Lecture notes on risk management, public policy, and the financial system

Value-at-Risk

Allan M. Malz

Columbia University
Overview of Value-at-Risk

Computing VaR for one risk factor

Comparison of VaR computation approaches
Overview of Value-at-Risk

Definition of Value-at-Risk
Modeling choices in VaR estimation

Computing VaR for one risk factor

Comparison of VaR computation approaches
Why Value-at-Risk?

- Value-at-Risk (VaR) of a portfolio: single number summarizing risk of large and complex portfolios
  - “How much can we lose?” You can’t refuse to answer!
  - Encompasses different asset types
- Reasonably accurate for many types of portfolios
  - Unusual but recurrent losses, not extremes
- **VaR limit system:** position size limits based on VaR
  - Widely-used to control risk while giving some discretion to individual trading desks
- Can be computed using broad range of return models, estimation method, data sources
- Complex pros and cons for each judgement call
  - But need for judgement calls in risk modeling is not unique to VaR
- Common misconceptions:
  - VaR wedded to normally-distributed return model
  - Or to a particular way of using market data
  - And outright distortions, e.g. “VaR is the most I can lose”
- Most importantly, we can learn a lot from criticizing it!
Definition: VaR is a quantile

- VaR of a portfolio: a quantile of the profit-and-loss (P&L) distribution of the portfolio
- A quantile of a random variable (r.v.) $X$ is
  - The maximum value $X^\circ$ corresponding to a cumulative probability $\alpha$
  - Threshold $X^\circ$ below which realizations of $X$ fall with frequency $\alpha$

$$X^\circ \text{ s.t. } P[X \leq X^\circ] = \alpha$$

- To define VaR, let $X$ represent the r.v. P&L, and $\alpha$ the confidence level of the VaR estimate
  - Loss and VaR defined as positive numbers
  - The probability of losing no more than the VaR is $\alpha$
  - VaR is dollar loss—or negative return—such that the probability of suffering it—or worse—is $1 - \alpha$, e.g., 5 or 1 or 0.1 percent
- Daily VaR at 95 (99) percent confidence level should occur roughly one in 20 trading days, or once per month (twice a year)
Example of a quantile and VaR

- With $\Phi(X)$ the standard normal c.d.f., $z_p = \Phi^{-1}(p)$ is the standard normal inverse cumulative distribution or quantile function
- **Example:** next-day level of S&P 500 as of 28Aug2013
- Changes in S&P lognormally distributed $\Rightarrow$ S&P log return normally distributed
  - Quantiles of S&P log return = standard normal quantiles $\times$ estimated return volatility
The VaR scenario

- The **VaR scenario** is the quantile of P&L corresponding to the chosen confidence level.
- Can be stated as P&L (in currency units) or as adverse return (decimal or percent).
- Models generally based on distributional hypothesis about log returns:
  - VaR scenario stated as log return $r^\circ$ corresponds to P&L $xS_t(e^{r^\circ} - 1)$.
  - VaR scenario stated as arithmetic return $r_{\text{arith},^\circ} = e^{r^\circ} - 1$ corresponds to same P&L $xS_t r_{\text{arith},^\circ}$.
1-day VaR of a long S&P 500 index position on 28Aug2013. Volatility computed via EWMA with a decay factor of 0.94. Grid lines at VaR scenarios for confidence levels of 95 and 99 percent. VaR is the difference between the index value in the VaR scenario and 1632.20, its 28Aug2013 closing value, times the number of index units held.
How to compute VaR

Three basic approaches to identifying the VaR scenario:

**Parametric** is a simple approach relying on a formula based on a hypothesized return distribution plus a volatility estimate.

**Monte Carlo simulation** uses random draws from a hypothesized return distribution.

**Historical simulation** is based on historical returns over some past observation period, no distributional hypothesis.
Assumptions and data decisions in VaR estimation

**Distributional hypothesis:** What asset return model: normal, lognormal, t-distribution,...? How estimate parameters: GARCH, EWMA,...?

**Risk factor mapping:** VaR generally applied with small number of risk factors relative to number of positions in portfolio

- Most assets’ market risks more accurately modeled as functions of factor rather than own-price risks
- E.g. equity risks function of index, Fama-French factors, bonds a function of key points on interest-rate curve
- Reduces computational complexity
- To which risk factors is portfolio exposed?

Many pitfalls, for example:

- Mapping AAA subprime mortgage bonds to AAA corporate bonds
- Omitting key risk factor, such as option implied volatility for option portfolio

**Use of historical data:** How much history? Include or exclude extreme and possibly “unique” events?
User settings in VaR modeling

- User makes decisions based on business application about:
  - **Time horizon** $\tau$ over which “worst-case” P&L realized
  - **Confidence level** $\alpha$ that losses will be no worse than VaR
- VaR is generally *higher* at longer time horizons and higher confidence levels
- VaR is generally *less accurate* at longer time horizons and higher confidence levels
- Problematic: setting (→) **economic capital** based VaR
  - Capital should be set high enough to cover rare, but large and costly, losses
  - But VaR more accurate at predicting recurrent losses at “cost-of-doing-business” level
  - VaR can be interpreted as maximum loss if extreme event *does not* occur
- VaR generally treated as one-tailed test↔one tail corresponds to losses
  - Exceptions include option portfolios
  - And not necessarily the left tail (→short positions)
Overview of Value-at-Risk

Computing VaR for one risk factor

- Data and assumptions
- Parametric VaR
- Computing VaR via Monte Carlo simulation
- Computing VaR via historical simulation
- VaR for short positions

Comparison of VaR computation approaches
Typical model assumptions for VaR

- Logarithmic asset price changes $r_{t,t+\tau} \equiv \ln(S_{t+\tau}) - \ln(S_t)$ normally distributed with zero mean:

$$r_{t,t+\tau} \sim \mathcal{N}(0, \sigma_t^2 \tau)$$

- Volatility estimate $\sigma_t$ based on information up to time $t$ but constant over any future horizon $\tau$
  - Use square-root-of-time rule to apply volatility estimate to any horizon
- For confidence level $\alpha$, 1-day horizon, and for long position in the risk factor/asset, take $1 - \alpha$ quantile of $r_{t,t+\tau}$
- Parametric: $z_{1-\alpha}$ quantile of standard normal
  - Typically a negative number
  - Log return in the VaR scenario estimated as $z_{1-\alpha} \sigma_t \sqrt{\tau}$
- Monte Carlo: $1 - \alpha$ quantile of simulations of $r_t$
VaR computation example: data and assumptions

- Calculation date 28Aug2013
- Risk factor S&P 500 index, closed at $S_t = 1634.96$
- **Exposure**: long position with initial value $xS_t = $1,000,000, with $x \equiv \text{number of units of asset}$
  - $\Rightarrow x = \frac{1,000,000}{1634.96} = 611.636$ index units
- One-tailed test at confidence level 99 percent
  - Corresponding standard normal quantile $z_{0.01} = -2.32635$
- Note that computation doesn’t require $x$ and $S_t$ individually, just initial position value $xS_t$ and return quantile
- $\sigma_t$ estimated at close on 28Aug2013 via EWMA, with $\lambda = 0.94$
  - Pertains to any future horizon using square-root-of-time rule
  - Volatility estimate on 28Aug2013 $\sigma_t = 0.0069105$ or 69 bps/day
    - Annualized vol about 11.06 percent, relatively low for S&P
  - Used in computing VaR parametrically and via Monte Carlo, not via historical simulation
- One-day horizon: $\tau = 1$, with time measured in days, volatility at daily rate
Parametric VaR: theory

**VaR scenario in log return terms:** at 99-percent confidence level, use 0.01-quantile of \( r_{t,t+\tau} z_{1-\alpha} \sigma_t \sqrt{\tau} \), the \( 1 - \alpha \) quantile of \( r_{t,t+\tau} \)

- Our model tells us the log return is normal

**Change in risk factor in VaR scenario:** convert log return into arithmetic return needed to compute P&L

- \( 1 - \alpha \) quantile of \( S_{t+\tau} - S_t \) is:

\[
S_t e^{z_{1-\alpha} \sigma_t \sqrt{\tau}} - S_t = S_t \left( e^{z_{1-\alpha} \sigma_t \sqrt{\tau}} - 1 \right)
\]

**VaR scenario in P&L terms:** \( 1 - \alpha \) quantile of change in position value is \( xS_t \left( e^{z_{1-\alpha} \sigma_t \sqrt{\tau}} - 1 \right) \)

- Multiplies quantile of change in risk factor by position size \( x \)

**VaR** at confidence level \( \alpha \) is P&L quantile expressed as positive number:

\[
\text{VaR}_t(\alpha, \tau) = -xS_t \left( e^{z_{1-\alpha} \sigma_t \sqrt{\tau}} - 1 \right) = xS_t \left( 1 - e^{z_{1-\alpha} \sigma_t \sqrt{\tau}} \right)
\]
**Parametric VaR: example**

**VaR scenario in log return terms:** a bit over \(-1\frac{1}{2}\) percent

\[
z_{0.01}\sigma_t \sqrt{1} = -2.32635 \times 0.0069105 = -0.0160762
\]

**Change in risk factor in VaR scenario:** 0.01-quantile of 1-day change

\[
S_{t+1} - S_t:
\]

\[
S_t (e^{z_{0.01}\sigma_t} - 1) = 1634.96(e^{-0.0160762} - 1) = 1634.96 \times (-0.0159477)
\]

\[
= 1608.89 - 1634.96 = -26.07
\]

**VaR scenario in P&L terms:**

\[
xS_t (e^{z_{0.01}\sigma_t} - 1) = 1000000 \times (-0.0159477)
\]

**VaR** at a 99-percent confidence level is $15,947.70:

\[
xS_t (1 - e^{z_{0.01}\sigma_t}) = 1000000 \times 0.0159477 = 15947.66
\]

- 1-week (5 business days) **VaR** is $35,309.00:

\[
1000000 \left(1 - e^{0.0160762\sqrt{5}}\right) = 1000000 \times 0.035309
\]
A convenient approximation of VaR

- Apply $e^a - 1 \approx a$ to pertinent quantile:

$$-S_t z_{1-\alpha} \sigma \sqrt{\tau} \approx S_t \left(1 - e^{z_{1-\alpha} \sigma \sqrt{\tau}}\right)$$

- Use slightly smaller (larger loss) log return in place of arithmetic return
- Tantamount to assuming arithmetic—not log—returns normally distributed
  - And treats $\sigma_t$ as estimate of volatility of arithmetic returns
- Approximation widely used, e.g. in (→) delta-normal approach to VaR computation
- VaR can also be expressed in return terms, i.e. $\approx 1.6$ percent rather than $\approx$ $16\,000$
- Approximation in our example using vol at daily rate:
  - 1-day VaR: $-xS_t z_{0.01} \sigma_t = 16\,076.20$
  - 5-day VaR: $-xS_t z_{0.01} \sigma_t \sqrt{\tau} = 35\,947.50$
Monte Carlo computation of VaR

- Steps in the algorithm:
  1. Generate set of, say, 10,000 independent draws $\epsilon_i, i = 1, \ldots, 10,000$ from standard normal
  2. Each draw provides a random realization of log return $r_{t+1}, r_i = \sigma_t \epsilon_i$, next-period price $S_i$, position value $xS_i$, and P&L $x(S_i - S_t)$
  3. Sort the realizations in ascending order (largest loss first)
     - order statistics $\bar{r}(i), \bar{S}(i) - S_t = S_t (e^{\bar{r}(i)} - 1)$ or $\bar{S}(i) - S_t \approx \bar{r}(i) S_t$
  4. The 100th order statistic of P&L $x(-1)$ corresponds to the VaR at a 99-percent confidence level

- Monte Carlo requires estimate of volatility and other model parameters
  - In our example, we’ve posited lognormal/zero-drift model
  - But as with parametric, no particular model required

- Result $15,912.46$ or thereabouts
  - User may average or interpolate scenarios near the VaR (in our example, near the 100th) to reduce simulation noise
Monte Carlo computation of VaR: example

<table>
<thead>
<tr>
<th></th>
<th>$\tilde{r}(i)$</th>
<th>$\tilde{S}(i)$</th>
<th>P&amp;L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-0.02552</td>
<td>1593.76</td>
<td>-25,198.23</td>
</tr>
<tr>
<td>2</td>
<td>-0.02517</td>
<td>1594.33</td>
<td>-24,851.55</td>
</tr>
<tr>
<td>3</td>
<td>-0.02477</td>
<td>1594.96</td>
<td>-24,465.89</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>99</td>
<td>-0.01606</td>
<td>1608.92</td>
<td>-15,928.02</td>
</tr>
<tr>
<td>100</td>
<td>-0.01604</td>
<td>1608.94</td>
<td>-15,912.46</td>
</tr>
<tr>
<td>101</td>
<td>-0.01602</td>
<td>1608.97</td>
<td>-15,893.97</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>4999</td>
<td>0.00005</td>
<td>1635.04</td>
<td>50.42</td>
</tr>
<tr>
<td>5000</td>
<td>0.00005</td>
<td>1635.05</td>
<td>53.70</td>
</tr>
<tr>
<td>5001</td>
<td>0.00006</td>
<td>1635.05</td>
<td>57.12</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>9998</td>
<td>0.02344</td>
<td>1673.73</td>
<td>23,713.88</td>
</tr>
<tr>
<td>9999</td>
<td>0.02351</td>
<td>1673.86</td>
<td>23,793.06</td>
</tr>
<tr>
<td>10000</td>
<td>0.02407</td>
<td>1674.80</td>
<td>24,365.89</td>
</tr>
</tbody>
</table>

Entries in the second column are $\tilde{r}(i) = \sigma_t \tilde{\epsilon}(i)$, where the $\tilde{\epsilon}(i)$ are the ordered draws from $\mathcal{N}(0, \sigma_t^2)$, with $\sigma_t = 0.0060762$. Entries in the second column are $\tilde{S}(i) = S_t e^{\tilde{r}(i)}$. The P&L realizations are $10^6 \left( e^{\tilde{r}(i)} - 1 \right)$.
Monte Carlo computation of VaR

Histogram of Monte Carlo return simulations. **Purple** plot: density of $\mathcal{N}(0, \sigma_t^2)$, with $\sigma_t = 0.0068826$. 
Steps in the algorithm

1. Select a historical “look-back” period, say, 2 years, and compute $t = 1, \ldots, T$ daily log or arithmetic returns
   - Use historical risk factor returns but current portfolio position sizes or weights
2. From here, procedure identical to Monte Carlo: sort $T$ historical realizations in ascending order
   - Order statistics denoted $\tilde{r}^{(i)}$, $i = 1, \ldots, T$
3. Apply the $\tilde{r}^{(i)}$ to $S_t$ to get $T$ ordered simulations of P&L
   - If $\tilde{r}^{(i)}$ denotes $i$-th ordered logarithmic return, P&L is $(e^{\tilde{r}^{(i)}} - 1) \times S_t$
   - If $\tilde{r}^{(i)}$ denotes $i$-th ordered arithmetic return, P&L is $\tilde{r}^{(i)} \times S_t$
4. VaR of long position at confidence level $\alpha$ is $(1 - \alpha)$-quantile of order statistics of P&L
Quantiles of empirical distributions

- Different definitions of quantile can lead to different results
- General definition of quantile

\[ X^p = \inf \{ X | P[X \leq X^p] \geq p \} \]

- \( p \)-quantile \( X^p \) is \textit{smallest} value s.t. its cumulative probability is \textit{at least} \( p \)
- Definition applies to both continuous (e.g. normal) and discrete distributions (e.g. simulations)
- But leads to unambiguous result only for
  - Continuous distributions that are not flat at \( 1 - \alpha \)
  - Discrete distributions if \( (1 - \alpha)T \) an integer
Identifying quantiles of empirical distributions

- General definition consistent with many alternative methods for empirical distributions
- Which order statistic $r^{(i)}$ represents $(1 - \alpha)$-quantile?
  - Most commonly-used is ceiling $\lceil (1 - \alpha) T \rceil$ of $(1 - \alpha) T$: smallest integer $\geq (1 - \alpha) T$
  - Or floor $\lfloor (1 - \alpha) T \rfloor$ of $(1 - \alpha) T$: largest integer $\leq (1 - \alpha) T$
  - Or interpolate between $\lfloor (1 - \alpha) T \rfloor$-th and $\lceil (1 - \alpha) T \rceil$-th order statistics
- These methods lead to same result if $(1 - \alpha) T$ an integer
Choosing the VaR scenario via historical simulation

- Typically fewer simulations when using historical rather than computer-generated simulations
- Potentially material sensitivity of historical simulation result to choice of quantile definition
- Definition of cumulative probability is asymmetrical: event for which probability is defined is $X \leq X^\circ$
  - Random variables are right-continuous
  - Quantile function therefore left-continuous
Computing VaR by historical simulation: example

- $1,000,000 long position in S&P 500 index
- Using 2 years of price data, 28Aug2011 to 28Aug2013
  - \( T = 503 \) return observations
- VaR at 99 percent confidence level is $26,705 using most-common quantile definition, much higher than parametric or Monte Carlo
  - VaR is on interval \( \hat{r}^{(5)}, \hat{r}^{(6)} \) between 5th and 6th P&L order statistics using alternative quantile definitions
**Historical simulation VaR scenario**

Purple points denote log return observations in the left tail. Orange point denotes quantile using \(\lceil (1 - \alpha) T \rceil\)-th order statistic. With \(\alpha = 0.99\) and \(T = 503\), \(\lceil (1 - \alpha) T \rceil = 6\), and the VaR scenario in return terms is -2.707 percent.
## Order statistics for historical simulation VaR

<table>
<thead>
<tr>
<th>$i$</th>
<th>$t$</th>
<th>$S_t$</th>
<th>date $t$</th>
<th>$S_{t-1}$</th>
<th>$\tilde{r}^{(i)}$</th>
<th>$\tilde{r}^{\text{arith,}(i)}$</th>
<th>P&amp;L</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>52</td>
<td>1229.10</td>
<td>09Nov2011</td>
<td>1275.92</td>
<td>-0.03739</td>
<td>-0.03670</td>
<td>-36695.09</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>1129.56</td>
<td>22Sep2011</td>
<td>1166.76</td>
<td>-0.03240</td>
<td>-0.03188</td>
<td>-31883.16</td>
</tr>
<tr>
<td>3</td>
<td>17</td>
<td>1166.76</td>
<td>21Sep2011</td>
<td>1202.09</td>
<td>-0.02983</td>
<td>-0.02939</td>
<td>-29390.48</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>1099.23</td>
<td>03Oct2011</td>
<td>1131.42</td>
<td>-0.02886</td>
<td>-0.02845</td>
<td>-28450.97</td>
</tr>
<tr>
<td>5</td>
<td>46</td>
<td>1218.28</td>
<td>01Nov2011</td>
<td>1253.30</td>
<td>-0.02834</td>
<td>-0.02794</td>
<td>-27942.23</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>1154.23</td>
<td>09Sep2011</td>
<td>1185.90</td>
<td>-0.02707</td>
<td>-0.02671</td>
<td>-26705.46</td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>1173.97</td>
<td>02Sep2011</td>
<td>1204.42</td>
<td>-0.02561</td>
<td>-0.02528</td>
<td>-25281.88</td>
</tr>
<tr>
<td>8</td>
<td>455</td>
<td>1588.19</td>
<td>20Jun2013</td>
<td>1628.93</td>
<td>-0.02533</td>
<td>-0.02501</td>
<td>-25010.28</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>499</td>
<td>64</td>
<td>1192.55</td>
<td>28Nov2011</td>
<td>1158.67</td>
<td>0.02882</td>
<td>0.02924</td>
<td>29240.42</td>
</tr>
<tr>
<td>500</td>
<td>80</td>
<td>1241.31</td>
<td>20Dec2011</td>
<td>1205.35</td>
<td>0.02940</td>
<td>0.02983</td>
<td>29833.66</td>
</tr>
<tr>
<td>501</td>
<td>30</td>
<td>1194.89</td>
<td>10Oct2011</td>
<td>1155.46</td>
<td>0.03356</td>
<td>0.03412</td>
<td>34124.94</td>
</tr>
<tr>
<td>502</td>
<td>43</td>
<td>1284.59</td>
<td>27Oct2011</td>
<td>1242.00</td>
<td>0.03372</td>
<td>0.03429</td>
<td>34291.47</td>
</tr>
<tr>
<td>503</td>
<td>66</td>
<td>1246.96</td>
<td>30Nov2011</td>
<td>1195.19</td>
<td>0.04240</td>
<td>0.04332</td>
<td>43315.29</td>
</tr>
</tbody>
</table>

The entries in the last 3 columns are the order statistics of the logarithmic and arithmetic historical return and P&L realizations: $\tilde{r}^{(i)}$, $e^{\tilde{r}^{(i)}} - 1$, and $\times S_T \left(e^{\tilde{r}^{(i)}} - 1\right)$, $i = 1, \ldots, T$ and $T = 503$. The VaR scenario is highlighted.
**Computation of VaR by historical simulation**

Histogram of historical returns. **Purple** plot: density of $\mathcal{N}(0, \sigma_t^2)$, with $\sigma_t = 0.00691049$. 
VaR for short positions

- Definition of VaR unchanged: low quantile of P&L
- But $x < 0 \Rightarrow$ VaR return scenario positive, not negative
  - Scenario in upper tail of return distribution
- Major drawback of VaR for short positions: doesn’t capture unlimited downside
  - P&L of short $\rightarrow -\infty$ as $S_{t+\tau} \rightarrow \infty$
Normal parametric VaR for short positions

- For confidence level $\alpha$, use $\alpha$- rather than $(1 - \alpha)$-quantile
- VaR log return scenario estimated at $t$ is $z_\alpha \sigma_t \sqrt{\tau} > 0$
- VaR at confidence level $\alpha$: P&L quantile $x_S_t \left( e^{z_\alpha \sigma_t \sqrt{\tau}} - 1 \right)$ expressed as a positive number:

$$\text{VaR}_t(\alpha, \tau) = (-1) \times x_S_t \left( e^{z_\alpha \sigma_t \sqrt{\tau}} - 1 \right)$$

- Normal is a symmetric distribution $\Rightarrow z_\alpha = -z_{1-\alpha}$
- VaR slightly larger than for long position, since $e^r - 1 > 1 - e^{-r}$
- Approximation $x_S_t z_\alpha \sigma_t$ gives same value as for long
- Continuing the example: $\text{VaR}_t(0.99, 1) = $16,206.10
Historical simulation VaR for short positions

- Basic simulation approach unchanged
- Several equivalent ways to identify VaR scenario in return terms
  - Use a high (i.e. $\alpha$) quantile of historical return series
  - Use low $(1 - \alpha)$ order statistic of $(-1) \times$ historical returns
  - Sort the returns in reverse order, and then use the rank corresponding to a low quantile
Pitfalls in using less-common quantile definitions

- Arise from asymmetric definition of distribution function
- **Example**: historical simulation VaR of long and short S&P 500 position, $\alpha = 0.99$ and $T = 503$
  - Linear interpolation using order statistic of $(-1) \times$ original series between $\tilde{r}^{(5)}$ and $\tilde{r}^{(6)}$, the 5th and 6th smallest
  - Linear interpolation using original order statistics between $\tilde{r}^{(T-5)}$ and $\tilde{r}^{(T-6)}$, the 6th and 7th largest
Historical simulation VaR for short position

Purple points denote log return observations in the tails. Orange points denote quantiles using $\lceil (1 - \alpha)T \rceil$-th order statistic.
Overview of Value-at-Risk

Computing VaR for one risk factor

**Comparison of VaR computation approaches**
Advantages and disadvantages of the techniques
Effect of user settings
Capturing the tails

- Monte Carlo almost identical to parametric for simple/linear portfolios
  - Simulations merely reflect the simulated distribution
  - Monte Carlo becomes useful in more complex portfolios (options, other non-linear assets)
    - Simulated risk factor returns become inputs into pricing models
- Historical simulation may differ greatly from Monte Carlo or parametric
  - Historical simulations may have thicker or thinner tails than Monte Carlo or parametric
  - Depends on length of historical look-back period
  - How far back should we look?
    - Depends on purpose of estimate: recurrent losses or extreme events?
    - How to treat the period mid-2007 to date?
Computed for S&P 500 index on 28Aug2013. Kernel density estimates for Monte Carlo simulations (black) and of historical returns (red). Color-coded vertical grid lines placed at 0.01 quantiles of each distribution.
Incorporating conditionality

- Parametric and Monte Carlo VaR much more responsive to recent returns than historical simulation
- Sluggish responsiveness of historical simulation mitigated by shorter look-back period
- Historical simulations may have thicker or thinner tails than Monte Carlo or parametric
  - Shorter observation intervals may miss tail events
  - Longer observation intervals may produce results deviating from current return distribution (e.g. volatility regime)
VaR responsiveness to shocks

Time series of VaR estimates for long position in the S&P 500 index, daily, 03Jan2006 to 30Dec2016, expressed as returns in percent. Parametric estimates use a decay factor of 0.94, historical simulation estimates use 2 or 5 years of daily return data.
Dependence of VaR on confidence level and horizon

- Parametric VaR increases with both horizon $\tau$ and confidence level $\alpha$
  - $z_{1-\alpha} = \Phi^{-1}(1 - \alpha)$ becomes a larger-magnitude negative number as $\alpha$ increases
  - $-z_{1-\alpha}\sigma_t\sqrt{\tau}$ follows the square-root-of-time rule
- VaR computed via Monte Carlo and historical simulation increases with confidence level
- But if there is strong mean reversion in return volatility, VaR computed via historical simulation may be smaller at a longer than at a shorter horizon
- Table displays $-z_{1-\alpha}\sigma_t\sqrt{\tau}$ with $\sigma_t = 0.0069105$, for different values of $\tau$ and confidence level $\alpha$ (in percent)

<table>
<thead>
<tr>
<th></th>
<th>$\alpha = 0.95$</th>
<th>$\alpha = 0.99$</th>
<th>$\alpha = 0.995$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\tau = 1$</td>
<td>1.13667</td>
<td>1.60762</td>
<td>1.78002</td>
</tr>
<tr>
<td>$\tau = 5$</td>
<td>2.54168</td>
<td>3.59475</td>
<td>3.98025</td>
</tr>
</tbody>
</table>