Backtesting of VaR

Critiques of VaR
Backtesting of VaR

Overview
Unconditional coverage test procedure
Limitations of the unconditional coverage test

Critiques of VaR
Challenges in validating VaR

- How do we measure “poor performance” of VaR? → **model risk**
- VaR **backtesting**: type of **model validation**
- VaR not a point forecast, but statement about distribution of future outcomes
- VaR **exceedance, exception** or **excession**: event the portfolio loss exceeds the VaR
 - Loss over the VaR horizon is compared with VaR computed just prior
 - E.g. for daily VaR, compare VaR reported at close of trading with loss over subsequent trading day
- For single position, exceedance can be defined in terms of return: for each of T observations,
 - Parametric: compare realized return with estimated volatility
 - Historical simulation: compare realized log or arithmetic return with quantile of historical sample
- Practical problem: portfolio is likely to be changing over time
 - Backtest comparison assume static portfolio
Testable dimensions of VaR

Unconditional coverage: is proportion of exceedances in entire sample consistent with VaR confidence level?

Independence: frequency and timing of exceedances, e.g. absence of clustering

Magnitude of exceedances: somewhat larger or much larger than VaR?
Brief review of statistical hypothesis testing

- Formulate **statistical hypothesis** testable with available data
 - Framed as a **null hypothesis** H_0 about a distributional characteristic of the data
 - H_0 expressed through a **test statistic**, so **falsifiable** based on data
- Errors in testing
 - **Type I** (false positive): reject H_0 even though H_0 true
 - **Type II** (false negative): fail to reject H_0 even though H_0 false
- **Significance level** of test: a prespecified, chosen probability of Type I error, e.g. 0.01
 - p-value: probability, if H_0 true, of having a test statistic at least as unfavorable to H_0 as that actually obtained
 - **Power** of a test: probability of Type II error
- **Sample space**: all the possible configurations of the data
- Identify in the sample space for a given significance level:
 - **Critical** or **rejection region** within which H_0 rejected
 - **Acceptance region** within which H_0 not rejected is complement in sample space of critical region
Statistical framework for unconditional coverage test

- VaR associated with a confidence level α
- VaR model accurate \Rightarrow exceedances occur \approx every $(1 - \alpha)^{-1}$ periods
 - For example, with daily VaR at 95 percent, expect ≈ 1 per month
 - \Rightarrow Null hypothesis H_0: exceedance frequency or fraction of exceedances $= 1 - \alpha$
- Backtest is a sequence of comparisons of current VaR estimate with P&L realized at the VaR forecast horizon
- Under H_0, comparisons are Bernoulli trials/random variables:

 \[
 \text{with probability } \begin{cases} 1 - \alpha \\ \alpha \end{cases} \Rightarrow \text{result is } \begin{cases} 1 \text{ (VaR exceedance)} \\ 0 \text{ (VaR not exceeded)} \end{cases}
 \]

- And independently and identically distributed (i.i.d.)
- In reality, clustered exceedances are routine
- H_0 doesn’t state returns are lognormal, just that VaR procedure accurate for confidence level α
Test statistic of unconditional coverage test

- **Likelihood function** of T i.i.d. observations of VaR forecast and subsequent realized loss:

 $L(\alpha; x) = (1 - \alpha)^x \alpha^{T-x}$

 - x is the number of exceedances out of T
 - $L(\alpha)$ gives probability of x exceedances in the sample if the probability of one exceedance is $1 - \alpha$

- **Maximum likelihood estimator** of α is $1 - \frac{x}{T}$
 - Likelihood function then takes on value

 $L \left(\frac{x}{T}; x \right) = \left(\frac{x}{T} \right)^x \left(1 - \frac{x}{T} \right)^{T-x}$

- The test statistic is the log likelihood ratio

 $2 \left\{ \ln \left[L \left(\frac{x}{T}; x \right) \right] - \ln \left[L(\alpha; x) \right] \right\}$

 $= 2 \left\{ \ln \left[\left(\frac{x}{T} \right)^x \left(1 - \frac{x}{T} \right)^{T-x} \right] - \ln \left[(1 - \alpha)^x \alpha^{T-x} \right] \right\}$
Distribution of unconditional coverage test statistic

- Test statistic measures distance between data and model prediction
- Follows a χ^2 distribution (for large enough T) if H_0 is true
 - With one degree of freedom (df), for the one parameter α
 - χ^2 test a standard approach to assessing goodness of fit of a distributional hypothesis
 - In this case, exceedances i.i.d. Bernoulli trials with parameter α
- p-value: probability, if H_0 true, of a test statistic greater than or equal to that actually obtained in the sample
 - I.e. 1 minus cumulative probability of a $\chi^2[1]$ variate with a value equal to the test statistic
- Independence requirement \rightarrow non-overlapping observations if risk horizon \geq observation frequency
Assessing Value-at-Risk

Backtesting of VaR

Unconditional coverage test procedure

\(\chi^2[1] \) distribution

Cumulative distribution function of a \(\chi^2 \) variate with one degree of freedom.

<table>
<thead>
<tr>
<th>Significance level</th>
<th>0.95</th>
<th>0.99</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical value</td>
<td>3.8415</td>
<td>6.6349</td>
</tr>
</tbody>
</table>
Critical value and acceptance range

- Reject \mathcal{H}_0 only if test statistic $>$ critical value
 - Critical value is a quantile of $\chi^2[1]$, the χ^2 distribution with 1 df
 - Quantile is chosen to correspond to significance level of backtest
- \rightarrow **Acceptance range**: range of number of exceedances s.t. test statistic $<$ critical value
 - If number of exceedances falls *outside* acceptance range, reject null hypothesis
 - Too many or too few exceedances \rightarrow high value of test statistic
 - But caveat: χ^2 nonetheless a *one-tailed test*
- **Example**: 1 year (252 daily observations), VaR confidence level 0.99

<table>
<thead>
<tr>
<th>No. of exceedances</th>
<th>0</th>
<th>3</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test statistic</td>
<td>5.0654</td>
<td>0.0870</td>
<td>12.8331</td>
</tr>
<tr>
<td>χ^2 cumulative probability</td>
<td>0.9756</td>
<td>0.2320</td>
<td>0.9997</td>
</tr>
<tr>
<td>p-value</td>
<td>0.0244</td>
<td>0.7680</td>
<td>0.0003</td>
</tr>
</tbody>
</table>

- Zero exceedances results in rejection of \mathcal{H}_0 at a significance level of 0.95, but not 0.99
Significance and confidence levels in the test

- Confidence level of backtest is distinct from confidence level of VaR
 - *Confidence* level of VaR enters into test statistic (together with number of observations, number of exceedances)
 - *Significance* level of backtest determines χ^2 quantile to compare (together with number of degrees of freedom)
- Acceptance range depends on significance level of backtest
 - Acceptance range is wider at a higher significance level
 - Greater departure from expected exceedance count required to reject null that VaR accurate
 - Any realization outside acceptance range has p-value below significance level of backtest
Test statistic and acceptance range

Points represent values for 1 year of daily VaR estimates; \(T = 252 \) and \(\alpha = 0.99 \) of test statistic
\[
2 \left\{ \ln \left[\left(\frac{x}{T} \right)^x \left(1 - \frac{x}{T} \right)^{T-x} \right] - \ln \left[(1 - \alpha)^x \alpha^{T-x} \right] \right\} \text{ for integer values of exceedances } x \text{ from 0 to 7.}
\]
The acceptance range at a 95 percent confidence level is \(x \in [1, 6] \).
Examples of backtesting

- Unconditional coverage test of daily VaR at 99 percent confidence level
 - Using 5 years of data 30Sep2014 to 30Sep2019
 - Use parametric VaR with EWMA volatility estimate
- Assume constant position size each day, backtest in return terms
- Backtest two single-position portfolios:
 - Long position in S&P 500
 - Short position in AUD against USD
 - AUD-USD exchange rate expressed as USD price of A$1
 - Short loss if exchange rate rises
- Results:
 - Reject H_0 for long position in S&P 500 at 0.95 and 0.99 significance levels
 - Reject H_0 for short position in AUD-USD at neither 0.95 nor 0.99 significance levels
 - AUD-USD exchange rate expressed as USD price of A$1
 - Short loss if exchange rate rises.
Examples of backtesting

<table>
<thead>
<tr>
<th></th>
<th>Long S&P 500</th>
<th>Short AUD-USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>no. obs.</td>
<td>1258</td>
<td>1304</td>
</tr>
<tr>
<td>acceptance range</td>
<td>7–20</td>
<td>7–20</td>
</tr>
<tr>
<td>no. excessions</td>
<td>28</td>
<td>17</td>
</tr>
<tr>
<td>% excessions</td>
<td>2.23</td>
<td>1.30</td>
</tr>
<tr>
<td>value of test stat</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Points denote daily returns, solid plot the 98 percent confidence level, expressed as a return and measured using a EWMA volatility estimate with a decay factor of $\lambda = 0.94$. Orange x’s denote excessions of the VaR. Left: long position in the S&P 500 index. Right: short position in AUD against USD.
Limitations of the unconditional coverage test

- Weak test: hard to reject H_0 unless number of observations T very large
- Disregards size of exceedances (\rightarrow expected shortfall)
- Disregards clustering of exceedances (\rightarrow alternative tests, return models)
Backtesting of VaR

Critiques of VaR

Overview
Variability of VaR estimates
The coherence critique of VaR
Limitations of VaR

- **Accuracy:**
 - Inadequate treatment of frequency and size of tail risk ⇒ generally poor performance during crises
 - But even when no recent financial crisis, low power, i.e. hard to reject null
- **VaR doesn’t tell risk manager how large loss might be if VaR exceeded**
 - In VaR limit system, may incentivize traders to take more risk
 - Trades may increase return, as well as probability of tail losses much larger than VaR, while increasing VaR much less
 - Can be addressed through use of (→) **expected shortfall**
- **Even if the distribution model were right:** nonlinear risks, options
- **The devil in the details:** subtle and not-so-subtle differences in how VaR is computed ⇒ large differences in results
- **VaR is not coherent** because it is not **subadditive:** a portfolio may have a VaR larger than the sum of the individual positions’ VaR
- **Procyclicality:** widespread use of similar VaR models in setting trading limits can amplify price fluctuations
Getting whatever answer you want from VaR

- Compute 10-day (2-week) VaR four different ways
 1. Parametric: assume log returns normally distributed
 1.a Using 10-day volatility, computed via exponentially weighted moving average (EWMA) using non-overlapping observations
 1.b Using 1-day volatility times $\sqrt{10}$
 2. Historical simulation using non-overlapping observations
 2.a Using 2 years of data
 2.b Using 5 years of data
- Express results as a return (easy to turn into a dollar amount)
- Results: large differences among approaches

<table>
<thead>
<tr>
<th>Technique</th>
<th>12Mar2003</th>
<th>26Nov2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parametric: 10-day volatility</td>
<td>9.90</td>
<td>14.43</td>
</tr>
<tr>
<td>Parametric: 1-day volatility $\times \sqrt{10}$</td>
<td>9.03</td>
<td>28.75</td>
</tr>
<tr>
<td>Historical simulation: 2 years of data</td>
<td>8.15</td>
<td>24.60</td>
</tr>
<tr>
<td>Historical simulation: 5 years of data</td>
<td>9.66</td>
<td>20.15</td>
</tr>
</tbody>
</table>
Backtesting the four models

Backtesting VaR, 99 percent confidence level. With $T = 513$ and $\alpha = 0.99$, the acceptance range is $[2, 10]$. Points denote returns, blue plot the VaR, expressed as a return, red \times’s denote excessions.
Variability and model risk

- **Model risk**: Risk of losses due to errors in models and how applied
- Choice of VaR model can lead to over- or underestimate of risk *ex post*
- → Subject to manipulation
 - Choice of computational technique, historical lookback period
 - Distributional hypothesis, pricing models in simulations
 - Choice of risk factors, e.g. mapping resi subprime to AAA corporate
 - Mapping position and hedge to same risk factor: voil‘a, no basis risk
Coherence of risk measures

- **Coherence** is a set of standards for risk measures to ensure they do not lead to perverse or counterintuitive rankings of strategies.
- Defined mathematically, but implement these intuitions:
 - **Monotonicity**: if one portfolio’s return is always greater than that of another, its measured risk must be smaller.
 - **Homogeneity of degree one**: doubling every position in a portfolio should exactly double its measured risk.
 - **Subadditivity**: the risk of a portfolio should be no greater than the sum of the risks of its constituents.
 - **Translation invariance**: adding a riskless asset to a portfolio should reduce its measured risk by that same amount.
- VaR doesn’t satisfy the subadditivity condition.
Examples of failure of subadditivity of VaR

- Examples are easy to generate: require
 - Positions susceptible to large loss, but with low probability, i.e. below $1 - \alpha$, with α the VaR confidence level
 - Each position has zero or negative VaR
 - Positions are independent, or have low correlation, or low probability of joint event of loss
 - Loss probabilities and correlations are such that probability of *loss on at least one position* exceeds α

- Examples of positive-VaR portfolios at the 99 percent confidence level consisting of zero- or negative-VaR positions
 - Market-risk VaR: two option positions, short a far out-of-the-money (OTM) call and OTM put, each with probability of exercise just less than 1 percent
 - Credit-risk VaR: two loans, each with a default probability just less than 1 percent and low default correlation