomeration

forces and negative forces such as competition or mean-reversion due to the diffu-

sion of technologies across cities.26 We cannot identify the strength of local within-

industry agglomeration forces independent of counteracting forces. However, it is the

net strength of these forces, which we are able to estimate, that is most relevant

for understanding the contribution of within-industry agglomeration forces to city

growth.

Figure 1 presents the within-industry coefficients and 95% confidence intervals for

regression specifications corresponding to Columns 3 of Table 5, where lagged instru-

ments are used for both the within and between terms. These results suggest that

within-industry effects are often negative, consistent with competition for scarce local

inputs or other within-industry congestion forces. In only one industry, shipbuilding,

do we observe positive within-industry effects. This industry was characterized by

increasing returns and strong patterns of geographic concentration. Within-industry

agglomeration benefits, it would appear, are more the exception than the rule.

We can also compare these estimated industry-specific coefficients to industry

characteristics such as average firm size, the share of exports or final goods in total

sales, or the ratio of labor or input costs to total sales. This is done in Appendix

A.3.2. With such a small number of industry coefficients we cannot draw strong

conclusions from these results. However, we do observe some evidence that within-

industry connections are more important in industries with larger firm sizes, which

contrasts with the consistent negative relationship that we observe between firm size

and cross-industry benefits.

26This issue is discussed in Dumais et al. (2002).
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Figure 1: Strength of within-industry effects by industry

Results are based on regression in column 3 of Table 5. Multi-dimensional clustered standard errors

by city-industry, city-year, and industry-year. These regressions include a full set of city-year and

industry-year terms, and both the within and between terms are instrumented using one-year lags.

5.3 City-size effects and the aggregate strength of agglomer-

ation forces

Next, we look at the effect of city size on city-industry growth. In standard urban

models, the impact of agglomeration forces is balanced by congestion forces related to

city size, operating through channels such as higher housing prices or greater commute

times. In our model, this congestion force is reflected in the λct term. There may also

be agglomeration forces related to city size, apart from the other agglomeration forces

we study.27 This agglomeration force is represented by the φct term in the model.

Empirically, both the congestion and agglomeration forces related to overall city

size will be captured by the estimated city-time effects. Thus, examining these es-

27There is a substantial empirical literature, reviewed by Combes & Gobillon (Forthcoming), that
focuses on estimating agglomeration economies related to overall city size. City-size agglomeration
forces also appear in existing theories, such as Davis & Dingel (2012), though Davis & Dingel specify
a model in which the aggregate city-size agglomeration force will have heterogeneous effects across
industries.
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timated city-time coefficients offers an opportunity for assessing the net impact of

congestion and agglomeration force related to overall city size. Also, the difference

between these estimated city-time effects and actual city growth rates must be due

to the impact of the other agglomeration forces in the estimation equation. Thus,

comparing the estimated city-time effects to actual city growth rates allows us to

quantify the overall strength of the cross-industry agglomeration forces captured by

our measures.

To make this comparison more concrete, consider the graphs in Figure 2. The

dark blue diamond symbols in each graph describe, for each decade starting in 1861,

the relationship between the actual growth rate of city working population and the

log of city population at the beginning of the decade. The slopes of the fitted lines

for these series fluctuate close to zero, suggesting that on average Gibrat’s Law holds

for the cities in our data.

We want to compare the relationship between city size and city growth in the

actual data, as shown by the dark blue diamonds in Figure 2, to the relationship

between these variables obtained while controlling for cross-industry agglomeration

forces. To do this, we estimate the following regression specification:

4 ln(Lict+1) = β1
∑
k 6=i

IOinki ln(Lkct) + β2
∑
k 6=i

IOoutki ln(Lkct) (10)

+ β3
∑
k 6=i

EMPki ln(Lkct) + β4
∑
k 6=i

OCCki ln(Lkct) + θCROSSct + φit + eict .

This specification is exactly the same as our baseline specification except that the

within-industry terms have been omitted because the negative coefficients estimated

on those terms in the baseline specification suggests that within-industry employment

is generally not an agglomeration force.

The red squares in Figure 2 describe the relationship between the estimated city-

year coefficients for each decade, θCROSSct , and the log of city population at the be-

ginning of each decade. In essence, these describe the relationship between city size

and city growth after controlling for national industry growth trends and the agglom-

eration forces generated by cross-industry spillovers. We can draw two lessons from

these graphs. First, in all years the fitted lines based on the θCROSSct terms slope
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downward more steeply than the slopes on the fitted lines for actual city growth.

This suggests that, once we control for cross-industry agglomeration forces, city size

is negatively related to city growth, consistent with the idea that there are city-size

congestion forces. Second, the difference between the slopes of the two fitted lines can

be interpreted as the aggregate effect of the various agglomeration forces in our model

averaged across cities. Put simply, if we can add up the strength of the convergence

force in any period and compare it to the actual pattern of city growth, then the

difference must be equal to the strength of the agglomeration forces.

The strength of these effects can be quantified in terms of the implied convergence

rate following the approach of Barro & Sala-i Martin (1992). To do so, we run the

following regressions:

θCROSSct = a0 + a1 ln(WORKpopct) + εct (11)

GrowthWORKpopct = b0 + b1 ln(WORKpopct) + εct (12)

where θct is the estimated city-time effect for the decade from t to t+ 1, WORKpopct

is the working population of the city in year t, and GrowthWORKpopct is the actual

growth rate of the city from t to t+ 1. These regressions are run separately for each

decade from 1861 to 1911. Convergence rates can be calculated using the estimated

a1 and b1 coefficients.

The results are presented in the top panel of Table 7. The two left-hand columns

describe the results from Equation 11 and the annualized city-size divergence rate

implied by these estimates. The next two columns describe similar results based on

Equation 12. The difference between these two city-size divergence rates, given in

the right-hand column, describes the aggregate strength of the agglomeration force

reflected in the cross-industry terms. These results suggest that the strength of city

agglomeration forces, in terms of the implied divergence rate, was generally around

2.2-3.3% per decade. In the bottom panel of Table 7 we calculate similar results

except that the θCROSSct terms are obtained using regressions in which each observation

is weighted based on the employment in each city-industry in 1851. These results

suggest agglomeration forces equal to an implied divergence rate of 2.1-3.3% per

decade.
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Figure 2: City size and city growth

Solid lines: Fitted lines comparing actual city growth over a decade to the log of city size at
the beginning of the decade. Dotted lines: Fitted lines comparing estimated city-time coefficient
for each decade to the log of city size at the beginning of the decade. Blue diamonds plot the
actual city growth over a decade against the log of city population at the beginning of the decade.
The red squares plot the estimated city-time coefficients over the same decade (the θCROSSct terms
estimated using Equation 10) against the log of city population at the beginning of the decade.
The bottom right-hand panel compares the log of city population in 1851 to the average of city
growth rates over the entire 1861-1911 period and the average of city-time fixed effects across the
entire 1861-1911 period.
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Table 7: Measuring the aggregate strength of the agglomeration forces

Column 2 presents the a1 coefficients from estimating Equation 11 for each decade (cross-sectional
regressions). Column 3 presents the annual convergence rates implied by these coefficients. Column
4 presents the b1 coefficients from estimating Equation 12 and column 5 presents the annual conver-
gence rates implied by these coefficients. Column 6 gives aggregate strength of the divergence force
represented by the agglomeration economies, which is equal to the difference between the decadal
convergence coefficients. The results in the top panel are based on city-time effects estimated from
unweighted regressions while the results in the botton panel are based on city-time effects estimated
using weighted regressions based on city-industry employment in 1851.

We may be concerned that the results described in Table 7 are driven in part by

the inclusion of industry-time effects in the regressions used to obtain the θCROSSct

terms. One way to assess this is to estimate alternative city-time effects from,

4 ln(Lict+1) = θFEct + φit + eict , (13)

and then estimate,
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θFEct = c0 + c1 ln(WORKpopct) + εct. (14)

Because the only difference between the specification in Equation 10 and that in

Equation 13 is the inclusion of the cross-industry agglomeration terms, we can be

sure that any differences between the estimated θCROSSct terms and the θFEct terms

are due to cross-industry agglomeration effects. The results, in Table 8, show similar

pattners to those described previously. It is clear that the measured strength of the

agglomeration force is not simply a byproduct of controling for industry-time effects.

Table 8: Measuring the aggregate strength of the agglomeration forces against an
estimated baseline

Column 2 presents the a1 coefficients from estimating Equation 11 for each decade (cross-sectional
regressions). Column 3 presents the convergence rates implied by these coefficients. Column 4
presents the c1 coefficients from estimating Equation 14 and column 5 presents the convergence rates
implied by these coefficients. Column 6 gives aggregate strength of the divergence force represented
by the agglomeration economies, which is equal to the difference between the decadal convergence
coefficients. The results in the top panel are based on city-time effects estimated from unweighted
regressions while the results in the botton panel are based on city-time effects estimated using
weighted regressions based on city-industry employment in 1851.
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Finally, we can use a similar exercise to estimate the aggregate strength of the

convergence force due to within-industry effects. We begin by estimating,

4 ln(Lict+1) = τ̃ii ln(Lict) + θWITHIN
ct + φit + eict , (15)

and then estimating,

θWITHIN
ct = d0 + d1 ln(WORKpopct) + εct. (16)

We then calculate the convergence force associated with the within-industry terms

using the same approach that we used previously. Table 9 describes the results.

The negative measured divergence force in this table highlights that within-industry

effects, on net, act as a convergence force. The strength of this force is sensitive

to whether the regressions are weighted, which suggests that the negative within-

industry employment effects tend to be stronger for smaller industries.

There are some caveats to keep in mind when assessing these results. First,

there are likely to be agglomeration forces not captured by our estimation. These

omitted agglomeration forces may be partially reflected in the city-year fixed effects,

which would lead us to understate the strength of the agglomeration forces. Second,

some congestion forces may also be captured by our cross-industry terms. Thus, the

strength of the cross-industry agglomeration force measured here is likely to be a

lower bound.
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Table 9: Measuring the aggregate strength of the divergence force associated with
the within-industry effects

Column 2 presents the d1 coefficients from estimating Equation 16 for each decade (cross-sectional
regressions). Column 3 presents the convergence rates implied by these coefficients. Column 4
presents the b1 coefficients from estimating Equation 12 and column 5 presents the convergence rates
implied by these coefficients. Column 6 gives aggregate strength of the divergence force represented
by the agglomeration economies, which is equal to the difference between the decadal convergence
coefficients. The results in the top panel are based on city-time effects estimated from unweighted
regressions while the results in the botton panel are based on city-time effects estimated using
weighted regressions based on city-industry employment in 1851.

6 Robustness: Alternative connection matrices

This section revisits the analysis presented above using some alternative measures of

inter-industry connections. In particular, we use an alternative matrix of input-output

connections constructed by Horrell et al. (1994) for Britain in 1841. Generating

results with this alternative matrix, which comes from before the study period, can

help address concerns that the results we find are dependent on the specific set of

matrices we consider or are due to a process of endogenous inter-industry connection

35



formation. The cost of using this matrix is that we are forced to work with a smaller

set of 12 more aggregated industry categories.28

We also introduce a matrix of industry technological similarity. This matrix re-

flects the possiblity that technology may flow more rapidly between more technologi-

cally similar industries. While we have not been able to construct a technological sim-

ilarity matrix for the more detailed industry categories used in the previous section, it

is possible to construct measures of technological similarity for the more aggregated

categories corresponding to the 1841 input-output matrix. As discussed in Section

3, this is done using patent data from 1800-1841.29 This matrix is available for nine

aggregate industry categories. Note that the sample size drops somewhat when ana-

lyzing the technological similarity matrix, since the transportation, distribution and

service industries are not included in that matrix.

Because we are now working with a smaller number of industry categories, we

focus our analysis on regressions that incorporate one spillover channel at a time.

Table 10 describes the results.30 These results also suggest that the presence of local

suppliers positively influenced city-industry growth. In terms of magnitude, these

results imply that a one standard deviation increase in presence of local suppliers will

increase city-industry growth by 9.9-13.8%. There is also some evidence that local

buyers may have positively influenced growth, but further exploration reveals that

this finding is sensitive to the exclusion of particular industries. There is also evidence

that industries may have benefitted from the presence of other occupationally-similar

industries in the same locality, but these results are not as strong as the benefits

of local suppliers. A one standard deviation increase in the demographically-similar

local industries (EMP ) is consistent with an increase in city-industry growth of 7-

13%, while a one standard deviation increase in occupationally-similar industries

(OCC) is consistent with an increase in city-industry growth of 7.6-9.5%. Finally,

while we do observe positive coefficients on the TECH term, we do not observe strong

evidence that industries benefitted from the local presence of other technologically

28The industry categories are: “Mining & quarrying,” “Food, drink & tobacco”, “Metals & Ma-
chinery,” “Oils, chemicals & drugs,” “Textiles, clothing & leather goods,” “Earthenware & bricks,”
“Other manufactured goods,” “Construction,” “Gas & water,” “Transportation,” “Distribution,”
and “All other services.”

29The online Data Appendix provides further details about the construction of the technological
similarity matrix.

30Results that incorporate all of the spillover channels together are available in the Appendix.
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similar industries. However, this result should be interpreted with caution given the

rough nature of the available technology similarity matrix.

Table 10: Alternative matrix regressions with one channel at a time

(1) (2) (3) (4) (5) (6)
IOin1841 0.0484*** 0.0346* 0.0415*

(0.0186) (0.0202) (0.0229)
[0.0134] [0.0152] [0.0164]

IOout1841 0.0384* 0.0561*** 0.0585***
(0.0222) (0.0209) (0.0219)
[0.0141] [0.0150] [0.0152]

Observations 2,232 1,860 1,860 2,232 1,860 1,860
Estimation ols 2sls 2sls ols 2sls 2sls

Instrumented none wtn wtn-btn none wtn wtn-btn
KP under id. 327.49 262.45 352.23 297.98
KP weak id. 295.71 181.65 369.5 243.27

(7) (8) (9) (10) (11) (12)
EMP 0.0028 0.0049* 0.0052*

(0.0030) (0.0028) (0.0030)
[0.0019] [0.0019] [0.0020]

OCC 0.0057 0.0048 0.0046
(0.0066) (0.0072) (0.0074)
[0.0035] [0.0041] [0.0041]

Observations 2,232 1,860 1,860 2,232 1,860 1,860
Estimation ols 2sls 2sls ols 2sls 2sls

Instrumented none wtn wtn-btn none wtn wtn-btn
KP under id. 493.35 445.57 302 308.52
KP weak id. 496.32 392.88 349.01 262.08

(13) (14) (15)
TECH 0.0062 0.0173 0.0319

(0.1887) (0.2124) (0.2074)
[0.1057] [0.1294] [0.1235]

Observations 1,674 1,395 1,395
Estimation ols 2sls 2sls

Instrumented none wtn wtn-btn
KP under id. 204.19 258.25
KP weak id. 271.33 370.75

Multi-level clustered standard errors by city-industry, city-year, and industry-year in parenthesis. Signifi-
cance levels based on clustered standard errors: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors in
brackets. Regressors within, city-by-year and industry-by-year fixed effects are included in all regressions
but not displayed. 2SLS regressions use lagged instruments. Note that the number of observations falls for
the instrumented regressions because the instruments require a lagged employment term. Thus, data from
1851 are not available for these regressions. Acronyms: wtn = within, btn = between. “KP under id.”
denotes the test statistic for the Lagrange Multiplier underidentification test based on Kleibergen & Paap
(2006). “KP weak id.” denotes the test statistic for a weak instruments test based on the Kleibergen-Paap
Wald statistic.

To summarize, we find that all three types of inter-industry connections – through
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input-output linkages, occupational similarity, and technological similarity – exhibit

a positive relationship to city-industry growth. Of these, we find the strongest effects

reflected by the input-output channels, followed by occupational similarity. This

ordering bears a striking resemblence to the results obtained by Ellison et al. (2010)

using modern U.S. data and a very different set of industry categories, suggesting

that there may be substantial persistence in the importance of particular connection

channels.

7 Robustness: Cross-city effects

In this section, we extend our analysis to consider the possibility that city-industry

growth may also be affected by forces due to other nearby cities. We consider two

potential channels for these cross-city effects. First, industries may benefit from prox-

imity to consumers in nearby cities. This market potential effect has been suggested

by Hanson (2005), who finds that regional demand linkages play an important role

in generating spatial agglomeration using modern U.S. data. Second, industries may

benefit from spillovers from other industries in nearby towns, through any of the

channels that we have identified. We analyze these effects using the more detailed

industry categories from Section 5.

There is substantial variation in the proximity of cities in our database to other

nearby cities (see the Appendix for a map). Some cities, particularly those in Lan-

cashire, West Yorkshire, and the North Midlands, are located in close proximity to a

number of other nearby cities. Others, such as Norwich, Hull, and Portsmouth are

relatively more isolated.

We begin our analysis by collecting data on the distance (as the crow flies) between

each of the cities in our database, which we call distanceij. Using these, we construct

a measure for the remoteness of one city from another dij = exp(−distanceij).31 Our

measures of market potential for each city is then,

MPct = ln

∑
j 6=c

POPjt ∗ dcj

 .
31This distance weighting measure is motivated by Hanson (2005). We have also explored using

dij = 1/distanceij as the distance weighting measure and this delivers similar results.
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where POPjt is the population of city j. This differs slightly from Hanson’s approach,

which uses income in a city instead of population, due to the fact that income at the

city level is not available for the period we study.

We also want to measure the potential for cross-industry spillovers occurring across

cities. We measure proximity to an industry i in other cities as the distance-weighted

sum of log employment in that industry across all other cities. Our full regression

specification, including both cross-city market potential and spillover effects, is then,

4 ln(Lict+1) = τ̃ii ln(Lict)

+ β1
∑
k 6=i

IOinki ln(Lkct) + β2
∑
k 6=i

IOoutki ln(Lkct)

+ β3
∑
k 6=i

EMPki ln(Lkct) + β4
∑
k 6=i

OCCki ln(Lkct)

+ β5

∑
k 6=i

IOinki
∑
j 6=c

djc ∗ ln(Lkjt)

+ β6

∑
k 6=i

IOoutki
∑
j 6=c

djc ∗ ln(Lkjt)


+ β7

∑
k 6=i

EMPki
∑
j 6=c

djc ∗ ln(Lkjt)

+ β8

∑
k 6=i

OCCki
∑
j 6=c

djc ∗ ln(Lkjt)


+ β9MPct + log(WORKpopct) + θc + φit + εict.

One difference between this and our baseline specification is that we now include

city fixed effects (θc) in place of city-year effects because city-year effects would be

perfectly correlated with the market potential measure. To help deal with city-size

effects, we also include the log of WORKpopct, the working population of city c in

period t. To simplify the exposition and in analogy with the previous section, we will

refer to the cross-city term
∑
k 6=i IOinki

∑
j 6=c djc ∗ ln(Lkjt) as IOin ∗ d, and similarly

for the other cross-city terms IOout ∗ d, EMP ∗ d, and OCC ∗ d.

The results generated using this specification are shown in Table 11. The first

thing to take away from this table is that our baseline results are essentially unchanged

when we include the additional cross-city terms. The city employment term in the

fifth column reflects the negative growth impact of city size. The coefficients on the

market potential measure is always positive but not statistically significant.
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Table 11: Regression results with cross-city variables

(1) (2) (3)
IOin 0.0580*** 0.0611*** 0.0594***

(0.0144) (0.0155) (0.0166)
[0.0095] [0.0104] [0.0111]

IOout -0.0247** -0.0250** -0.0255**
(0.0110) (0.0110) (0.0112)
[0.0084] [0.0084] [0.0085]

EMP -0.0026 -0.0029 -0.0029
(0.0018) (0.0018) (0.0018)
[0.0011] [0.0011] [0.0011]

OCC 0.0063* 0.0061* 0.0060*
(0.0033) (0.0034) (0.0034)
[0.0023] [0.0025] [0.0025]

City employment -0.3390*** -0.3308*** -0.3332***
(0.0760) (0.0750) (0.0765)
[0.0424] [0.0421] [0.0428]

Market Potential 0.1579 0.1099
(0.1614) (0.2636)
[0.1139] [0.1834]

IOin*dist 0.0012 0.0004
(0.0018) (0.0024)
[0.0015] [0.0020]

IOout*dist -0.0008 -0.0007
(0.0010) (0.0010)
[0.0009] [0.0009]

EMP*dist 0.0002 0.0001
(0.0001) (0.0001)
[0.0001] [0.0001]

OCC*dist -0.0001 -0.0001
(0.0002) (0.0002)
[0.0002] [0.0002]

Observations 3,549 3,549 3,549
KP under id. 548.86 552.92 546.27
KP weak id. 48.5 51.45 48.27

Multi-level clustered standard errors by city-industry, city-year, and industry-year in parenthesis.
Significance levels based on clustered standard errors: *** p<0.01, ** p<0.05, * p<0.1. Robust
standard errors in brackets. Regressors within, industry-by-year and city fixed effects are in-
cluded in all regressions but not displayed. All regressions instrument the within and between
regressors with lagged instruments. Acronyms: wtn = within, btn = between. “KP under id.”
denotes the test statistic for the Lagrange Multiplier underidentification test based on Kleibergen
& Paap (2006). “KP weak id.” denotes the test statistic for a weak instruments test based on the
Kleibergen-Paap Wald statistic.
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The results do not provide statistically significant evidence that cross-city spillovers

matter through any of the channels that we measure. However, these results are im-

precisely measured. The coefficients estimated on the IOin ∗ dist term suggest that

a one standard deviation increase in the presence of suppliers in other nearby cities

could increase city-industry growth by 6.1-18.3%. The coefficients on the EMP term

are consistent with effects of a similar magnitude. Thus, we should not rule out im-

portant cross-city effects based on these results. However, it is clear that omitted

cross-city effects are not driving our findings regarding the importance of within-city

cross-industry agglomeration forces.

8 Conclusion

In the introduction, we posed a number of questions about the nature of localized

agglomeration forces. The main contribution of this study is to provide a theoretically

grounded empirical approach that can be used to address these questions and the

detailed city-industry panel data needed to implement it.

We can now provide some answers for the period we study. First, we find evi-

dence that cross-industry agglomeration economies were more important than within-

industry agglomeration forces for generating city employment growth. Within-industry

effects are, on net, generally negative, but may be positive in a small number of indus-

tries such as shipbuilding. This suggests that industries clusters, which have attracted

substantial attention, are more the exception than the rule. Second, our results sug-

gest that industries grow more rapidly when they co-locate with their suppliers or

with other industries that use occupationally-similar workforces. This result is in

line with arguments made by Jacobs (1969), as well as recent empirical findings. We

document a clear negative relationship between city size and city growth that appears

once we account for agglomeration forces related to a city’s industrial composition.

This suggests that Gibrat’s law is generated by a balance between agglomeration and

dispersion forces. A lower bound estimate of the overall strength of the agglomeration

forces captured by our approach, in terms of the implied annual divergence rate in

city size, is around 2.1-3.3% per decade.

One of the most striking features of our results is how similar they look to some

of the existing findings in the literature, most of which are based on modern U.S. or
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European data. In particular, the ordering of importance for the different spillover

channels – with input-output paths showing the strongest effects, followed by occupa-

tional similarity, and with only weak effects associated with technological similarity

– looks very similar to the ordering obtained by Ellison et al. (2010). This provides

suggestive evidence that there may be substantial persistence in the importance of

these agglomeration economies over time and across space.

The techniques introduced in this paper can be applied in any setting where

sufficiently rich long-run city-industry panel data can be constructed. Recent work

has made progress in constructing data of this type for the U.S. in both the modern

and historical period. Applying our approach to these emerging data sets is one

promising avenue for future work.
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A Appendix

A.1 Theory appendix

The main text presents a simple theoretical framework used to motivate our analysis.

In this appendix, we show that we can add additional complexity to the model without

substantially changing the final estimating equation. In particular, we introduce

capital and intermediate inputs into the production function. The new production

function is,

xicft = AictL
α
icftK

β
icftI

γ
icftR

1−α−β−γ
icft ,

where we have introduced capital inputs, Kicft, and intermediate inputs Iicft, into the

production function, while retaining the same basic Cobb-Douglas structure. The

parameters α, β, and γ determine the relative importance of these inputs in the

production process of each industry. For now, we make the simplifying assumption

that these parameters are constant across all industries, but at the end of this section

we discuss the possibility that they may differ across industries. In this extended

model, we make the same assumptions about technology, labor and resources as in

the baseline model.

Capital is mobile across locations with a national price given by rt. The overall

supply of capital in the economy is K̄t. While we could model the evolution of this

object, doing so would merely distract from the key focus of our theory.32 Thus,

to keep things simple we take the overall supply of capital in any given period as

exogenously given. The income from capital is assumed to be spread evenly across

individuals.

The set of intermediate inputs used in production differs across industries, but

within each industry, all firms use inputs in the same fixed proportions. Because we

assume free trade, this feature is a result, rather than an assumption. Let Z be an

input-output matrix, with element zij such that Iit units of intermediate input to

industry i requires Iitzij units of output from industry j, i.e., the production function

32Moreover, the substantial level of international capital flows that took place during the pe-
riod that we study suggest that a closed economy model of the evolution of this quantity may be
inappropriate for the empirical setting.
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for intermediate inputs is Leontief. Then total intermediate demand for the output

from industry j is equal to xIOjt =
∑
i Iitzij. With costless trade, each industry will

face a national-level industry-specific intermediate input price in each period, denoted

qit.

The resulting firm optimization problem is,

max
Licft,Kicft,Iicft,Ricft

pitAictL
α
icftK

β
icftI

γ
icftR

1−α−β−γ
icft − w̄tλctLicft − rtKicft − qitIicft − dictRicft.

Using the first order conditions, and summing over all firms in a city-industry, we

obtain the following expression for employment in industry i and location c,

Lict = Aρictp
ρ
it

(
α

w̄tλct

)ρ(1−β−γ)
(
β

rt

)ρβ (
γ

qit

)ργ
R̄ic , (17)

where ρ = 1/(1 − γ − β − α) > 0. This expression tells us that, as in the baseline

model, employment in any industry i and location c will depend on technology in that

industry-location, the fixed resource endowment for that industry-location, factors

that affect the industry in all locations (pit, qit), city-specific factors (λct), and factors

that affect the economy as a whole (w̄t, rt). Note that ρ represents the inverse of

the exponent on fixed city-industry resources. Thus, we can see that the impact of

a city-specific shock that increases costs (higher λct) on city-industry employment

will be greater the less important are fixed city-industry resources in production, i.e.,

when industries are able to more easily move production to other cities.

Equilibrium within a period is defined as the set of prices {Pt,pit,rt,qit,dict} and

quantities {DF
t ,xict,Licft, Kicft,Iicft,Ricft} such that given the set of technologies

{Aict},

1) The first order conditions of the firm optimization problem are satisfied

2) Labor markets clear in each city, i.e.,
∑
i

∑
f Licft = Lct for all c

3) The capital market clears, i.e.,
∑
c

∑
i

∑
f Kicft = K̄t

4) Local resource markets clear, i.e.,
∑
f Ricft = R̄ic for all i and c

5) Output markets clear, i.e.,
∑
c

∑
f xicft = xit = xFt + xIOit

6) Total income (after any savings) is equal to total final goods expenditures
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Equilibrium condition (6) requires that,

DtPt +Mt +Bt =
∑
c

∑
i

w̄tλctLict +
∑
c

∑
i

rtK̄ict +
∑
c

∑
i

dictR̄ic.

where Mt represents net expenditures on imports and Bt represents the (exogenously

given) amount of savings in the period. For a closed economy model we can set Mt

to zero and then solve for the equilibrium price levels in the economy. Alternatively,

we can consider a (small) open economy case where prices are given and solve for Mt.

We are agnostic between these two approaches.

We continue to use the same expression describing the evolution of technology as

in the baseline model (Equation 4). Starting with Equation 17 for period t+1, taking

logs, plugging in Equation 4, and then plugging in Equation 17 again (also in logs),

we obtain,

ln(Lict+1)− ln(Lict) = ρSict + ρ
[

ln(pit+1)− ln(pit)
]

− ρ(1− β − γ)
[

ln(λct+1)− ln(λct)
]

(18)

+ ρ(1− β − γ)
[

ln(w̄t+1)− ln(w̄t)
]

− ρβ
[

ln(rt+1)− ln(rt)
]

+ ργ
[

ln(qit+1)− ln(qit)
]

+ eict.

where eict = εict+1 − εict is the error term.

Finally, plugging Equation 6 into Equation 18, we obtain,

ln(Lict+1)− ln(Lict) = ρτii ln(Lict) + ρ
∑
k 6=i

τki ln(Lkct)

+ ρ
[

ln(pit+1)− ln(pit)
]

+ ργ
[

ln(qit+1)− ln(qit)
]

+ ρξit

+ ρ(1− β − γ)
[

ln(λct+1)− ln(λct)
]

+ ρψct (19)

+ ρ(1− β − γ)
[

ln(w̄t+1)− ln(w̄t)
]

+ ρβ
[

ln(rt+1)− ln(rt)
]

+ eict.
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This expression mirrors the estimating equation given in Equation 7 up to the param-

eters ρ, β and γ. As in our baseline estimating equation, the change in employment

growth is expressed as a function of the initial level of employment, a set of national

industry-specific factors, a set of city-specific factors that affect all industries, and

national wage and capital rental rates that affect all industries and all cities.

We can use this expression to consider some of the assumptions made in the

main text in more detail. First, consider the possibility that trade costs, rather than

technology spillovers, might be driving the effects we observe. To represent this,

suppose that we modified the model to incorporate trade costs while at the same

time eliminating technology spillovers. Ignoring for now general equilibrium effects,

Equation 19 tells us that trade costs will affect city-industries through either the price

of inputs (e.g., through local suppliers) or the price of outputs (e.g., through market

access). With trade costs, both the input and the output prices faced by firms in

industry i can vary across cities.

Now, focusing on the input prices side, suppose that there are two cities, A and

B, and that City A has many more of industry i suppliers than city B so that the cost

of intermediate inputs to industry i is lower in City A than in City B. From Equation

17 we can see that, all else equal, this implies that employment in industry i will be

larger in City A than in City B in some initial period: this is static agglomeration.

However, as we roll the model forward, Equation 18 shows that, absent other changes,

industry i will not grow faster in City A than in City B. In the absence of other effects,

input-output connections alone cannot act as a dynamic agglomeration force. Where

input-output connections can generate dynamic agglomeration is by transmitting the

effects of other changes, such as falling transport costs. However, falling trade costs

cannot be a sustained force of dynamic agglomeration, since trade costs are bounded

below by zero and were fairly stable over at least part of the period we study.33 This

suggests that input-output connections and trade costs can be an important static

force, but these forces are unlikely to generate the dynamic agglomeration patters

studied here.

A second interesting extension to consider is the possibility that the share of each

input in the production function varies across industries. In particular, suppose that

33Crafts & Mulatu (2006) conclude that, “falling transport costs had only weak effects on the
location of industry in the period 1870 to 1911.” Jacks et al. (2008) find a rapid fall in external
trade costs prior to 1880, with a much slower decline thereafter.
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we allow the production function parameters to vary across industries. Indexing these

parameters by i, we now have the following expression for city-industry employment

growth,

ln(Lict+1)− ln(Lict) = ρiτii ln(Lict) + ρi
∑
k 6=i

τki ln(Lkct)

+ ρi

[
ln(pit+1)− ln(pit)

]
+ ρiγi

[
ln(qit+1)− ln(qit)

]
+ ρiξit

+ ρi(1− βi − γi)
[

ln(λct+1)− ln(λct)
]

+ ρiψct

+ ρi(1− βi − γi)
[

ln(w̄t+1)− ln(w̄t)
]

+ ρiβi

[
ln(rt+1)− ln(rt)

]
+ eict .

We can see that the impact of spillovers on city-industry growth in this setting will

depend on the industry-specific parameter ρi, where ρi = 1/(1−γi−βi−αi) > 0. This

parameter is the inverse of the exponent on local resources. Thus, the more important

are fixed local resources in the production process, the weaker will be the impact of

spillover on city-industry employment growth. This makes sense because when fixed

local resources are important it is more difficult to shift industry employment across

locations.

The estimates obtained in the empirical portion of this paper will reflect the impact

of spillover reflected in city-industry employment, which will incorporate both the

spillover term and the importance of fixed local resources. In further work, it would

be interesting to separate these two factors, which is possible when sufficient data are

available to estimate industry-specific input parameters. However, for city growth the

relevant value is the coefficient that we estimate, which reflects the combination of

the strength of spillovers and the extent to which industry employment can respond

to those spillovers.
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A.2 Data appendix

Figure 3: Map showing the location of cities in the analysis database
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Table 12: Industry agglomeration patterns excluding London

This table reports industry agglomeration in each year based on the index from Ellison & Glaeser
(1997). This approach adjusts for the size of plants in an industry using an industry Herfindahl
index. We construct these Herfindahl indices using the firm size data reported in the 1851 Census
and apply the same Herfindahl for all years, since firm-size data are not reported in later Censuses.
Some analysis industries are not included in this table due to lack of firm size data.
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Table 13: Summary statistics for the cross-industry spillover terms

Main analysis matrices and industry categories (1851-1911)
Obs. Mean SD Min Max∑

k 6=i IOinki ln(Lkct) 4,263 9.30 3.21 2.09 21.86

∑
k 6=i IOoutki ln(Lkct) 4,263 8.79 6.26 0.00 42.77

∑
k 6=iEMPki ln(Lkct) 4,263 100.7 42.50 -92.52 191.50

∑
k 6=iOCCki ln(Lkct) 4,263 36.25 25.70 -1.10 111.10

Alternative matrices and aggregated industry categories (1851-1911)
Obs. Mean SD Min Max∑

k 6=i IOin1841ki ln(Lkct) 2,232 2.87 2.85 0.00 12.10

∑
k 6=i IOout1841ki ln(Lkct) 2,232 3.98 3.88 0.00 11.77

∑
k 6=iEMPki ln(Lkct) 2,232 50.19 24.97 -29.45 95.33

∑
k 6=iOCCki ln(Lkct) 2,232 24.89 16.60 -0.66 67.22

∑
k 6=i TECHki ln(Lkct) 1,674 1.25 0.53 0.37 3.14

Cross-city connection measures (1861-1911)
Obs. Mean SD Min Max∑

k 6=i IOinki
∑
j 6=c djc ∗ ln(Lkjt) 3,549 237.3 72.0 65.8 389.9

∑
k 6=i IOoutki

∑
j 6=c djc ∗ ln(Lkjt) 3,549 223.4 152.2 0.00 741.7

∑
k 6=iEMPki

∑
j 6=c djc ∗ ln(Lkjt) 3,549 2,570 986.7 -1,607 3,418

∑
k 6=iOCCki

∑
j 6=c djc ∗ ln(Lkjt) 3,549 926.2 631.6 -19.6 1,996

MPct 3,549 15.7 0.242 14.76 16.07

Note: We report cross-city summary statistics for 1861-1911 because we only report in-
strumented cross-city regression results in the main text, which means that 1851 is used
only to construct lagged values. For the others, we report summary statistics using the full
1851-1911 period since we report both OLS and instrumented results.
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A.3 Results appendix

A.3.1 Main analysis robustness exercises

Figure 4 presents t-statistics for each cross-industry term obtained from running re-

gressions equivalent to column 3 of Table 5, where in each regression a different city is

dropped from the dataset. This allows us to assess the extent to which our results are

robust to changes in the set of cities included in the analysis. These results indicate

that our estimates are not sensitive to dropping individual cities from the analysis

database.

Figure 4: Robustness to dropping one city at a time

IOin results IOout results

EMP results OCC results

Figure 5 presents t-statistics for each cross-industry term obtained from running

regressions equivalent to column 3 of Table 5, where in each regression a different

industry is dropped from the dataset. This allows us to assess the extent to which
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our results are robust to changes in the set of industries included in the analysis.

Specifically, while our IOin results are robust to dropping individual industries, we see

that the estimates on the IOout and EMP terms are highly sensitive to the inclusion

of particular industries. These results indicate that our estimates are much more

sensitive to dropping industries than they are to dropping cities. This suggests that

heterogeneity across industries is more important than heterogeneity across cities.

Figure 5: Robustness to dropping one industry at a time

IOin results IOout results

EMP results OCC results

A.3.2 Heterogeneous effects

In this section we look at heterogeneiety in the pattern of cross-industry and within-

industry effects across different industries. We begin by considering heterogeneous

cross-industry effects. Specifically, we can run two alternative versions of Equation 9,
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4 ln(Lict+1) = τ̃ii ln(Lict) + βi
∑
k 6=i

CONNECTki ln(Lkct) + θct + φit + eict (20)

4 ln(Li 6=k ct+1) = τ̃ii ln(Lict) + βkCONNECTki ln(Lkct) + θct + φit + eict (21)

where CONNECTki is one of our four measures of cross-industry connections. Equa-

tion 20 allows us to estimate industry-specific coefficients βi describing how much

each industry i benefits from cross-industry connections. This specificatoin can be

estimated using the same approach as was used for our baseline regressions. Us-

ing Equation 21, we estimate industry-specific coefficients βk that reflect the extent

to which industry k generates spillovers that benefit other industries. Estimating

this value requires a different approach to avoid conflating the within and between

impact of industry k when estimating βk. Specifically, we run separate regressions

corresponding to Equation 21 for each industry k. In each of these regressions, only

employment in industry k (interacted with a cross-industry connection measure) is

included as an explanatory variable and observations from industry k are not included

in the dependent variable.

Once the industry-specific βi and βk terms are estimated, we compare them to

available measures of industry characteristics: firm size in each industry, the share

of output exported, and the share of output sold to households. In each case we

run a simple univariate regression where the dependent variable is the estimated

industry-specific cross-industry spillover coefficient and the independent variable is

one of the industry characteristics.34 These results can provide suggestive evidence

about the characteristics of industries that produce or benefit from different types of

cross-industry spillovers, but because of the small sample size we will not be able to

draw any strong conclusions.

Table 14 describes the characteristics of industries that benefit from cross-industry

connections. In rows 1-2, we see evidence that small firm size in an industry is asso-

ciated with more cross-industry spillover benefits, but this pattern is not statistically

significant at standard confidence levels. The only strong result coming out of this

34Univariate regressions are used because we are working with a relatively small number of obser-
vations.
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table is that industries that benefit from connections to other local industries with

similar labor pools tend to have a larger labor cost share relative to overall industry

sales, as well as a smaller intermediate cost share.

Table 15 describes the characteristics of industries that produce cross-industry

connections. These results also suggest that industries with smaller firm sizes produce

more beneficial cross-industry spillovers, but again, these results are not statistically

significant. There is also evidence that industries with a greater labor cost share (and

smaller intermediate cost share) relative to overall sales produce more cross-industry

benefits to other occupationally similar industries.

Table 14: Features of industries that benefit from each type of cross-industry spillover

Coefficients from univariate regressions
DV: Estimated industry-specific βi coefficient

Spillovers channel: IO-in IO-out EMP OCC
Average firm size -0.231 -0.910 -0.0363 -0.140

(0.316) (0.562) (0.0353) (1.169)

Median worker’s firm size -0.0200 -0.109 -0.00296 -0.0418
(0.0374) (0.0654) (0.00420) (0.137)

Share of industry output 0.0119 -0.123 -0.0167 -0.319
exported abroad (0.0977) (0.179) (0.0115) (0.347)

Share of industry output 0.0316 0.122 0.00761 0.174
sold to households (0.0439) (0.0867) (0.00521) (0.157)

Labor cost/output ratio -0.135 -0.179 -0.00776 0.464**
(0.146) (0.282) (0.0100) (0.207)

Intermediate cost/output ratio 0.0200 0.0785 -0.000369 -0.404**
(0.108) (0.195) (0.00738) (0.136)

Estiamted coefficients from univariate regressions. Standard errors in parentheses. *** p<0.01,
** p<0.05, * p<0.1. The dependent variable in each regression is the estimated βi coefficient
from the regression in Equation 20. The dependent variables are the estimated cross-industry
spillover coefficients for each industry and each spillover channel. Firm size data comes from the
1851 Census of Population. The share of industry output exported or sold to households is from
the 1907 input-output table. The labor cost share is constructed from industry wage bills from
the 1907 Census of Manufactures. The intermediate cost share is based on the 1907 input-output
table. We do not report robust standard errors because these generate smaller confidence intervals,
probably due to small-sample bias. We have also explored regressions in which we weight results by
the inverse of the standard error of each estimated within-industry coefficient in order to account
for the precision of those estimates and these deliver similar results.
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Table 15: Features of industries that produce each type of cross-industry spillover

Coefficients from univariate regressions
DV: Estimated industry-specific βk coefficient

Spillovers channel: IO-in IO-out EMP OCC
Average firm size -1.467 -4.002 0.0416 -0.995

(1.241) (6.524) (0.177) (2.174)

Median worker’s firm size -0.163 -0.640 0.000403 -0.147
(0.147) (0.760) (0.0208) (0.255)

Share of industry output 0.0627 -0.820 0.00181 -0.339
exported abroad (0.408) (2.017) (0.0545) (0.660)

Share of industry output 0.153 0.0588 -0.0163 0.416
sold to households (0.202) (0.916) (0.0244) (0.286)

Labor cost/output ratio -0.318 0.598 -0.0264 1.014*
(0.630) (3.249) (0.0452) (0.534)

Intermediate cost/output ratio -0.222 -0.0339 0.0151 -0.892**
(0.421) (2.287) (0.0319) (0.345)

The dependent variable in each regression is the estimated βk coefficient from the regression in
Equation 21. Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The dependent
variables are the estimated cross-industry spillover coefficients for each industry and each spillover
channel. Firm size data comes from the 1851 Census of Population. The share of industry output
exported or sold to households is from the 1907 input-output table. The labor cost share is
constructed from industry wage bills from the 1907 Census of Manufactures. The intermediate
cost share is based on the 1907 input-output table. We do not report robust standard errors
because these generate smaller confidence intervals, probably due to small-sample bias. We have
also explored regressions in which we weight results by the inverse of the standard error of each
estimated within-industry coefficient in order to account for the precision of those estimates and
these deliver similar results.

Next, we undertake a similar exercise with our estimated within-industry coeffi-

cients. In Table 16 we consider some of the industry characteristics that may be re-

lated to the range of different within-industry spillover estimates we observe. Columns

1-2 focus on the role of firm size using two different measures. We observe a posi-

tive relationship between firm size in an industry and the strength of within-industry

spillovers, but this results is not statistically significant
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Table 16: Features of industries that benefit from within-industry spillovers

DV: Estimated industry-specific within-industry spillover coefficients
Average firm size 0.300

(0.196)

Median worker’s firm size 0.0263
(0.0236)

Share of industry output 0.0465
exported abroad (0.0708)

Share of industry output -0.0397
sold to households (0.0314)

Labor cost/output ratio 0.136
(0.0984)

Intermediate cost/output ratio -0.0110
(0.0754)

Observations 20 20 23 23 16 16
R-squared 0.115 0.065 0.020 0.071 0.119 0.002

Standard errors in parentheses. *** p<0.01, ** p<0.05, * p<0.1. The number of observations
varies because the explanatory variables are drawn from different sources and are not available for
all industries. The within coefficients come from the specification used in column 3 of Table 5.
Firm size data comes from the 1851 Census of Population. The export’s and household’s share
of industry output come from the input-output table. Total labor cost and total output values
come from the 1907 Census of Production. Intermediate cost is constructed based on data from
the 1907 Input-Ooutput matrix. We do not report robust standard errors because these generate
smaller confidence intervals, probably due to small-sample bias. We have also explored regressions
in which we weight results by the inverse of the standard error of each estimated within-industry
coefficient in order to account for the precision of those estimates and these deliver similar results.

A.3.3 Further results using alternative connections matrices

This section presents additional results obtained using the alternative connections

matrices introduced in Section 6. Table 17 presents results for regressions including

multiple spillover channels. Columns 1-3 use the twelve aggregated industry categories

available when using the 1841 input-output table. Columns 4-6 use the more limited

set of nine industry categories that are available in our technology similarity matrix.

As in the main results, we observe positive effects occuring through the IOin chan-

nel and these results are generally statistically significant. Results obtained for the

IOout and the two labor force similarity channels is clearly sensitive to the underlying

60



set of industries used, while we observe no positive effect associated with the tech-

nology similarity matrix. However, we should use caution when interpreting any of

these results because we are working with a small number of industry categories and

correlated measures of cross-industry connections. Comparing these results to those

described in the main text makes it clear that the correlations between the various

spillover channels are having an important influence on the results. This may result

in us observing insignificant or even negative results for channels that are important

but poorly measured, which is a particular concern for the technological similarity

channel.

61



Table 17: Alternative matrix regressions with all spillover channels

With twelve aggregated With the nine categories in
industry categories the technology similarity matrix

(1) (2) (3) (4) (5) (6)
IOin 0.0478** 0.0300 0.0359 0.0452** 0.0388* 0.0456**

(0.0188) (0.0204) (0.0232) (0.0198) (0.0220) (0.0226)
[0.0137] [0.0158] [0.0169] [0.0148] [0.0160] [0.0164]

IOout 0.0350 0.0532** 0.0551** -0.0226 0.0122 0.0150
(0.0228) (0.0212) (0.0220) (0.0328) (0.0238) (0.0252)
[0.0150] [0.0158] [0.0161] [0.0240] [0.0233] [0.0240]

EMP -0.0017 0.0004 0.0004 0.0262*** 0.0191*** 0.0188***
(0.0037) (0.0029) (0.0031) (0.0081) (0.0064) (0.0064)
[0.0022] [0.0022] [0.0022] [0.0060] [0.0061] [0.0064]

OCC 0.0086 0.0072 0.0077 0.0284*** 0.0238** 0.0234**
(0.0067) (0.0076) (0.0078) (0.0080) (0.0100) (0.0100)
[0.0037] [0.0043] [0.0044] [0.0054] [0.0070] [0.0070]

TECH -0.4476** -0.2911* -0.2498
(0.1871) (0.1678) (0.1802)
[0.1520] [0.1729] [0.1761]

Observations 2,232 1,860 1,860 1,674 1,395 1,395
Estimation ols 2sls 2sls ols 2sls 2sls

Instrumented none wtn wtn-btn none wtn wtn-btn
KP under id. 252.32 237.47 129.85 127.33
KP weak id. 195.54 125.39 108.32 58.28

Multi-level clustered standard errors by city-industry, city-year, and industry-year in parenthesis.
Significance levels based on clustered standard errors: *** p<0.01, ** p<0.05, * p<0.1. Robust
standard errors in brackets. Regressors within, city-by-year and industry-by-year fixed effects
are included in all regressions but not displayed. 2SLS regressions use lagged instruments. Note
that the number of observations falls for the instrumented regressions in columns 3-6 because the
instruments require a lagged employment term. Thus, data from 1851 are not available for these
regressions. Acronyms: wtn = within, btn = between. “KP under id.” denotes the test statistic
for the Lagrange Multiplier underidentification test based on Kleibergen & Paap (2006). “KP
weak id.” denotes the test statistic for a weak instruments test based on the Kleibergen-Paap
Wald statistic.

62


	Introduction
	Theory
	Allocation within a static period
	Dynamics: Technology growth over time

	Empirical setting and data
	Empirical approach
	Main results
	Cross-industry spillovers
	Within-industry spillovers
	City-size effects and the aggregate strength of agglomeration forces

	Robustness: Alternative connection matrices
	Robustness: Cross-city effects
	Conclusion
	Appendix
	Theory appendix
	Data appendix
	Results appendix
	Main analysis robustness exercises
	Heterogeneous effects
	Further results using alternative connections matrices



