Default correlation in the single-factor model

Portfolio credit VaR in the single-factor model
Default correlation in the single-factor model

Single-factor model for portfolios
Conditional independence in the single-factor model

Portfolio credit VaR in the single-factor model
Standard model for portfolios: overview

- Correlations of two individual firms’ asset returns key parameters of their default correlation
- Assume no correlation between idiosyncratic risk of different firms
- (Eventually,) assume all obligors identical:
 - Same default probability for all credits
 - Same default correlation for all pairs of credits
- Exploit **conditional independence**: once a realization of the market factor is stipulated, firms’ returns independent
- Law of Large Numbers ⇒ idiosyncratic risk disappears
- Model distribution of portfolio credit loss as if it were probability distribution of single-obligor default
 - Correlation nonetheless affects default distribution, in conjunction with market shock
Asset return correlation in the single-factor model

- Firms $i = 1, 2, \ldots$, each with its own β_i to the market factor m and its own standard normal idiosyncratic shock ϵ_i:

$$r_i = \beta_i m + \sqrt{1 - \beta_i^2} \epsilon_i, \quad i = 1, 2, \ldots$$

- β_i is correlation of firm i’s return to market return
- Assume no correlation between idiosyncratic risk of different firms: ϵ_i uncorrelated across firms:

$$\mathbb{E} [\epsilon_i \epsilon_j] = 0, \quad i, j = 1, 2, \ldots$$

- \Rightarrow Asset returns of firms i and j follow bivariate standard normal distribution
 - Mean of each firm’s return is 0, variance of each firm’s return is 1
 - Asset return correlation of firms i and j is $\beta_i \beta_j$
 - **Example:** $\beta_i = 0.25, \beta_j = 0.5 \Rightarrow$ asset return correlation 0.125
Asset return and default correlation

- Asset return correlation $\beta_i \beta_j$ related to—but not exactly the same concept as—firm i and j default correlation
- Default correlation ρ_{ij} related to asset return correlation $\beta_i \beta_j$ via

$$\rho_{ij} = \frac{\pi_{ij} - \pi_i \pi_j}{\sqrt{\pi_i(1 - \pi_i)} \sqrt{\pi_j(1 - \pi_j)}}$$

- $\Phi(r_i, r_j; \beta_i \beta_j)$ denotes asset returns’ joint cumulative probability distribution function (CDF)
 - $\Phi(x_i, x_j; \rho_{ij})$ is the joint CDF of two standard normal variates x_i and x_j with a correlation of ρ_{ij}
 - $\pi_{ij} = \Phi(k_i, k_j; \beta_i \beta_j)$ is ith, jth firms’ joint default probability
 - k_i, k_j: firm i and j default thresholds
- Asset return correlation and default correlation thus related by

$$\Phi(k_i, k_j; \beta_i \beta_j) = \pi_i \pi_j + \rho_{ij} \sqrt{\pi_i(1 - \pi_i)} \sqrt{\pi_j(1 - \pi_j)}$$
Correlated and uncorrelated defaults

Simulation of defaults applying the single-factor model in a portfolio of two credits, both with $\pi = 0.01$. Left panel: correlation coefficient $\rho = 0$. Right panel: correlation coefficient $\rho = 0.50$. Orange grid lines are placed at default thresholds. Simulated return pairs marked by points if they result in default of at most one credit and by \times's if they result in default for both. Realizations of the asset return pair have a 99.5 percent probability of falling within the density contour.
Asset return and default correlation: example

- Identical firms with common default threshold k and probability $\pi = 0.01$
- Asset return correlation and default correlation related by
 \[\Phi(k, k; \beta^2) = \pi^2 + \rho \pi (1 - \pi) \]
- Use relationship to
 - Assume value for default correlation and solve joint default probability $\Phi(k, k; \beta^2)$ for asset correlation β^2
 - Assume value for β and calculate default correlation ρ via $\Phi(k, k; \beta^2)$

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Market return correlation β</td>
<td>0.5251</td>
<td>$\sqrt{0.25}$</td>
</tr>
<tr>
<td>Asset return correlation β^2</td>
<td>0.2757</td>
<td>0.25</td>
</tr>
<tr>
<td>Default correlation</td>
<td>0.04</td>
<td>0.0341</td>
</tr>
<tr>
<td>Joint default probability</td>
<td>4.9600×10^{-4}</td>
<td>4.3752×10^{-4}</td>
</tr>
</tbody>
</table>
Market factor and conditional independence

- Let m take on a particular realization \bar{m}
- The standardized asset return—now has only one random driver, idiosyncratic factor ϵ_i

$$r_i = \beta_i \bar{m} + \sqrt{1 - \beta_i^2} \epsilon_i, \quad i = 1, 2, \ldots$$

- Distance-to-default—the default-triggering return—becomes $-k_i + \beta_i \bar{m}$
- ϵ_i independent \Rightarrow conditional returns of two different obligors

$$\sqrt{1 - \beta_i^2} \epsilon_i, \sqrt{1 - \beta_j^2} \epsilon_j, i \neq j$$

are independent

- \Rightarrow **Conditional independence**: default outcomes for different firms independent
 - Conditioning is on realization of market risk factor
Conditional default distribution of a single obligor

- Once the market shock is known:
 - Mean of the return distribution changes: $0 \rightarrow \beta_i \bar{m}$
 - Variance of the return distribution reduced: $1 \rightarrow 1 - \beta_i^2$
 - Because we have eliminated market factor as source of variation
 - And standard deviation from $1 \rightarrow \sqrt{1 - \beta_i^2}$
 - Distance-to-default changes: $-k_i \rightarrow -(k_i - \beta_i \bar{m})$
 - In standard units: $-k_i \rightarrow -\frac{k_i - \beta_i \bar{m}}{\sqrt{1 - \beta_i^2}}$

- Default probability $\rightarrow \Phi \left(\frac{k_i - \beta_i \bar{m}}{\sqrt{1 - \beta_i^2}} \right)$
 - With $\Phi(x)$ the CDF of a standard normal variate x

\[p_i(m) = P [r_i \leq k_i|m] = \Phi \left(\frac{k_i - \beta_i m}{\sqrt{1 - \beta_i^2}} \right), \quad i = 1, 2, \ldots \]
Conditional default probability: given market shock

Density and cumulative probability as a function of idiosyncratic shock. Graph assumes $\beta_i = 0.4, k_i = -2.33$ ($\Leftrightarrow \pi_i = 0.01$), and $\bar{m} = -2.33$. The unconditional default distribution is a standard normal, while the conditional default distribution is $\mathcal{N}(\beta_i \bar{m}, \sqrt{1 - \beta_i^2}) = \mathcal{N}(-0.9305, 0.9165)$. The orange area in the density plot and horizontal grid line in the cumulative distribution plot identify $p(\bar{m})$, as in the example.
Conditional default distributions: example

- Firm: $\beta_i = 0.4, k_i = -2.33$ (so $\pi_i = 0.01$)
- Market shock: $\bar{m} = -2.33$ (sharp downturn)

<table>
<thead>
<tr>
<th></th>
<th>Unconditional</th>
<th>Conditional</th>
<th>Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean return</td>
<td>0</td>
<td>-0.9305</td>
<td>-0.9305</td>
</tr>
<tr>
<td>Return variance</td>
<td>1</td>
<td>0.8400</td>
<td>-0.1600</td>
</tr>
<tr>
<td>Return std. deviation</td>
<td>1</td>
<td>0.9165</td>
<td>-0.0835</td>
</tr>
<tr>
<td>Distance-to-default</td>
<td>2.33</td>
<td>1.3958</td>
<td>-0.9305</td>
</tr>
<tr>
<td>(standardized)</td>
<td>2.33</td>
<td>1.5230</td>
<td>-0.8034</td>
</tr>
<tr>
<td>Default probability</td>
<td>0.01</td>
<td>0.0639</td>
<td>0.0539</td>
</tr>
</tbody>
</table>
Properties of the conditional distribution

- Once the market factor is realized, the default distributions of individual loans/obligors are independent
- But the market factor continues to be a random variable—together with idiosyncratic risk—driving default
- Both parameters β_i and k_i continue to influence the shape of the distribution function
Conditional default distributions

Probability of default of a single obligor, conditional on the realization of \(m \) (x axis). Default probability 1 percent (\(k = -2.33 \)). Conditional cumulative distribution function of default \(p(m) \). Values of the distribution function run from 1 to 0 because it is plotted against \(m \) rather than \(\frac{k-\beta m}{\sqrt{1-\beta^2}} \).
Default correlation in the single-factor model

Portfolio credit VaR in the single-factor model

Derivation of the credit loss distribution function
Portfolio credit loss distribution
Portfolio credit VaR
From conditional default probability to portfolio loss

- Additional assumptions on credit portfolio:
 - Identical obligors: market risk factor loading β, pairwise correlation β^2, default probability $\pi = \Phi^{-1}(k)$
 - Granularity: homogeneous and completely diversified portfolio
 - Zero recovery
- \Rightarrow Conditional default probability common to all obligors:

$$p(m) = \Phi \left(\frac{k - \beta m}{\sqrt{1 - \beta^2}} \right) = \Phi \left(\frac{\Phi^{-1}(\pi) - \beta m}{\sqrt{1 - \beta^2}} \right) \quad \forall i = 1, 2, \ldots$$

- Law of Large Numbers \Rightarrow
 - Granularity \Rightarrow idiosyncratic risk disappears
 - Portfolio loss a function *only* of market shock
- Fraction x of loans defaulting—portfolio *loss rate*—equals single-firm default *probability*, conditional on market shock:

$$x = p(m) = \Phi \left(\frac{\Phi^{-1}(\pi) - \beta m}{\sqrt{1 - \beta^2}} \right)$$
Probability distribution of the credit loss rate

- Loss rate $x = p(m)$ is random, because it is a function of latent random factor, market shock m
- What is probability distribution of x?
- We’ve posited a standard normal distribution for m, from which we can derive distribution of x
 1. Find market shock m that leads to a given loss rate x
 2. Probability of loss rate x equals probability of market shock m that leads to it
Market factor and loss rate

- Step 1: solve for m as a function of x:

$$m = \Phi^{-1}(\pi) - \frac{\sqrt{1 - \beta^2 \Phi^{-1}(x)}}{\beta}$$

- Sharply negative market factor m corresponds to high loss rate x

Market factor as a function of loss rate. Default probability $\pi = 0.01$ (1 percent, $k = -2.33$), $\beta = 0.25$.
Credit loss distribution

- Step 2: associate probability of loss rate x with that of corresponding market shock m
- Recall m a standard normal variate:

$$P[\tilde{m} \leq m] = \Phi[m]$$

- Cumulative probability distribution function of credit loss is

$$P[\tilde{x} \leq x] = P[\tilde{m} \geq m] = 1 - P[\tilde{m} \leq m] = 1 - \Phi[m] = \Phi[-m]$$

- Therefore

$$P[\tilde{x} \leq x] = \Phi\left[\frac{\sqrt{1 - \beta^2\Phi^{-1}(x)} - \Phi^{-1}(\pi)}{\beta}\right]$$

- The complicated term “inside” is the market factor realization m corresponding to any given loss rate x
- And m is a standard normal, the standard normal CDF “outside” is that of m
Market factor and portfolio loss distribution

- The probability of a loss in excess of any stipulated level x is then

$$P[\tilde{x} \geq x] = 1 - P[\tilde{x} \leq x] = P[\tilde{m} \leq \frac{\Phi^{-1}(\pi) - \sqrt{1 - \beta^2} \Phi^{-1}(x)}{\beta}]$$

$$= \Phi\left[\frac{\Phi^{-1}(\pi) - \sqrt{1 - \beta^2} \Phi^{-1}(x)}{\beta}\right]$$

- A high loss rate x corresponds to a market factor realization with a low probability
- Probability of realizing a loss rate no higher than x is therefore high
- Random loss rate \tilde{x} below level x ⇔ realized value of market factor \tilde{m} higher than associated level m
Factor and portfolio loss distribution

- Although treating portfolio “as if” a single credit, correlation still affects default distribution
 - Correlation operates through market shock
- Expected loss (EL) rate equals default probability π, constant across the many small obligors
Impact of default probability

- For realistic default probabilities below 50 percent, median portfolio loss rate is below the loan default rate

- Low default probability:
 - For moderate correlation, low default probability induces Bernoulli-like, “binary” loss behavior in the portfolio
 - Loss density very skewed to low loss levels
 - High likelihood that portfolio losses low

- High default probability:
 - Higher likelihood of higher portfolio losses
 - Loss density more spread out over range of loss levels

- For realistic default probabilities below 50 percent, median portfolio loss rate is below the loan default rate
Granular portfolio, $\beta = \sqrt{0.3} = 0.5477$ for all obligors. Losses expressed as a fraction of portfolio par value.
Impact of correlation on credit loss distribution

• Correlation near 0: median loss close to default probability π
 - $P[\bar{x} \leq \pi] \rightarrow 0.5$ for $\beta \rightarrow 0$
 - High probability that realized portfolio loss rate close to typical firm’s default probability
 - Intuition: with low default rates and low correlation, default clusters are close to impossible

• Correlation near 1: loss distribution, close to binary
 - Portfolio behaves as if single loan/obligor
 - $P[\bar{x} = 0]$ almost $1 - \pi$: high probability of no loss
 - $P[\bar{x} = 1]$ (complete loss) almost π: material probability of complete loss

• Correlation “in the middle” and typical ($\pi \leq 0.5$) default rates
 - $P[\bar{x} \leq \pi] > 0.5$
 - Correlation benefit: probability that portfolio loss below typical firm’s default probability greater than 50%
 - Intuition: with low default rates and intermediate correlation, default clusters are rare
Single-factor model: correlation and loss distribution

Granular portfolio; default probability 5 percent. Losses expressed as a fraction of portfolio par value.
Portfolio credit VaR

- Loss distribution function \rightarrow quantiles of $P[\tilde{x} \leq x]$
- Quantiles of $P[\tilde{x} \leq x]$ (minus EL) \rightarrow credit VaR
- Higher correlation leads to higher VaR
 - By increasing likelihood of default clusters
Portfolio credit VaR in the single-factor model

Granular portfolio; default probability 0.05 percent. Losses expressed as a rate or fraction of portfolio par value. Color-coded vertical grid lines indicate credit VaR at 99-percent confidence level for each default correlation assumption. Color-coded points mark quantiles of portfolio credit losses for each default correlation assumption.