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Vega risk is analytically easy to “‘nest” into the standard risk management framework,
but is complicated by the prevalence of volatility smiles and term structures in most
option markets. Volatility smiles, in spite of their occasionally treacherous effects on
option books, are often neglected by risk managers. This paper provides a guide to
incorporating vega risk into a “/classical’ value-at-risk (VaR) model. The paper includes
a tractable approach to capturing the effects of the volatility smile and term structure
on vega risk and their interaction with other risk factors. The author also presents a
summary of the statistical behavior of implied volatility and relates it to observed
differences in the pattern of implied volatilities from that predicted by the Black-
Scholes model. The VaR computation strategy employs the smile to compensate for
the shortcomings of the Black-Scholes model and provide improved VaR forecasts
without a specific alternative model.

1. INTRODUCTION

Vega risk, the risk arising from fluctuations in implied volatility, can be a large
part of the risk of a portfolio containing options. Vega risk is analytically easy
to “nest” into the standard risk management framework. The treatment of vega
risk in portfolios is, however, complicated by the prevalence of volatility smiles
and term structures in most option markets. These option market phenomena
run counter to the benchmark Black—Scholes option pricing model, in which
implied and historical volatility are constant over time and invariant with respect
to option maturity and likelihood of exercise. Researchers have developed
models incorporating stochastic volatility, jump-diffusions, and other alterna-
tives to the pure constant-volatility diffusion environment of the Black—Scholes
model. Some option dealers and risk managers use these models to refine their
option prices and return forecasts.

However, volatility smiles, in spite of their occasionally treacherous effects on
option books, are often neglected by risk managers. A common metric for
market risk for a portfolio of financial assets is value-at-risk (VaR), a measure of
the maximum loss to the portfolio that can occur over a specified time horizon
with a specified confidence level. This paper provides a guide to incorporating
vega risk into a “‘classical” VaR model. The paper suggests a practical approach
to capturing the effects of the volatility smile and term structure on vega risk and
their interaction with other risk factors. In our discussion, we will present several
examples using a high-quality database of foreign exchange implied volatilities.

! The data, sourced from JP Morgan’s foreign exchange desk and available from RiskMetrics,
includes implied volatilities for a wide range of currency pairs and maturities, extensive coverage of
volatility smiles, and term structures.
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While our approach does not incorporate an alternative option pricing model
to Black—Scholes, it does take account of the observed departures of real-world
option pricing from the standard model by incorporating the volatility smile and
term structure. If option markets are reasonably efficient, the smile and term
structure will reflect the same deviations of volatility behavior from the random
walk that the alternative models attempt to capture. Using market prices in this
way avoids committing the risk manager to a particular forecasting model and
exploits instead the readily available information embedded in market prices.

Section 2 describes how to compute a VaR for a portfolio containing options
that takes vega risk into account in the simplest possible way, disregarding the
discrepancies between the Black—Scholes model and real-world option prices.
This captures exposure to the general level of implied volatility and the
correlations of implied volatility with returns on the underlying market factors.
The following sections describe the discrepancies between the model’s predic-
tions and actual option price behavior, and propose an adaptation of the
standard VaR model that takes these discrepancies into account without
requiring specification of an alternative model.

2. VEGA RISK IN THE BLACK-SCHOLES MODEL

Option positions are exposed to a range of market risks. Delta and gamma risk
are the exposures of an option position to changes in the prices of the
underlying assets. Vega, denoted «, is the exposure of an option position to
changes in the implied volatility of the option. The change in the option value is
defined as a partial derivative, i.e., it assumes all other factors determining the
option value are held constant:

. d(option value)
~ d(implied volatility)

Vega is measured in dollars or other base currency units, implied volatility in
percent per annum.

An implied volatility is linked to a particular option valuation model. The
most common is the Black—Scholes model. Because implied volatility is defined
only in the context of a particular model, an option pricing model is required to
measure vega. Vega is then defined as the partial derivative of the call or put
pricing formula with respect to the implied volatility. The Black—Scholes model
vega of a call or put option on a dividend-paying asset is

In(S,/X)+(r—d+ %02)1)’ O

k=T Stedfqb( e

where o is the implied volatility, S, the current underlying price, X the exercise
price, T the remaining time to maturity, r the t-year financing or money market
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FIGURE 1. Option value as a function of implied volatility. One-month dollar—yen calls,
premium in JPY. Out-of-the-money exercise price 2.5% above forward rate; in-the-

money exercise price 2.5% below forward rate.

rate, d the dividend, interest, or other cashflow the underlying asset is expected
to return over the term of the option, and ¢ the standard normal density.
Some properties of vega in the Black—Scholes model are illustrated in Figures 1

and 2:

e The value of a put or call increases monotonically with the implied volatility.
The vega of a long option position is therefore always positive.

e Vega is at a maximum for an at-the-money option. The value of an option is
therefore almost linear in the implied volatility for an at-the-money option.

e The vega of a longer-term option is greater than that of a shorter-term

option.
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FIGURE 2. Option vega. Dollar-yen calls, premium in JPY, implied volatility 16.7%. In-

the-money exercise price 2.5% below forward rate.
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The vega exposure of an option position is defined as the change in position
value if the implied volatility rises and is calculated as the option vega times the
underlying amount of the option (the “number of options”).

The simplest approach to computing a VaR for a portfolio containing options
is to treat implied volatility analogously to other market risk factors, such as
equity, foreign exchange, and interest rates of different maturities. Logarithmic
changes—‘‘returns”’—in implied volatility are assumed to be jointly normally
distributed with the remaining risk factors in the portfolio with mean zero and a
constant variance-covariance matrix.> An analogous assumption of lognormal-
ity is frequently made for interest rates in risk models and avoids assigning a
positive probability to negative implied volatilities. Under the model assump-
tions, the logarithm of tomorrow’s implied volatility is normally distributed with
a mean of zero and a standard deviation v,y /T, Where vy, is the standard
deviation of the implied volatility, or “vol-of-vol”’, with t the VaR horizon in
days, and the 90% confidence interval for next-day implied volatility is
1.650e*"!

If the only market risk of an option were vega, the VaR of a portfolio
containing a single option would be

underlying amount - « - 1.650(e"' — 1) ~ underlying amount - « - 1.650 - v,,,.

An option position is exposed to delta and gamma risks as well as vega, and
these must also be accounted for in VaR. In a simple parametric VaR frame-
work incorporating exposure to both the underlying price and to implied
volatility, the VaR of a single option with a 1-day horizon and a 95% confidence
level is

1.65 |underlying amount| \/[ 8SVgpot KUUVO1]|: ! psPOlt’VO'i|[8SVSP01},

pspot,vol KOVyol

where § denotes the option delta and vy, the historical volatility of the
underlying asset.*

Example 2.1 Consider a short position in a 1-month at-the-money forward
(ATMF) dollar—yen put, i.e, a put on the dollar, with premium and exercise
price denominated in yen and with an exercise price equal to the current forward
price of the asset. The underlying amount is $1 000 000, the current spot rate is

2 The standard approach to VaR computation is described by Morgan Guaranty Trust Company
(1996).
2

3 More precisely, the expected value of the logarithm of the next-day implied volatility is o — %vvol,
but we ignore the negligible second term. Note that at the risk of some confusion, we express implied
volatility at an annual rate and the vol-of-vol at a daily rate.

# In principle, exposure to volatility is a nonlinear risk, making parametric VaR inaccurate, though,
for at-the-money options, vega risk is almost exactly linear, as seen in Figure 1. Even for at-the-
money options, parametric VaR is less accurate than Monte Carlo VaR, as the exposure to the
underlying is highly nonlinear. See Mina and Ulmer (1999) for more detail.
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¥120, the financing rate, i.e., the yen-denominated money-market rate, is 50 basis
points, the US money-market rate is 5%, and the implied volatility is 15%. The
initial option vega is x = 13.76. The vega of the short option position is
—1000000kx = —¥13 759100, or —$114 659.

The standard deviation of 1-day logarithmic changes in 1-month implied
volatility is v,, = 0.0567 (5.67%). The VaR arising from vega risk, disregarding
other market risks, is 1.65 -%- 13.76 - 0.15- 0.0567 = $1609. The dollar—
yen put option delta is —0.48932 and the delta equivalent is a long dollar
position of 1000000 - 0.48932 = $489320. The daily spot rate volatility is
Vspot = 0.0097. The VaR of the delta equivalent, ignoring vega as well as the
gamma and higher-order nonlinear exposures to the underlying spot rate, is
1.65 - 1000000 - 0.489 32 - 0.0097 = $7794.> The correlation of dollar—yen re-
turns with logarithmic changes in the I-month implied volatility is —0.395.
The tendency for a weakening dollar to coincide with a rise in option prices
might be due to an increased desire of Japanese exporters to hedge their foreign
exchange earnings if a weaker dollar appears likelier.

The parametric VaR is

1.65 - 1000000

0.489 - 0.0097 T 1 —0395 0.489 - 0.0097
VL -k 13.759140.15-0.0567 ] | -0.395 1 | — k- 13.759 - 0.15- 0.0567 |

or $8558. The correlation benefit reduces VaR by 7794 4+ 1609 — 8558 = $845.

In this example, delta risk—exposure to the price of the underlying asset—
predominates. In some option portfolios, vega risk can be much greater than
delta risk, e.g., in a delta-hedged option, a straddle (a call and put with the
same exercise price), and a strangle (a call and a put with different exercise
prices).

Example 2.2 We now add a delta hedge to the short dollar—yen put of
Example 2.1, so the portfolio consists of a short put position together with a
short dollar position of $489320. This portfolio will generally have much
smaller fluctuations in value than the naked option, but is exposed to gamma
and vega risk.

To illustrate, consider the Monte Carlo results for the VaR of the hedged
option portfolio. We generate n shocks (u; spor» Ui vo1) from a bivariate normal
distribution with a mean of zero and a variance-covariance matrix based on
Vspots Vyol» a0d Pgpoivol- The portfolio is revalued using the Black—Scholes
model.®

5 Historical volatilities and correlations are those prevailing on 8 February 1999.

® We have ignored the aging of the option and the forward points paid to carry the long dollar
position overnight. Even with a large interest rate differential such as 5% favoring the yen, the
points add about 2 basis points to the daily cost of holding yen against dollars, negligible compared
with the standard deviation of 1%. Note also that the VaR on the delta hedge is not centered exactly
at zero. Rather, because we convert to dollars by dividing by the exchange rate, there is a slight
downward bias: if the average shock u; is zero, the average of the e ™ is slightly less than zero.
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Table 1. Returns on dollar-yen option portfolios.

0.05 0.95 Mean Median
quantile quantile

Examples 2.1 and 2.2. Hedged short dollar—yen put option portfolio: naive approach

Unhedged option, return to spot fluctuations —9158 6837 —386 72
Delta hedge —7698 7749 -38 —69
Hedged option, return to spot fluctuations —1659 14 —424 —186
Option, return to vol fluctuations —1689 1528 -35 9

Unhedged option, return to spot and vol fluctuations —9880 7599  —424 54
Hedged option, return to spot and vol fluctuations  —2589 1240 —462 —338

Example 4.1. Hedged short dollar—yen put option portfolio: fixed smile technique
Hedged option with dollar-bearish smile —2474 1078 —543 —460
Hedged option with dollar-bullish smile —3062 1451  —468 —288

Example 4.2. Hedged dollar-bearish risk reversal: fixed smile technique
Risk reversal with dollar-bearish smile =712 406 —128 —124
Risk reversal, ignoring smile -216 551 84 24

Example 4.3. Hedged short dollar—yen put option portfolio: random smile technique
Hedged option with dollar-bearish smile —2384 1082 —523 —447

The data in the table are 1-day changes in portfolio value. The underlying amount is $1 000 000 and
all options have a tenor of 1 month. The initial data are: spot rate ¥120, USD risk-free rate 5.5%,
JPY risk-free rate 0.5%, implied volatility 15%. The risk reversal portfolio contains a long 25-delta
yen call and a short 25-delta yen put. The 0.05 quantile = VaR x (—1) at a 95% confidence level.

Table 1 shows results of the Monte Carlo simulation. Incorporating vega risk
gives a more accurate picture of the risks of the hedged position, raising the VaR
from $1659 to $2589.

3. LIMITATIONS OF THE BLACK-SCHOLES MODEL

3.1 Anomalies in the Statistical Behavior of Implied Volatility

The Black—Scholes model assumes that asset returns follow a random walk with
a constant volatility. The Black—Scholes implied volatility is the market estimate
of that volatility. Since volatility is a constant, vega risk does not exist in the
Black—Scholes model. In real-life markets, implied volatility fluctuates widely.
There is therefore a contradiction, overlooked in the previous section, in using
the Black—Scholes implied volatility and the Black—Scholes vega to measure vega
risk. The Black—Scholes model is only a useful first approximation to the “true”
model governing volatility and the Black—Scholes implied volatility is not
necessarily a correct measure of anticipated volatility. It is rather a market-
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adjusted parameter in the Black—Scholes option pricing formulas which is
related to, but not identical to, anticipated volatility.

To illustrate variations in implied volatility, we consider 11 assets, described in
Table 2. Table 3 displays descriptive statistics on implied volatility, computed for
daily and weekly observations over long sample intervals. The range of variation
of implied volatility is wide. For example, annualized 1-month ATMF dollar—
yen vols have ranged from 6.2% to 40%. As Examples 2.1 and 2.2 make clear,
vega risk can add considerably to the VaR of a portfolio containing options.
One reason for this is the typically high daily standard deviation of log changes
in implied volatility, or vol-of-vol. For dollar—yen, it has averaged about 5.3%,
or 80% per annum.

The assumption made in the previous section, that log implied volatility
returns follow a normal distribution, is also only a crude approximation. In fact,
implied volatility returns are highly kurtotic and generally skewed, particularly
in daily observations. Implied volatility is strongly mean-reverting, as shown in

TABLE 2. Reference information for implied volatility data.

Sample size

Asset Description Sample period Weekly Daily

CME S&P500 S&P500 index, 28Jan83-080ct99 4063 863
3-month futures

CME Eurodollar USD 3-month Libor, 21Mar85-080ct99 3633 758
3-month futures

Liffe short sterling GBP 3-month Libor, 03Apr90-12Dec99 2406 503
3-month futures

CBOT 30-year bond  US Treasury bond, 24Feb86—12Dec99 3466 721
41-month futures

Nymex crude light oil Crude oil, 21Mar85-080ct99 1781 374
I-month futures

Gold Spot New York gold, 05Jan85-04Jan00 1267 259
USD per ounce

USD-JPY Spot dollar—yen 31Mar92-31Aug99 1897 387
exchange rate

USD-EUR Spot dollar-mark 31Mar92-13Sep99 1907 389
exchange rate

GBP-EUR Spot sterling-mark 31May90-14Dec99 2455 500
exchange rate

USD-MXP Spot dollar—Mexican peso 02Feb97-14Dec99 724 148
exchange rate

USD-THB Spot dollar-Thai baht 20Jan95-31Aug99 1176 240

exchange rate

At-the-money volatilities for futures options, computed from puts and calls with exercise prices
adjacent to the futures settlement price. Constant maturity implied volatilities by linear interpolation
of major-contract implied volatilities with adjacent maturities. One-month at-the-money forward
volatilities for currencies and gold.

Volume 3/Number 2, Winter 2000/2001

47



48

A. M. Malz

TABLE 3. Full sample descriptive statistics on implied volatilities.

Implied volatility levels Implied volatility logarithmic returns
Mean Min. Max. Mean SD  Skewness Kurtosis

A. Daily observations

CME S&P500 16.9 9.6 81.1 —0.00 4.38 4.42*%  106.20%*
CME Eurodollar 15.5 5.4 40.6 —0.02 4.71 0.42%* 7.09%
Liffe short sterling 13.2 5.2 36.0 0.01 506 —0.24* 8.88*

CBOT 30-year bond 10.4 6.9 23.5 =001 270 —0.57* 17.69*
Nymex crude light oil ~ 29.0 14.0 59.6 0.05 4.02 0.52* 11.41%*

Gold 11.4 4.0 53.5 0.08 6.94 1.93* 15.47*
USD-JPY 11.8 6.2 40.0 0.02 527 1.01* 5.36*
USD-EUR 10.8 6.2 240 —0.01 4.14 1.85% 14.95*
GBP-EUR 7.5 2.5 18.0 0.01  5.66 0.26* 51.05*
USD-MXP 12.2 5.7 43.0 0.03  9.89 6.54* 99.09*
USD-THB 12.1 1.4 60.0 0.02  6.62 2.78* 31.07*

B. Weekly observations

CME S&P500 16.8 9.7 58.0 0.02 7.84 2.14%* 21.37*
CME Eurodollar 15.5 5.5 39.7  —0.07 9.86 0.70* 5.78*
Liffe short sterling 13.2 53 36.0 0.06 10.70 0.04 6.20*
CBOT 30-year bond 10.4 7.0 202 —0.04 554 0.33* 7.56%
Nymex crude light oil ~ 29.0 14.3 56.5 0.24 8.37 0.72% 3.05%
Gold 11.4 4.0 53.0 0.33  16.00 1.57* 10.31*
USD-JPY 11.8 6.4 28.5 0.10 10.90 1.13* 4.59*
USD-EUR 10.8 6.5 21.5 —=0.03 84l 1.28% 5.06*
GBP-EUR 7.5 2.6 18.0 0.06 11.40 0.53* 9.03*
USD-MXP 11.9 5.7 32.0 0.15 23.00 3.62% 22.53%*
USD-THB 12.1 1.4 60.0 0.16 17.10 2.34% 14.12%*

Implied volatility levels: percent per annum. Implied volatility returns: daily logarithmic changes, in
percent. Mean and SD: mean and standard deviation of daily vol returns in percent. Kurtosis:
coefficient of kurtosis excess. Skewness: skewness coefficient. Asterisk denotes test statistics signific-
antly different from zero (test of normal distribution) at 99% confidence level.

Tables 4 and 5. Table 4 displays autocorrelation coefficients for the 11 assets
studied. In most cases, negative and statistically significant coefficients are
predominant among the daily autocorrelations, and the first-order weekly
autocorrelation coefficient is negative and statistically significant.

Table 5 displays variance ratio tests. Under the hypothesis that implied
volatility follows a random walk, the vol-of-vol over a longer time interval is
equal to the vol-of-vol over a shorter period multiplied by the square root of
the ratios of the time intervals. The vol-of-vol over a trading week, say, is
expected to be about +/5 times the daily vol-of-vol. This property can be tested
using variance ratios, which measure the ratio between long- and short-period
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return variances, normalized by the ratios of the time intervals. If implied
volatility follows a random walk, its variance ratios are expected to be close
to 1. If instead implied volatility is mean-reverting, the per-period volatility of
longer-term implied volatility returns will be smaller than the volatility of one-
period returns and its variance ratios will be smaller than 1. The variance
ratios of implied volatilities provide additional evidence of mean reversion. In
almost all cases, the variance ratios are less than unity, and decline for longer
horizons.

One notable exception to this pattern is the USD-THB series. Statistically and
economically significant positive autocorrelations and variance ratios in excess of

TABLE 4. Autocorrelation coefficients of implied volatility returns.

Autocorrelation coefficients Box—Pierce statistics
1 2 3 4 Os O

A. Daily observations
CME S&P500 —8.2¥*  —6.8%* 22 0.6 48.5%* 62.1%*
CME Eurodollar 0.8 —8.5%* 2.1 2.2 31.2%* 48.0**
Liffe short sterling -3.1 -1.0 —-1.4 —3.8% 10.1 27.77%*
CBOT 30-year bond —2.6 —=5.0%*  —0.9 —1.8 13.0%* 20.9%*
Nymex crude light oil —12.7%* 2.5 =22 —0.1 30.9%* 38.8%*
Gold 10.6**  —5.8** 9 1** _51* 34.2%* 45.2%*
USD-JPY —0.8 —6.5%%  —84¥* 22 22.6%* 29.5%%*
USD-EUR —4.1* —0.8 —9.6%* —2.6 23.4%* 37.8%*
GBP-EUR —15.0%%  —0.5 3.0 —5.2%%* 63.8%* 68.5%*
USD-MXP 3.6 -2.5 —1.1 —0.6 1.5 24.1**
USD-THB 11 1%* 10.4%* 8.6%* 2.2 37.2%* 40.5%*
B. Weekly observations
CME S&P500 —5.9% —9.7%% 32 -3.1 23.8%* 35.4%%*
CME Eurodollar =9.7¥*  —-5.0 -1.6 —4.7 10.9 13.2
Liffe short sterling =55 —12.6%* 8.0%* —4.5 14.2%* 16.2
CBOT 30-year bond =9.1** 2.6 —-1.7 —2.8 9.1 11.8
Nymex crude light oil  —8.4 —6.0 —4.5 1.5 5.6 9.2
Gold —11.6* -5.7 -9.0 6.8 8.9 12.9
USD-JPY —14.0%* =26 -9.6*  —0.5 11.7% 15.3
USD-EUR —15.2%%* 2.8 -3.7 —6.4 17.0%* 19.9%
GBP-EUR —14.9%% 22 9.9¥* 5.1 20.4%* 30.1%*
USD-MXP —19.5%* 9.6 —6.2 -8.0 9.8 14.1
USD-THB 12.1% 4.1 -5.8 -2.3 6.7 16.1

Autocorrelation coefficients in percent. Asterisk (double asterisk) denotes test statistics significantly
different from zero at 95% (99%) confidence level (test against normal distribution).

Box-—Pierce statistics in percent. Asterisk (double asterisk) denotes test statistics significantly greater
than zero at 95% (99%) confidence level (test against chi-square distribution).
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TABLE 5. Variance ratios of implied volatility returns.

qg=2 g=4 qg=28 qg=16
A. Daily observations
CME S&P500 0.92 0.80 0.72 0.61
CME Eurodollar 1.01 0.92 0.84 0.76
Liffe short sterling 0.97 0.94 0.89 0.76
CBOT 30-year bond 0.98 0.91 0.81 0.75
Nymex crude light oil 0.87 0.83 0.78 0.70
Gold L.11* 1.06 0.95 0.82
USD-JPY 0.99 0.88 0.76 0.64
USD-EUR 0.96 0.89 0.77 0.68
GBP-EUR 0.85 0.79 0.71 0.65
USD-MXP 1.04 1.03 0.95 0.95
USD-THB 1.11 1.32% 1.51* 1.64%
B. Weekly observations
CME S&P500 0.94 0.80 0.62 0.50
CME Eurodollar 0.91 0.80 0.68 0.57
Liffe short sterling 0.95 0.84 0.76 0.69
CBOT 30-year bond 0.91 0.83 0.69 0.49
Nymex crude light oil 0.90 0.78 0.68 0.55
Gold 0.89 0.73 0.63 0.42
USD-JPY 0.86 0.72 0.55 0.43
USD-EUR 0.85 0.79 0.62 0.52
GBP-EUR 0.85 0.80 0.76 0.68
USD-MXP 0.82 0.82 0.62 0.38
USD-THB 1.13 1.22 1.28 1.02

Asterisk denotes test statistics significantly greater than zero at 95% confidence level (test against chi-
square distribution). The variance ratios and test statistics are VR(g) and v¥*(g) as described by
Campbell, Lo, MacKinlay (1997, pp.48ff.). The statistics are computed assuming a mean implied
volatility return equal to zero.

unity are evident even at lags of many weeks. This can be explained by the
abandonment of the fixed exchange rate system on 2 July 1997: in the course of a
currency crisis that results in the breaking of a peg, the currency often depreciates
and implied volatilities rise over a protracted period of weeks or even months.

3.2 Anomalies in the Cross-Section Pattern of Implied Volatility

Apart from the time-variation and statistical behavior of implied volatility, the
cross-sectional pattern of observed implied volatilities also differs from that
predicted by the Black—Scholes model. In real-life markets, the implied volatility
for a given asset at a given time is not an identical constant for all options on a
given asset observed at a given time, but differs for options with different exercise
prices and different times to maturity. These patterns of implied volatility are
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FIGURE 3. The volatility smile in the S&P index market. Implied volatilities on
11 September 1998 of December 1998 options on December 1998 futures.

known as the volatility smile and the term structure of volatility and have been
observed for options on most assets. The volatility surface, the plot of the implied
volatilities of a particular asset as a function of exercise price and time to
maturity, combines these phenomena:’

Smile The volatility smile describes the characteristic shape of the plot of
implied volatilities of options of a given time to expiry against the delta or
against the exercise price: out-of-the-money options often have higher implied
volatilities than at-the-money options. Typically, the curvature is less for
longer-term options than for short-term options.

Smirk and sneer The volatility smile is often skewed, so that out-of-the-money
call options have implied volatilities which differ from those of equally out-
of-the-money put. The lopsided pattern of implied volatility across exercise
prices is often called the “smirk™ or ““sneer” by market participants, as in
Figure 3.

Term structure The term structure of implied volatility describes the pattern of
options with the same exercise price but different maturities, which generally
have different implied volatilities.

Portfolios containing options are exposed not only to changes in the level of
implied volatility but also to:

e changes in the curvature and skewness of the smile;

e changes in implied volatility along the smile;

e changes in the slope of the term structure of volatility;

7 On the volatility smile, see, among many other examples, Heynen (1994) and Pefia, Rubio, and
Serna (1999) on equity indexes, Melick and Thomas (1997) for crude oil futures, and Xu and Taylor
(1994) and Malz (1996) for currencies. On the term structure of volatility, see, e.g., Campa and
Chang (1995) on currencies and Stein (1989) on equity indexes.
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e changes along the term structure of volatility as the option ‘“‘ages”.

In Section 4, we will examine how these anomalies affect VaR estimation,
focusing on foreign exchange markets. Before doing so, it may be useful to
introduce some institutional features and quotation conventions of the foreign
exchange option market.® In foreign exchange option markets, dealers use the
Black—Scholes option delta as a metric for exercise price and the Black—Scholes
implied volatility as a metric for price. The delta and implied volatility are
related to current market data via the Black—Scholes pricing functions. The
volatility smile can then be represented as a schedule of implied volatilities of
options on the same underlying and with the same maturity but different deltas.
This convention is unambiguous, since a unique exercise price corresponds to
each call or put delta and a unique option premium in currency units corres-
ponds to each implied volatility. The most liquid option markets are for ATMF
(50-delta options) and for 25-delta calls and puts. There are also actively traded
markets in 10-delta calls and puts.

The liquidity of out-of-the-money options in foreign exchange markets has led
to the widespread trading of option combinations, in particular the straddle, the
strangle, and the risk reversal. The straddle combines a call and a put with the
same exercise price, usually the current forward outright rate. The strangle and
the risk reversal combine an out-of-the-money call and an out-of-the-money put
with the same delta, usually 25% (less often 35, 30, or 10%), and the same
maturity. The exercise price of the call component is higher than the current
forward outright rate, and the exercise price of the put is lower by approximately
the same proportional amount. The strangle consists of a long out-of-the-money
put and call. The risk reversal consists of a long out-of-the-money call and a
short out-of-the-money put.

The prices of these option combinations are expressed in vols rather than
currency units in over-the-counter market parlance. The implied volatility of the
put component of an at-the-money forward straddle is identical to that of the
call (by virtue of put—call parity) and is referred to as the straddle or at-the-
money forward volatility and denoted here by atm,. The straddle price, denoted
str;, is generally quoted as the spread between the average of the out-of-the-
money implied volatilities and the ATMF volatility. The risk reversal price,
denoted rr,, is generally quoted as the spread between the out-of-the-money base
currency call and put volatilities. It can be positive or negative.

In Figure 4, a quadratic polynomial is fitted to the observed ATMF and 25-
and 75-delta implied volatilities. In the quadratic case, the smile has an intuitive
parametrization in terms of the quoted option prices:

o(8) = atm, — 2rr,(8 — 0.50) + 16str,(5 — 0.50). @)

This closed form for the smile provides intuition for the currency option price
conventions: the strangle volatility is a “measure of location” of the smile, the

8 See Malz (1997) for detail on these conventions.
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FIGURE 4. The volatility smile in the foreign exchange market. One-month dollar—yen
options, 8 February 1999. Source: DataMetrics.

strangle price indicates the degree of curvature, and the risk reversal price
indicates the degree of skewness of the smile.

The smile displayed in Figure 3 is skewed toward lower values of the under-
lying asset. This is commonly called a “put skew,” since out-of-the-money puts
have higher vols than equally out-of-the-money calls. This is something of a
misnomer, since the smiles of puts and calls are identical when graphed against
exercise price. If the put and call smiles differed, it would violate put—call parity
and open up arbitrage opportunities.

3.3 Alternative Option Pricing Models to Black—Scholes

The cross-sectional and statistical anomalies in option prices have given rise to a
large body of research developing alternative models to Black—Scholes. The
alternative models seek consistency with the anomalies and with the statistical
behavior of the underlying asset prices and implied volatilities.

The most widely accepted of these modeling approaches represents the
underlying asset volatility as stochastic rather than constant. In this approach,
an additional stochastic process is introduced to describe volatility behavior.’
Recent work has focused on the autoregressive conditional heteroscedasticity
(ARCH) family of models of stochastic volatility, with which the researcher can
attempt to capture both the volatility smile and the observed dynamics of asset
prices and volatility. "

° An example of this approach is given by Hull and White (1987). Several papers, including Stein
and Stein (1991) and Heston (1993), propose a mean-reverting specification for the logarithm of
volatility, which is quite consistent with the empirical observations presented here.

' Duan (1999), for example, presents a generalized ARCH (GARCH) model that captures
additional features of the observed statistical properties of underlying asset volatility, in particular
the fact that returns appear to follow a fat-tailed distribution even after volatility innovations are
accounted for.
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Another approach, less widely applied, is to model the asset price as following
a jump-diffusion process. As in the stochastic volatility class of models, an
additional stochastic process is introduced, here describing the size and timing of
discrete changes in the underlying asset price. This approach is intuitively
appealing, but regarded as somewhat less successful than the stochastic volatility
family of models in replicating the statistical behavior of asset volatility."'

The stochastic volatility and jump-diffusion approaches have several draw-
backs. First, they introduce additional sources of risk, jump risk and volatility
risk, that cannot be perfectly hedged in the standard continuous-trading model.
As a result, the jump and volatility risks must be assumed to be nonsystematic,
or their returns must be known, in order to derive the option price by no-
arbitrage arguments. Otherwise, the option price must be derived in the context
of a particular equilibrium model of the economy in which tastes and
technology are specified, or assumptions such as diversifiability must be made
that set the price of these additional risk factors to zero. Second, the parameters
of the resulting option models must generally be estimated statistically rather
than being implied by the set of observed option prices. The models do not have
satisfactory forecasting power for asset and option returns, so, to increase
accuracy, practitioners update the parameters of the models frequently in order
to increase their accuracy. This is problematic in precisely the same way that
time-varying volatility is for the Black—Scholes model.

A third approach focuses on replicating as precisely as possible the cross-
sectional anomalies in option prices. It represents volatility as nonconstant but
deterministic, varying in accordance with a local volatility function with the
future date and the then-prevailing level of the underlying asset. In the
deterministic volatility approach, the volatility surface for European options is
used to estimate the local volatility function.'?

The deterministic volatility model has the advantage of preserving the no-
arbitrage derivation of option prices, even for exotic options, without being tied
to the Black—Scholes hypothesis of a constant volatility. As a result, the stochastic
process of the underlying asset is implicit in the volatility function and can also be
retrieved.'® However, it appears that the local volatility function is not stable. As a
result, the deterministic volatility approach forecasts future option prices less well
than the internally inconsistent but simpler approach of using the volatility
surface to forecast future implied volatilities and thus option prices.'* This
approach is adopted in the next section to incorporate the statistical and cross-
sectional anomalies in implied volatility into VaR estimation.

' See, e.g., Bates (1991). Bates (1996) combines the jump-diffusion and stochastic volatility
approaches to explain currency option behavior. Bakshi, Cao, and Chen (1997) provide an empirical
assessment of a range of option models.

12 Examples of this approach include those of Derman and Kani (1994), Dupire (1997), and
Demeterfi et al. (1999).

13 See Rubinstein (1994).
14 See the extensive empirical study by Dumas, Fleming, and Whaley (1998).
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4. VEGA RISK IN THE PRESENCE OF A VOLATILITY SMILE
AND TERM STRUCTURE

In obtaining more accurate VaR estimates than with the “naive” Black—Scholes
approach of Section 2, one can apply an alternative model of the joint behavior
of asset price returns and volatility, such as stochastically or deterministically
variable volatility, or jump-diffusion. Several drawbacks of these approaches
were noted in the previous section. None of the models current in the literature
has been able to accurately replicate and forecast the joint behavior of the entire
volatility surface and the spot market over time.

Rather, we draw a forecast of the joint behavior of the underlying price and
implied volatility directly from the volatility surface. The rationale for this
approach, like that of the deterministic volatility approach, is that the volatility
surface contains an implicit risk-neutral estimate of the distribution of future
asset returns and volatility. Both approaches take into account the phenomena
that stochastic volatility and jump-diffusion models attempt to capture, as well
as other phenomena such as shifting correlations between the level of the
underlying asset price and the shape and level of the volatility surface, insofar
as these phenomena have become embedded in the market-assessed constellation
of implied volatilities.

The main advantage of the approach here is that it does not rely on a
particular model of the process but draws on the more complicated model
expressed in the market. However, by relying on current implied volatilities
rather than historical prices, it can be influenced by shifts in risk premiums as
well as changes in implicit market forecasts. These shifts in risk premiums
cannot, in the current state of the art, be accurately distinguished from changes
in expectations.'” We build this approach in steps, first assuming the shape of
the volatility smile to be constant over the forecast horizon, and then permitting
the shape to vary over time.

4.1 Fixed Volatility Smile

In the simpler approach to incorporating the smile, we ignore changes in the
shape of the volatility smile and take into account only parallel shifts in the
volatility smile and changes in implied volatility along the volatility smile as the
spot rate changes. The only new wrinkle here is that implied volatility scenarios
are determined not only by the normally distributed shocks u; ., to the general
level of implied volatility, but by a displacement along the volatility smile. The
displacement along the smile is determined by the shock to the cash price, as
shown in Figure 5.

In the fixed-smile approach, we assume the shock to implied volatility shifts
the entire volatility smile up or down, but does not change the shape of the

!5 Recently, Ait-Sahalia and Lo (2000) has attempted to distinguish empirically between the risk
premiums and expectations embedded in risk-neutral probability distributions.
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FIGURE 5. Perturbation of spot and vol under the fixed smile approach.
Source: DataMetrics.

smile. The smile shifts in exercise price—vol space, but not in delta—vol space.'®
The fixed smile approach partially compensates for one of the shortcomings of
conventional VaR, the fact that the assumption of normal returns is only an
approximate description of the actual behavior of cash prices and implied
volatilities. The volatility smile is one manifestation of nonnormal returns,
and the fixed smile approach lets us take it into account using standard VaR
computations.

Example 4.1 We return to Example 2.2 of a delta-hedged short at-the-money
dollar—yen option and continue to assume that the at-the-money volatility is
15%. In addition, we assume that the risk reversal and strangle are —2.5% and
0.5 vols. We use Monte Carlo computation, as in Example 2.2 above.!’

A positive shock to the underlying shifts the smile to the right, so that the
at-the-money implied volatility now applies to a higher exercise price. An
existing put (call) option which yesterday was at-the-money is now slightly out-
of-the-money (in-the-money). It is revalued at the implied volatility corres-
ponding to its new, lower (higher) delta. For the dollar-bearish volatility smile
of our example, this means that a positive shock to the exchange rate (dollar
up) leads to a rise in the implied volatility of an at-the-money put and a decline
in the implied volatility of an at-the-money call along the volatility smile.

In the Monte Carlo computation of VaR, we combine correlated shocks to
spot and implied volatility. To understand the net effect of the smile on VaR, we

16 Derman (1999) labels this approach the “sticky smile” approach to implied volatility.

7 These data are close to those observed on 8 February 1999 and displayed in Figure 4, but are
rounded off in the example for ease of exposition. The volatility skew in the dollar—yen market has
typically, over the decade or so for which we have data, favored the yen, i.e., the average risk
reversal is negative. A risk reversal of —0.025 would be considered high, but not unusually so.
Similarly, a curvature of 0.005 is high, but not extreme, for dollar—yen.
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need to analyze the effect on portfolio value of the four possible combinations
of positive and negative shocks to these two factors:

Spot up, vol up This is the worst combination for the hedged short at-the-
money put. The rise in the dollar creates a “bad gamma’ trading loss (as will
be the case for a drop in spot). The dollar appreciation also drives the
volatility of the put higher along the smile, as it becomes, say, a 40- rather
than 50-delta option. Thus volatility rises both as a result of the shock to
volatility and as a result of the change in moneyness.

Spot up, vol down The rise in the dollar’s value creates a bad gamma trading
loss and drives the volatility of the put higher along the smile. In this case, the
rise in vol along the smile is offset by its decline due to the vol shock.

Spot down, vol up The fall in the dollar’s value also creates a gamma loss. The
vol falls along the volatility smile as the put becomes, say, a 60-delta option,
offsetting the rise due to the vol shock.

Spot down, vol down This is the best combination for the hedged short at-the-
money put. The vol falls both along the smile and because of the vol shock.
The result is a gain offset only by the gamma loss.

A similar analysis can be applied to hedged long put, and long and short call,
portfolios. The long put portfolio behaves precisely as does the short put
portfolio, but with signs reversed. The hedged call portfolio behaves in precisely
the same way as the hedged put portfolio.

To understand the net effect of the smile on VaR, we need also to consider the
correlation between the at-the-money implied volatility and the spot rate.
Because of the pronounced negative correlation between spot and vol, there is
a preponderance of scenarios in which spot and vol move in opposite directions,
which leads to offsetting effects of the smile and the vol shock. As a result, the
smile lowers VaR from $2589 to $2474. In general, one can expect a bearish
volatility smile, i.e., one skewed to lower strikes, when there is a negative
correlation between implied volatility and the underlying price. The smile is
thus under normal circumstances somewhat “self-insuring”. With a dollar-
bullish smile, in contrast, VaR is increased to $3062.

Example 4.2 The smile can have a large an impact on the VaR of a risk
reversal. A risk reversal is vega neutral: its delta is identically equal to 0.50 at the
time it is initiated, since it combines a short and long position with deltas of
25%, while the vega is close to zero at initiation, as seen in Figure 6. As is the
case for any portfolio of options, the delta and vega must be actively managed
as the spot rate changes. At the time of initiation, in the absence of a volatility
smile, the return profile of the risk reversal is nearly symmetrical. In the presence
of a smile, the return distribution is no longer symmetrical, but can be heavily
skewed.

Consider a short position in a yen-bullish risk reversal consisting of a long
position in a 25-delta dollar put and a 25-delta dollar call in a market in which
the volatility smile is as shown in Figure 4. Dealers might have such a position
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FIGURE 6. Vega of a risk reversal. One-month dollar-yen options, premium in JPY, 8

February 1999. Black-Scholes vega incorporating the smile by evaluating equation (1),

for each value of the spot rate, at the implied volatility associated with the delta for that
spot rate. Source: DataMetrics.

because of customer demand for protection against a weaker dollar. Because a
risk reversal is vega-neutral and has low gamma risk, the VaR of a delta-hedged
risk reversal is very low in the absence of the smile. In the presence of a smile,
however, the VaR increases dramatically. In the case at hand, VaR more than
triples, from $216 to $712, as seen in Table 1.

4.2 Random Volatility Smile

There is a more complex approach to incorporating smile effects on VaR, in
which the 25-, 50-, and 75-delta implied volatilities are permitted to vary in
correlated fashion. For exchange-traded options, one can permit the at-the-
money implied volatility and the vols corresponding to one or two strikes on
each side of the current futures price to vary together. The procedure is
mechanically analogous to time bucketing along a maturity spectrum. To obtain
an implied volatility for the shocked value of the underlying price, we
interpolate between the shocked smile points using the interpolation scheme
described above.

Example 4.3 We first calculate correlated shocks to spot and the 25-, 50-, and
75-delta implied volatilities. The vector of standard deviations is (0.0097, 0.0558,
0.0567, 0.0554) and the correlation matrix is
1 —-0.300 -0.395 -0.483
1 0.986 0.946
1 0.986
1
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FIGURE 7. Dollar-yen 1-month 25-delta risk reversals and strangles.
Source: DataMetrics.

The 25-, 50-, and 75-delta implied volatilities are highly correlated with one
another. The 75-delta call vol has a markedly higher negative correlation with
the spot rate, i.e., when the dollar weakens the skewness against the dollar
becomes more pronounced and the risk reversal price becomes more negative.
This may amplify some of the effects of the smile on VaR outlined in the
previous section. In the case of the short at-the-money put portfolio, the effects
are small, as seen in Table 1. The VaR is now $2384.

Both the term structure and the shape of the volatility smile generally change
slowly over time compared with the level of implied volatility. However, when
the levels of spot and implied volatility change abruptly, it is often accompanied
by a sharp change in the slope of the term structure and the curvature of the
smile. We are unlikely to pick up these relationships with our lognormality
assumption regarding implied volatilities, and it is probably best to stress-test for
their effects. A table of changes in term spreads and measures of smile curvature
accompanying large changes in cash prices and implied volatility can provide
scenarios for such stress tests. Figure 7 shows how abruptly the smile can change
shape.

4.3 The Term Structure of Volatility and Vega Risk

One effect of the term structure of volatility is that as an option “‘ages”, its
implied volatility changes along the term structure. The mechanics of the aging
of options in moving their implied volatilities along the prevailing term structure
are analogous to the mechanics of cash price shocks moving implied volatilities
of options along the smile. The difference is that the effect of “‘aging” is
deterministic rather than random.

Except for very short term options (less than 1 month), the VaR horizon of 1
day is typically short compared with the spread between the vols of options with
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different maturities. The shortening of the option maturity by 1 day, or even
10 days, is therefore unlikely to change the implied volatility materially along the
term structure. For example, if the spread between the 1-month implied volatility
and the 3-month implied volatility is a relatively high 1.20 vols, the aging of a 3-
month option will change its volatility by only 15 basis points (0.0015) per day.
This is typically small compared with the vol-of-vol, which in Example 2.1 was
0.0567. We will therefore ignore changes in the term of the option.

Just as risk managers must address changes in the shape of the volatility smile
as well changes along the smile due to variations in cash prices, they must take
into account changes in the shape of the term structure of volatility. Term
structure risks can be addressed by dividing the maturity spectrum into buckets.
For each underlying asset, options in each maturity bucket has a vega risk
correlated with that of other maturity buckets, with the cash asset prices, and
with other assets. In practice, the availability of implied volatility data may limit
the fineness of the maturity grid.

Example 4.4 (Term structure of dollar-yen volatilities) Returning to the ex-
ample of dollar—yen, the vector of standard deviations is (0.0097, 0.0567, 0.0226)
and the correlation matrix of the spot rate and the 1- and 12-month implied
volatilities is

1 —-0.395 -0.085

1 0.769
1

In this example, shorter- and longer-term implied volatilities are not as highly
correlated with one another as points on the volatility smile. The correlations of
implied volatility with the spot rate decay rapidly as the time to maturity

40 |
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25 ¢
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Jan 94 Jan 95 Jan 96 Jan 97 Jan 98 Jan 99

FIGURE 8. Dollar-yen 1-month and 12-month at-the-money forward implied volatility.
Source: DataMetrics.
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increases. As one would expect in light of its mean-reversion properties, longer-
term implied volatility is less variable than shorter-term implied volatility. These
important difference between shorter- and longer-term volatility need to be
captured in an accurate VaR analysis of a portfolio containing both.

As noted at the end of the last section, and can be seen in Figure 8, the term
structure can change shape abruptly, generally at the same time that cash prices
and the level and shape of volatility smile are shifting. Stress testing is therefore a
required supplement to standard VaR analysis.

5. CONCLUSIONS

We conclude with some generalizations and suggestions for risk managers on
dealing with vega risk, which can be responsible for a large part or even the bulk
of the VaR of a portfolio containing options.

The volatility smile can have a large impact on VaR. However, the smile may
also reduce vega risk because large volatility changes along the smile are offset
by volatility changes correlated with spot movements.

A vega-neutral portfolio has only a small exposure to the general level of
implied volatility, but may have a very large exposure to the volatility smile. Risk
managers encountering vega-neutral trades should be skeptical of VaR reports
that do not take account of the smile.

In order to lay out the structure of the risk measurement techniques proposed
here as clearly as possible, we have focused largely on VaR computation.
Recently, however, risk management research and practice have become more
aware of the inadequacy of VaR as a central risk measure in view of the evident
nonnormality of asset price behavior.'® The techniques presented in this paper
could readily be adapted to provide basic stress-test measures such as the loss
from an adverse 5- or 10-vol move in a subset of markets.

For example, the techniques presented in Section 4 assume that implied
volatility is jointly lognormally distributed with other asset prices and rely on
the volatility smile to correct this assumption with the market’s expected return
distribution (in the risk-neutral sense). Rapid changes in the shape of the smile
are likely to accompany sharp changes in the levels of implied volatility and
cash assets. Stress testing can reveal the vulnerability of a portfolio to large
smile changes, especially for a vega-neutral or low-vega portfolio. Extensions
of the work presented in this paper and further research on vega risk
management generally should take account of work currently being done on
stress testing, extreme value theory, and other approaches to measuring the risk
of large losses.

8 Many recent examples of this work can be found on the Al About Value-at-Risk web site at
www.gloriamundi.org/var/stress.html and in the April 2000 issue of the RiskMetrics Journal,
available www.riskmetrics.com/research/journals/rmj2q00.pdf.

Volume 3/Number 2, Winter 2000/2001

61



62

A. M. Malz

REFERENCES

Ait-Sahalia, Y., and Lo, A. W. (2000). Nonparametric risk management and implied risk
aversion. Journal Of Econometrics, 94(1/2), 9-51.

Bakshi, G., Cao, C., and Chen, Z. (1997). Empirical performance of alternative option
pricing models. Journal of Finance, 52(5), 2003-2049.

Bates, D. S. (1991). The Crash of ’87: was it expected? The evidence from options
markets. Journal of Finance, 46(3), 1009-1044.

Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in
Deutsche Mark options. Journal of Financial Studies, 9(1), 69-107.

Campa, J. M., and Chang, P. K. (1995). Testing the expectations hypothesis on the term
structure of volatilities in foreign exchange options. Journal of Finance, 50(2), 529-547.

Campbell, J. Y., Lo, A. W., and MacKinlay, A. C. (1997). The Econometrics of Financial
Markets. Princeton University Press.

Demeterfi, K., Derman, E., Kamal, M., and Zou, J. (1999). A guide to volatility and
variance swaps. Journal of Derivatives, 6(4), 9-32.

Derman, E. (1999). Regimes of volatility. Quantitative Strategies Research Notes,
Goldman Sachs. Available at www.gs.com/qs/doc/regimes.pdf.

Derman, E., and Kani, 1. (1994). Riding on a smile. Risk, 7(2), 32-39.

Duan, J.-C. (1999). Conditionally fat-tailed distributions and the volatility smile in
options. Mimeo. Available at www.bm.ust.hk/~jcduan/ft_opt.pdf.

Dumas, B., Fleming, J., and Whaley, R. E. (1998). Implied volatility functions: Empirical
tests. Journal of Finance, 53(6), 2059-2106.

Dupire, B. (1997). Pricing and hedging with smiles. In: Mathematics of Derivative
Securities (ed. M. A. Dempster and S. R. Pliska), pp. 103-111. Cambridge University
Press.

Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with
applications to bond and currency options. Review of Financial Studies, 6(2), 327-343.

Heynen, R. (1994). An empirical investigation of observed smile patterns. Review of
Futures Markets, 13(2), 317-354.

Hull, J., and White, A. (1987). The pricing of options on assets with stochastic
volatilities. Journal of Finance, 47(2), 281-300.

Malz, A. M. (1996). Using option prices to estimate realignment probabilities in the
European Monetary System: The case of sterling-mark. Journal of International Money
and Finance, 15(5), 717-748.

Malz, A. M. (1997). Estimating the probability distributions of the future exchange rate
from option prices. Journal of Derivatives, 5(2), 18-36.

Melick, W. R., and Thomas, C. P. (1997). Recovering an asset’s implied PDF from
option prices: An application to oil prices during the Gulf Crisis. Journal of Financial
and Quantitative Analysis, 32(1), 91-115.

Journal of Risk



Vega risk and the smile

Mina, J., and Ulmer, A. (1999). Delta-gamma four ways. Working Paper, RiskMetrics
Group.

Morgan Guaranty Trust Company (1996). RiskMetrics Technical Document, 4th edn.

Pefia, I., Rubio, G., and Serna, G. (1999). Why do we smile? On the determinants of the
implied volatility function. Journal of Banking and Finance, 23(8), 1151-1179.

Rubinstein, M. (1994). Implied binomial trees. Journal of Finance, 49(3), 771-818.

Stein, E. M., and Stein, J. C. (1991). Stock price distributions with stochastic volatility:
An analytic approach. Review of Financial Studies, 4(4), 727-752.

Stein, J. (1989). Overreactions in the option markets. Journal of Finance, 44(4),
1011-1023.

Xu, X., and Taylor, S. J. (1994). The term structure of volatility implied by foreign
exchange options. Journal of Financial and Quantitative Analysis, 29(1), 57-74.

Volume 3/Number 2, Winter 2000/2001

63



