6.1 Introduction

As discussed in the previous chapters, the Type I chemical looping process (see Chapter 2) uses a metal/metal oxide particle with a specially designed support and promoters that can undergo multiple (>100) reduction/oxidation cycles while maintaining a high oxygen-carrying capacity. These particles, in oxidized form, are capable of reacting with different kinds of carbonaceous fuels, such as coal, biomass, syngas, hydrocarbons, and wax, after which the particles are reduced to the metallic form. At the reduced state, particles can be oxidized to the original state by air, O₂, CO₂, or steam. Thus, these engineered chemical looping particles allow the efficient conversion of various carbonaceous fuels to heat CO, H₂, syngas, or any combination of these products. These particles also can be used in the production of steam, electricity, chemicals, or gaseous and liquid fuels. Furthermore, the particle reaction rate, because of the presence of promoter and support, can be an order of magnitude faster than the metal/metal oxide in its pure form. In addition, as mentioned in earlier chapters, the redox process in two different reactors also provides a built-in CO₂ separation feature.

The Type II chemical looping process (see Chapter 2) uses metal oxide/metal carbonate particles to capture CO₂, sulfur, and halide impurities simultaneously over multiple cycles while maintaining a high capture capacity (0.5-g CO₂ captured per gram of metal oxide). The metal oxide particles are capable
of capturing CO₂, sulfur and halide impurities from flue gas and fuel gas streams generated from a variety of feed stocks, including coal, natural gas, and biomass to form a mixture of solids mostly consisting of the metal carbonate. The metal carbonate can be calcined to produce a sequestration-ready CO₂ stream. This chemical looping process integrated with a gasification system can produce electricity, hydrogen, chemicals, and liquid fuel and with a combustion system can produce electricity with a very low CO₂ footprint.

The high efficiency and flexibility of these chemical looping processes allow a wide range of novel applications for this technology. These applications include onboard hydrogen production, carbon dioxide capture, solid oxide fuel cell, direct solid fuel cell, enhanced steam methane reforming, tar sand digestion, liquid fuel production, and chemical looping with oxygen uncoupling, all of which are discussed in this chapter.

6.2 Hydrogen Storage and Onboard Hydrogen Production

Because hydrogen is an important clean energy source for the future, various hydrogen production technologies, including the chemical looping process, currently are being developed. The goal is to provide technically and economically feasible ways of generating hydrogen at a large scale. One key issue related to the application of hydrogen as a carbon-free, pollutant-free energy carrier is hydrogen storage. In particular, hydrogen has the potential to be the transportation fuel of the future, because it does not lead to CO₂ emissions that cause global warming. Unless hydrogen is used in a stationary energy conversion system, it has to be transferred to another site, generated in a distributed generation system or generated onboard a vehicle. However, economically storing or generating hydrogen onboard a vehicle at a high density (both volumetric and gravimetric) is a challenge.¹⁻¹² Thus, the development of high-capacity hydrogen storage materials has been one of the focal areas for energy research in recent years. The key factors to be considered for the development of hydrogen storage and/or onboard hydrogen generation systems are as follows: hydrogen capacity, cost, durability/operability, hydrogen charging/discharging rates, fuel quality, the environment, safety, and health.¹² In what follows, a new onboard hydrogen generation system derived from chemical looping technology is introduced, as well as other, more extensively studied, hydrogen storage methods.

6.2.1 Compressed Hydrogen Gas and Liquefied Hydrogen

Two of the simplest ways to store hydrogen are as a compressed gas and in liquefied form. Current commercially available high-pressure tanks are capable of storing hydrogen gas at 340 atm (5,000 psi) or 680 atm (10,000 psi).¹¹ At 340 atm, the specific volume of hydrogen is 42 L/kg. Thus, for a tank containing 5 kg of hydrogen, this corresponds to a volume of 210 L, without accounting
for the volume of the tank walls. Although the hydrogen is stored in pure form, when the weight of the tank is factored in (e.g., 86.3 kg for 4.7 kg of fuel at 204 atm), the gravimetric fuel capacity of high-pressure tanks is approximately 5 wt.%, which is significantly smaller than that of conventional liquid fuels. As shown in Figure 6.1, the gravimetric and volumetric energy densities of compressed hydrogen gas at 340 atm and 680 atm still are substantially lower than the goals set by the DOE FreedomCAR Partnership. Considering the nonideal behavior of hydrogen gas at high pressure, the increase in pressure beyond 680 atm would not improve significantly the energy content of this storage option. For example, doubling the pressure from 680 atm to 1,360 atm would only increase the volumetric hydrogen gas density by 30%, whereas higher pressure requires a large increase in compression power. At 340 atm, it is estimated that 8.5% of the energy content of the hydrogen would be consumed in compression. Unlike conventional tanks for liquid fuels, which can be constructed in different shapes and dimensions to best use the available space, high-pressure tanks for hydrogen storage only can be cylindrical. This also limits the application of compressed gas as a hydrogen storage option. However, compressed hydrogen gas currently is a mature option for vehicular applications, and further research is ongoing for the purpose of cost reduction and lower tank weight design.

Another method of storing pure hydrogen is in the liquefied form. According to its phase diagram, hydrogen exists as a liquid at below −253°C. Liquid hydrogen has a much higher density than compressed hydrogen with a specific volume of 14 L/kg, which significantly reduces the size of the onboard fuel tank. The major issues associated with liquefied hydrogen are the energy requirements for liquefaction and the dormancy period. The average energy consumption during liquefaction of hydrogen is 30% of the LHV (lower heating value of hydrogen), which is much greater than the energy for hydrogen compression to 340–680 atm. The dormancy period involves the gradual warming-up of hydrogen in the storage tank and the successive boil-off.

![Energy Density of Various Hydrogen Storage Options](image-url)
Research has suggested that for a tank containing 4.6 kg of fuel, approximately 4% of the hydrogen will be boiled off per day.14,15 Thus, cryogenic tanks with advanced insulation are being developed to overcome the dormancy issues.16,17 In particular, a high-pressure vessel, lined with aluminum and equipped with a composite outer wrap, a multilayer vacuum insulation, and an outer vacuum vessel, has been tested extensively and implemented in a demonstration vehicle.16,17 This vehicle can be fueled using either compressed hydrogen gas or liquid hydrogen depending on the desired driving distance.13

A hybrid hydrogen tank is a relatively new idea consisting of a typical compressed hydrogen tank that is filled partially with low-temperature reversible hydrogen absorbing alloys.18 Typical reversible hydrides such as LaNi and FeTi can store hydrogen with volumetric densities of 6.7–7.7 L/kg at 100°C, which is several times greater than compressed hydrogen13 in terms of volumetric density. Because of its high volumetric energy density, this combined storage option can allow more compact hydrogen storage without sacrificing the advantages of a compressed hydrogen system.

Compressed, liquefied, and hybrid tanks have the major advantage of instantaneously providing pure hydrogen at high rates, whereas other systems involving chemisorption or physisorption of hydrogen require a significant temperature swing to regenerate hydrogen on demand. Refueling also is relatively simple and fast because no chemical reactions are involved with the refilling of compressed and liquefied tanks, and the hydrogenation of the hydrides in hybrid tanks is considered to be rapid.

6.2.2 Metal Hydrides

Metal-hydride-based hydrogen storage is not a new technology and has been researched extensively during the past 30 years. Metal hydrides store hydrogen chemically in a crystalline structure that can pack more hydrogen into a given volume than liquid hydrogen. The reversible equilibrium reaction that involves hydrogen storage and regeneration can be written as follows:

\[
\text{MH}_{n,\text{solid}} + \text{Heat} \leftrightarrow \text{M}_{\text{solid}} + (n/2)\text{H}_2 \quad (6.2.1)
\]

However, because hydrogen is very light and the metals usually are fairly heavy by comparison, the hydrogen storage per unit weight is not as high. Hydrides involving light elements such as Li, Be, B, N, Na, Mg, and Al generally have acceptable hydrogen storage per unit weight;19–26 but for binary hydrides of these elements, the binding energy is too strong to be practical. A high binding energy means that the hydride will only release hydrogen at high temperatures.24,26 For example, MgH₂, one of the least stable binary hydrides among the light metals, has a theoretical hydrogen capacity of 7.6 wt.\%, but its equilibrium hydrogen pressure only reaches 1 atm at about 300°C.26

AlH₃ is a covalently bonded solid with 10.1 wt.\% theoretical hydrogen storage that is actually thermodynamically unstable at room temperature.11
Because it is unstable at room temperature, it can release hydrogen at temperatures below 100°C. No currently known process could produce AlH$_3$ efficiently or on a large scale, and this recycling of Al to AlH$_3$ would have to be done offsite. Many other hydrides exhibit high hydrogen capacities and may have other favorable properties, but they have the same drawback as AlH$_3$: that there is no known way to recharge the spent “fuel” efficiently or on a large scale.19 However, current examples of a few known hydride reactions include hydrolysis of MgH$_2$ with water to produce Mg(OH)$_2$ and hydrogen, and catalytic hydrolysis of NaBH$_4$ (which can be stored as a 25% solution in water) to produce aqueous NaBO$_2$ and hydrogen as shown in the following chemical reaction11:

\[\text{NaBH}_4 + 2\text{H}_2\text{O} \rightarrow \text{NaBO}_2 + 4\text{H}_2 \]

(6.2.2)

These sorts of hydrides may still find specialty applications where economics are not the primary consideration, but they currently are not suitable for mobile applications. If, however, a simple and efficient process for regeneration of any of these compounds was developed, they could in fact meet the requirements for both volumetric and gravimetric energy density.

A hydride that both can release hydrogen and be regenerated under mild conditions is called a reversible hydride. These hydrides usually have equilibrium hydrogen pressures of 1 atm at mild temperatures (\textasciitilde 0–60°C). With the proper catalysts, these hydrides can be generated from their metal alloys at room temperature and high pressure, and will release hydrogen at 1–2 atm at higher temperatures (still below 100°C).19 Early reversible metal hydrides include transition metal alloys such as FeTiH$_2$ and MNi$_5$H$_6$, where M can be various transition metals. Interestingly enough, the latter compound already is used in Ni–MH rechargeable batteries found in many digital cameras and other electronics. Unfortunately, these alloys typically contain only 1–2 wt.% hydrogen and therefore, they are not suitable for mobile applications.20

For a long time, sodium alanate (NaAlH$_4$) was considered to be in the same category as NaBH$_4$ and other irreversible hydrides despite having an equilibrium hydrogen pressure of 1 atm at \textasciitilde 30°C.20 This changed in 1997 when Bogdanovic and Schwickardi reported that NaAlH$_4$ could be regenerated under relatively mild conditions when doped with certain transition metals.20 So far, the best results have been obtained using Ti as the dopant.22 Typical conditions for Ti-catalyzed rehydrogenation are 100°C and 100 atm. A balance must be achieved between the kinetics, which become more favorable as the temperature increases, and the thermodynamics, which become less favorable as the temperature increases. NaAlH$_4$ has a theoretical hydrogen storage capacity of 5.5 wt.% and a reversible hydrogen storage of up to 5 wt.%. When the weight of the tank itself and the other components of the storage system are accounted for, the total system level capacity is expected to be only 2.5 wt.%. Current research tanks have a capacity of only 1 wt.%.11
Other techniques that are worth noting, but are not yet well developed, include lithium imide/lithium amide systems and destabilized mixtures of multiple hydrides. Lithium imide can be hydrogenated to lithium amide with 6.5 wt.% reversible storage at around 250°C. Other than the relatively high temperature required, this system also has the drawback of producing small amounts of ammonia, which poison polymer electrolyte membrane (PEM) fuel cells even at trace levels. Destabilized mixtures of hydrides are formed by mixing a high-capacity, stable hydride with a compound that forms a stable intermediate with the hydride’s dehydrogenated form. One such mixture is a blend of MgH$_2$ and LiBH$_4$, which has been reported to have 9 wt.% reversible storage capacities, but this is only achieved at a high temperature and with slow kinetics. This particular blend achieves a high capacity, because both components have fairly high hydrogen capacities. Future research may produce more destabilized mixtures with more favorable kinetics and thermodynamics.

6.2.3 Bridged Metal-Organic Frameworks

The recent development of fundamentally new classes of nanoporous materials based on metal organic structures has been a significant development in the field of gas storage. Metal-organic frameworks (MOFs) are solids that consist of inorganic groups, usually [ZnO$_4$]$^{6+}$, bonded to linear aromatic carboxylates that form a robust and highly porous cubic framework. Of particular interest for hydrogen adsorption are the isoreticular MOFs, or IRMOFs, whose surface area and gas adsorption capacities are larger than other microporous materials such as zeolites and carbon nanotubes. MOFs are promising candidates for gas storage applications because they can be synthesized at high purity, with high crystallinity, potentially large quantities, and at low cost. Perhaps most importantly, MOFs can have an almost endless variety of structures and functional groups, leading to the possibility of rational design of sorbent materials tailored to specific applications.

In recent years, IRMOFs by themselves have not produced spectacular results in terms of hydrogen adsorption at room temperature. For example, IRMOF-1 (or MOF-5) adsorbed hydrogen up to 4.5 wt.% at 78 K (−195°C), but only adsorbed 1.0 wt.% at room temperature and 20 bar (2 MPa). When MOFs are mixed with an active-carbon bridge, however, uptake at room temperature increased dramatically thanks to a phenomenon known as hydrogen spillover. Hydrogen spillover can be described as the dissociative chemisorption of hydrogen on one site, such as a metal particle, and the subsequent transportation of atomic hydrogen onto another substrate, usually carbon or alumina. In regard to the IRMOF structure, hydrogen rapidly dissociates and bonds to the metal/active carbon catalyst (Pt/AC), but slowly diffuses from the catalyst toward the MOF structure. It has been shown that surface diffusion of hydrogen atoms is the rate-determining step in hydrogen spillover. However, in the presence of carbon bridging, a secondary-spillover medium, the overall chemisorption process occurs faster. For example, Li and Yang have
shown that the uptake of hydrogen onto carbon-bridged IRMOF-8 at ambient conditions is eight times greater than that of pure IRMOF-8 under the same conditions, and that the processes are completely reversible/rechargeable at room temperature.31

Despite continued investigations and research on the kinetics of hydrogen spillover, the kinetics study of surface diffusion of hydrogen atoms under the ambient condition has not been reported. Moreover, the mechanistic details of hydrogen spillover still are not well understood.30 Thus, future investigation is needed to advance this hydrogen storage concept.

6.2.4 Carbon Nanotubes and Graphite Nanofibers

Carbon nanotubes (CNTs) generated considerable excitement when initial reports were published showing high storage capacities. Dillon et al. reported initial research on the storage potential of CNTs.32 They studied the adsorption of hydrogen on soot that contained 0.1–0.2 wt.% single-walled nanotubes (SWNTs) and extrapolated their data to determine a hydrogen storage capacity of 5–10 wt.%. Lee et al. predicted a hydrogen storage capacity of up to 14 wt.% in SWNTs based on theoretical calculations.33 Multiwalled nanotube (MWNT) capacity was found to vary from 2.7 wt.% to 7.7 wt.%.33

More recent studies have not been able to achieve the results predicted by Lee et al.33 Research conducted by Iqbal and Wang34 found hydrogen adsorption of 2.5–3.2 wt.% for SWNTs charged electrochemically. Reversible hydrogen storage of 1.5 wt.% was achieved with desorption taking place at 70°C. Dillon et al. conducted further research on hydrogen adsorption on MWNTs and found that although no hydrogen was adsorbed by clean MWNTs or iron nanoparticles under near-ambient conditions, MWNTs that contained significant quantities of iron nanoparticles were able to store 0.035 wt.% hydrogen.32 They concluded that the adsorption characteristics must result from an interaction between the MWNTs and the iron nanoparticles. Other studies have confirmed that the presence of metal nanoparticles is essential to hydrogen adsorption in both SWNTs and MWNTs. Most recent studies have found adsorption in the range of 1–4 wt.% for SWNTs and lower for MWNTs.34

Graphite nanofibers (GNFs) are a nanostructured form of carbon consisting of layers of graphite formed into fibers. The individual layers of graphite may be parallel (tubular), perpendicular (platelet), or at an angle (herringbone) to the fiber axis. The length and diameter of individual GNFs can vary depending on many factors, but typical values include lengths of 50 μm and diameters of 250 nm.30 GNFs can be formed by several processes, but the most common processes are thermal decomposition of hydrocarbons, typically acetylene, ethylene, or benzene,4,35,36,37 and catalytic graphitization of electrospun polymer fibers, typically poly(vinylidene fluoride).38

The first research on the use of GNFs for hydrogen storage was published in 1998. Initial research done by Chambers et al.4 achieved hydrogen adsorption varying from 11 wt.% for tubular GNFs to 67 wt.% for herringbone GNFs. Subsequent hydrogen desorption was reported to be as high as 58 wt.%.
Adsorption took place at room temperature and at pressures ranging from 44 to 112 atm. Desorption took place at room temperature and atmospheric pressure. Ahn et al. conducted research on GNFs and other forms of activated carbon and found much lower storage capacities at room temperature and at 77 K (−196 °C). GNFs were found to adsorb approximately the same amount of hydrogen as other forms of activated carbon, with the best capacity being ~1 wt.% at 77 K for GNFs. Fan et al. reported a hydrogen storage capacity of 10–13 wt.% for GNFs. More recent research done by Gupta et al. found a hydrogen storage capacity of 17 wt.% for GNFs grown by thermal decomposition of acetylene on Pd sheets. Hong et al. formed GNFs from electrospun poly(vinylidene fluoride) nanofibers and reported a storage capacity of 0.11–0.18 wt.%.

GNFs present a very attractive option for hydrogen storage due to their high storage capacity and their ability to both adsorb and desorb hydrogen at room temperature. However, the actual hydrogen storage capacity of these materials varies greatly, and the factors affecting this variance are not yet understood. All studies so far have focused on producing milligram or gram quantities of GNFs, but a commercial system for use in a typical automobile may require anywhere from 3 to 50 kg of GNF per vehicle. No process currently exists for the mass production of GNFs, and it is not known whether such a process could be economical. In addition, the ability of GNFs to withstand multiple hydrogenation/dehydrogenation cycles is not well understood. One study found that the capacity decreased by 30% after multiple cycles, whereas another study found the capacity actually increased over the first 10 cycles and remained constant thereafter. Although desorption of hydrogen from GNFs is very fast, adsorption takes hours to complete.

6.2.5 Onboard Hydrogen Production via Iron Based Materials

An onboard hydrogen production process such as one derived from the chemical looping strategy could be an option for the H₂ storage techniques discussed in the previous sections. When an iron based looping medium is used, this process allows the storage and production of hydrogen onboard a vehicle. This hydrogen storage system is based on the reaction of steam with Fe in order to produce hydrogen as described in the reaction:

\[3 \text{Fe} + 4 \text{H}_2\text{O} \leftrightarrow \text{Fe}_3\text{O}_4 + 4 \text{H}_2 \] (6.2.3)

Thermodynamics dictates that for stoichiometric conversion of this reaction, steam must be made to react with Fe in a countercurrent fashion. This is easily achieved in a series of fixed bed reactors. TGA experiments show that a temperature above 400 °C is sufficient to drive the reaction to completion. Although such an operating temperature is considered to be high relative to aforementioned metal hydride based hydrogen storage materials, and it requires a large amount of heat input for the hydrogen stored to be released,
the exothermic nature of the steam iron reaction can potentially minimize the
heat input for onboard hydrogen production using iron and steam. ASPEN
simulations of Reaction (6.2.3) show that if steam at 300°C is made to react
with Fe at 25°C, the resultant heat of reaction will lead to an adiabatic tem-
perature rise to 600°C. Hence, if a source of steam is available, Reaction
(6.2.3) can potentially be carried out without the need for extra heating
devices.

For the system to work, there needs to be a place to generate steam from
water. A number of sources of heat may be utilized to achieve this.

Source 1: Hydrogen is produced at high temperatures, but for use in a PEM
fuel cell the temperature of the hydrogen needs to be brought down to
about 100°C. This heat may be used to generate steam.

Source 2: Additionally, more steam may be generated by using the heat
from the oxidization of Fe$_3$O$_4$ to Fe$_2$O$_3$ in air.

$$2\text{Fe}_3\text{O}_4 + \frac{1}{2}\text{O}_2 \rightarrow 3\text{Fe}_2\text{O}_3$$ (6.2.4)

Source 3: In case a hydrogen internal combustion engine (ICE) is used,
heat can be absorbed from the engine using a suitable coolant (e.g.,
mineral oil) with a boiling point above 100°C to generate steam in a
separate heat exchanger. If permitted by the specifications of the ICE,
water may be directly injected to cool the engine resulting in steam
production.

Source 4: The high-grade heat content of the exhaust from a H$_2$ ICE can
be utilized to generate steam on board the vehicle.

Source 5: Use some of the Fe stored on board to react with air. This will
allow for the combustion of Fe to Fe$_2$O$_3$, releasing a large amount of
energy. For this purpose, a dedicated fixed bed can be put into the
vehicle for heat generation. Water can be passed through this bed to
capture the heat and generate steam.

$$4\text{Fe} + 3\text{O}_2 \rightarrow 2\text{Fe}_2\text{O}_3$$ (6.2.5)

Source 6: The fuel cell device utilizing the hydrogen generates a large
amount of heat. This heat may be integrated back to generate steam. A
PEM fuel cell typically works in the 70–150°C range. The excess heat
may be used to generate low grade steam.

Source 7: The hydrogen produced is put into a storage vessel. This vessel
mainly provides hydrogen to the fuel cell, but part of the hydrogen
stored may be routed back and combusted to generate heat for produc-
ing steam. For initial startup of the vehicle, a dedicated small hydrogen
tank may be installed in the vehicle to switch on when the hydrogen
storage tank does not have enough hydrogen pressure.
Source 8: The PEM fuel cell converts only about 90% of the hydrogen input. The remaining hydrogen may be combusted to provide heat for steam.

Source 9: Part of the electricity produced by the fuel cell and stored in the battery may be utilized to electrically heat the water using resistance heating to generate steam.

The water required for \(\text{H}_2 \) production may be recovered from the fuel cell exhaust in an air-cooled condenser that removes heat by convection into the ambient air when the vehicle is in motion. Greater than 90% of the water necessary is expected to be recovered in this manner. Additionally, in case it is desired, the exhaust may be routed through the air-conditioning system of the vehicle for further condensation, but this may impose an energy penalty on the system.

Once the Fe particles have been oxidized in the vehicle (to \(\text{Fe}_3\text{O}_4 \) or \(\text{Fe}_2\text{O}_3 \) as the case may be), they can be reduced back to Fe by utilizing a reaction with fuels:

\[
\frac{(2x + y/2 - z)}{3}\text{Fe}_2\text{O}_3 + C_x\text{H}_y\text{O}_z \rightarrow x\text{CO}_2 + \frac{y}{2}\text{H}_2\text{O} + \left[\frac{(4x + y - 2z)}{3}\right]\text{Fe}
\]

(6.2.6)

The fuels may be a gaseous fuel like natural gas, producer gas, or syngas, a liquid fuel like gasoline, or a solid fuel like coal, or wood. In the case where \(\text{Fe}_3\text{O}_4 \) is generated from the vehicle, Reaction (6.2.4) can be carried out first to convert it to \(\text{Fe}_2\text{O}_3 \) so that the CO\(_2\) generation from Reaction (6.2.6) can be enhanced. This reaction will also help increase the temperature of the particles so that Reaction (6.2.6) can readily proceed.

Reaction (6.2.6) will likely need to be conducted outside the vehicle at a central fuel station. Such a centralized station may be built outside a city where the spent particles can be regenerated and distributed to retail outlets. Figure 6.2 shows the overall scheme for using iron to produce hydrogen on a vehicle. The design of the particle regeneration reactors given in the figure involves the flow of reactive fuel countercurrent to the flow of the spent particles as described in Section 4.4.1. The regenerated iron particles exit from the reactor and can be used for producing hydrogen on board the vehicle. The hydrogen generation can be carried out in a packed bed reactor or a monolithic bed reactor as shown in Figure 6.3. The steam can pass through the reactors at high temperatures and react with iron to form hydrogen. For a packed bed reactor shown in Figure 6.3(a), the particle formulation can be cast into small pellets of 1–5 mm in size. These pellets can be randomly packed into a metallic vessel to establish a packed bed. It is desired that the metallic vessel is of a rectangular cross section for close packing in a module, though circular cross section can also be used. The designs for the monolithic bed reactors are shown in Figures 6.3(b) and 6.3(c). The monoliths in the design are of ceramic structures with channels/holes present over the length of the structure. This
Figure 6.2. Overall scheme of using Fe modules to produce hydrogen on a vehicle.

Figure 6.3. Designs for reactors with Fe containing media: (a) packed bed of small pellets; (b) monolithic bed with straight channels for steam; and (c) monolithic bed with channels for steam and air.
structure allows the packing of iron particles in a confined space. With suitable design on end caps, it is possible to route fluids through different channels. It also allows air to pass through some channels, while steam flows through other channels, as shown in Figure 6.3(c). This functionality could provide the heat, released from Reactions (6.2.4) and (6.2.5), for generation of steam used for its reaction with iron. In all designs, refractory lining or vacuum jacket could be used to prevent heat losses from the reactors. It is noted that in module design, iron can also be embedded in the ceramic channel wall materials. In this case, both the reduction and regeneration reactions take place directly on the module.

An important aspect of the iron particle regeneration process is that the gaseous products from Reaction (6.2.6) will mainly be steam and CO₂. After condensation of steam, the CO₂ rich stream can be easily separated and sequestered using the same carbon sequestration techniques intended for stationary power plants. Hence, the process can potentially save the cost for CO₂ capture. Further, since no CO₂ is emitted from the vehicle, the overall scheme provides a viable method for CO₂ emission control when a suitable CO₂ sequestration technique is available.

A number of such reactors may be required for generating an adequate quantity of H₂ for use in a transportation vehicle. Also, if the reactors are connected in series, the H₂ purities obtained can be very high. Such a series reactor assembly forms the key component of a module that can be used for onboard hydrogen production applications. Figures 6.4, 6.5 and 6.6 present some configurations for the modules made up of the reactors shown in Figure 6.3. The reactors are connected using metallic tubing welded to the end caps. The reactor assembly is enclosed in a suitable metallic box/container with insulation to prevent loss of heat to the surroundings. Depending on the heat integration scheme, the number of fluid inlet and outlet points may be varied.

![Figure 6.4. H₂ production module using a series of fixed-bed reactors.](image)
In the simplest scheme, as shown in Figures 6.4 and 6.5, there are only one inlet (steam) point and one outlet (H_2) point. The fluid flow lines can be connected to or disconnected from the module using quick-connect couplings. The module can easily be loaded to or unloaded from a transportation vehicle. Such modules may be directly purchased from a retail store. These may also be sold through “Iron Stations” or the “Fuel Station,” the future equivalent of gas stations, as shown in Figure 6.2. It is noted that even though Reaction (6.2.3) takes place at a temperature above 400°C, within the reactors, only the region proximate to where the reaction front is developed will be hot.
System Integration Onboard a Transportation Vehicle

A number of scenarios can be considered in regard to the integration of the Fe modules with other components in a transportation vehicle. Two most relevant scenarios are presented in the following. Other scenarios may be conceived by combining the concepts discussed in these scenarios.

Scenario 1: Use of H_2 ICE Heat to Produce Steam. The heat generated, but not utilized for shaft work in a H_2 ICE, is enough to generate the steam required to produce hydrogen. This heat is taken away from the engine using the coolant and the exhaust, and may be recovered to produce steam. Figure 6.7 shows such integration. A minimal amount of water makeup may be required if the exhaust water can be recovered using a condenser. Such a condenser may be cooled using the water reservoir or using convective heat transfer to air. Once started, the system is self sustaining on heat until the time all of the Fe in the module is consumed.

Scenario 2: Use of Oxidation Reactions of Fe and Fe_3O_4 to Provide for Steam Formation Heat. This scenario does not require integration with the fuel cell

![Image](a) (b)

Figure 6.7. System integration for use of Fe module with a H_2 ICE using (a) water to cool the ICE and (b) a high-temperature coolant to cool the ICE.
or the \(\text{H}_2 \) ICE. Hence, this scenario can be used to provide hydrogen with stand-alone Fe module usage. Air is supplied along with steam into the Fe modules, as shown in Figure 6.8. This air then oxidizes the \(\text{Fe}/\text{Fe}_3\text{O}_4 \) to \(\text{Fe}_2\text{O}_3 \), releasing heat that takes the unreacted Fe particles to reaction temperatures of higher than \(400^\circ \text{C} \). The configuration shown in Figure 6.8(c) involves first sending air through one packed reactor. Water is then added and being

Figure 6.8. Hydrogen production from a stand-alone Fe module.
converted to steam. Steam reacts with Fe in the remaining reactors to produce hydrogen. For this operation, one reactor bed in the Fe to Fe$_2$O$_3$ oxidation mode with air is required to produce hydrogen from five Fe reactors.

Meeting DOE Targets
The energy density of the Fe composite particles, when fully reduced, is calculated to be up to 1.52 kWh/L or 1.17 kWh/kg of the particles. It is comparable to the DOE 2010 target of 1.5 kWh/L for the volumetric energy density. Since the raw material for producing the composite particle is inexpensive and its synthesis procedure is not elaborate, the cost for this on-board hydrogen production option has the potential to meet the DOE target of $2/kWh set for 2015. The potential challenges to this option, however, include relatively high reaction temperatures and delicate heat integration requirement.

6.3 Carbonation–Calcination Reaction (CCR) Process for Carbon Dioxide Capture

As mentioned in Chapter 1, carbon dioxide capture is the most expensive step of the overall threefold carbon management step, which consists of separation, transportation, and sequestration. The ongoing research and development (R&D) on carbon management includes mapping the strategy for CO$_2$ separation. Such strategies include improving the energy-intensive low-temperature amine scrubbing process, demonstrating the chilled ammonia process, developing further oxycombustion technology (in which high-purity oxygen is used for combustion), and employing reactive CO$_2$ separation using dry, solid sorbents such as limestone, potassium carbonates, lithium silicates, and sodium carbonates, which yield a sequestration-ready CO$_2$ gas stream upon decompo-
sition. Other processes being investigated include low-temperature pressure swing adsorption processes using hydrotalcite. Thus, cost-effective carbon-capture technologies play an important role in CO$_2$ mitigation for current plant operation. In a typical flue gas stream (dry basis) generated from coal combustion power plants, the concentration of CO$_2$ is low, representing approximately 15% of the flue gas stream. Low CO$_2$ partial pressures, combined with the extremely high flue gas generation rate, make CO$_2$ capture from PC power plants an energy-intensive step. An ideal CO$_2$ capture technology would incorporate effective process integration schemes to minimize the parasitic energy required for CO$_2$ separation.

One process alternative uses a calcium-based solid sorbent at a high temperature to capture CO$_2$ and SO$_2$ simultaneously. The CCR Process, which is an outgrowth of two other processes developed at The Ohio State University: the Ohio State Carbonation Ash Reactivation (OSCAR) Process and the Calcium-Based Reaction Separation for CO$_2$ (CaRS–CO$_2$) Process, uses calcium oxide to react with the CO$_2$ and SO$_2$ present in the flue gas stream at
a high temperature (450–750°C). Similar to the Calcium Looping Process for hydrogen production described in Chapter 4, the calcium oxide can be derived from multiple sources including hydrated lime, natural limestone, or reengineered calcium carbonate, such as Precipitated Calcium Carbonate (PCC) (see Chapter 2).43,44

The concept of capturing and separating CO$_2$ from flue gas using limestone-based sorbents is depicted in Figure 6.9. The flue gas comes into contact with calcium oxide (CaO), which reacts with the CO$_2$ and SO$_2$ in the flue gas to form calcium carbonate (CaCO$_3$) and calcium sulfate (CaSO$_4$). During the carbonation and sulfation reactions, which typically take place between 600°C and 700°C, heat is released. The reacted sorbent is regenerated in a separate step by decomposing CaCO$_3$ at higher temperatures (greater than 850°C) to yield CaO and CO$_2$. The thermal stability of calcium sulfate ensures that it does not decompose and remains as calcium sulfate. By calcining the sorbent in a proper environment (see Chapter 2), the degeneration of the reactivity of regenerated calcium sorbent can be minimized while yielding a pure or concentrated gas stream of CO$_2$ that can be compressed and transported for sequestration. The process thus can take a flue gas that contains typically 10–15% CO$_2$ and convert it into a nearly pure (>90%) CO$_2$ stream.

Reactions (6.3.1) and (6.3.2) summarize the basic chemistry involved in the process:

\[
\text{Carbonation: } \text{CaO}(s) + \text{CO}_2(g) \rightarrow \text{CaCO}_3(s) \quad \Delta H = -178 \text{ kJ/mol} \quad (6.3.1)
\]

\[
\text{Calcination: } \text{CaCO}_3(s) \rightarrow \text{CaO}(s) + \text{CO}_2(g) \quad \Delta H = +178 \text{ kJ/mol} \quad (6.3.2)
\]

As shown here, the carbonation process is exothermic, whereas calcination requires heat input. The heat integration is thus essential, in that the heat released at temperatures of 600–700°C during the carbonation process needs to be recovered and used, whereas additional heat energy is necessary for the calcination reaction.

Sorbent reactivity has a significant effect on the CO$_2$ removal efficiency. Therefore, the type of sorbent has a considerable effect on the overall CO$_2$ removal, as shown in Figure 6.10. The data were obtained from an entrained bed reactor using a flue gas stream generated by coal combustion at 9 kg/h,
which will be illustrated in further detail later. Clearly, the superior performance of calcium hydroxide is evident as compared with other inexpensive calcium-based sorbents in removing CO$_2$.

As mentioned, sulfur dioxide also is removed simultaneously from the flue gas stream. Figure 6.11 shows the effect of the Ca:C molar ratio on SO$_2$ removal. Even at low Ca:C molar ratios, virtually all the SO$_2$ is captured effectively and removed by the calcium hydroxide sorbent. This is a result of the significantly lower concentration of SO$_2$ as compared with CO$_2$ in the flue gas stream. A 1:1 Ca:C molar ratio corresponds to an 80:1 Ca:S molar ratio.

Parasitic energy consumption is related strongly to the sorbent conversion efficiency in the looping operation. Figure 6.12 shows such a relationship for PCC, which is a reengineered calcium carbonate sorbent (see Chapter 2).
with a reactivity slightly higher than the hydrate-based sorbent. It is shown that the parasitic energy consumption for the CCR Process can be significantly lower than that for such low-temperature CO₂ capture processes as the MEA process, as discussed earlier, when the sorbent conversion efficiency reaches 30%–70%.

Figure 6.13 delineates the heat integration strategies for retrofitting the CCR Process to an existing boiler for 90% CO₂ capture without significant modifications to the coal-based power plant. The flue gas that leaves the economizer of the boiler is routed to the CCR Process system for CO₂ capture. This flue gas from the economizer (stream 1) is combined with the flue gas used to generate the heat required to operate the indirectly fired calciner. Heat is extracted from the total flue gas mixture (stream 2), which contains all the CO₂ emitted by the entire plant, before being sent into the carbonator system for carbonation and sulfation. CO₂ is removed in the carbonator system, and the CO₂ free flue gas (stream 3), which is at ∼650°C, is cooled before it is sent into the air preheater followed by the electrostatic precipitator (ESP). In the carbonator, SO₂ and traces of heavy metals including selenium and arsenic also are removed, rendering the CCR Process a multipollutant control process. The spent sorbent from the carbonation system is sent to the calciner to regenerate the calcium oxide (CaO) sorbent for subsequent cycles while yielding a pure CO₂ stream. The sulfated sorbent and fly ash are removed from the system by means of a purge stream, whereas the makeup fresh sorbent is introduced into the system. The amount of solids removed through the purge stream is entirely dependent on the concentration of fly ash and calcium sulfate in the solids stream, which are both coal dependent. The heat of carbonation can be as high as one third of the total thermal capacity of a power
In the CCR Process, steam is generated using high-quality heat available from three different sources: (a) the carbonation system (450–750 °C), (b) the hot flue gas generated for calciner operation (greater than 850 °C), and (c) a pure CO₂ stream from the calciner (greater than 850 °C). This steam can be used in a secondary steam turbine system for additional electricity generation or in the existing plant steam cycle by offsetting the boiler load and in driving various feed water pumps in the plant. Figure 6.13 indicates that the heat balance from each unit in the process gives rise to the thermal energy produced for steam generation of 855 MWth, reflecting a loss of 45 MWth or 5% in the CCR Process. This small energy loss is for an ideal system without CO₂ compression. With the inclusion of the energy requirement for CO₂ compression to 150 atm (2,200 psi) and other process heat losses, the parasitic energy consumption increases from 5% to 20%–24%, as given in Figure 6.12.

The CCR Process is being demonstrated in a 120-KWth subpilot plant, as shown in Figure 6.14, located at OSU. The OSU system consists of a 9-kg/h coal-fired stoker furnace, a rotary calciner, sorbent and ash injection systems, baghouse, fans, particulate control devices, data acquisition and control systems,
CARBONATION–CALCINATION REACTION (CCR) PROCESS

and associated instrumentation. Because most residual ash drops out from the stoker furnace, makeup fly ash can be injected using a screw feeder to simulate gas from a typical pulverized coal-fired boiler. The gas that exits the furnace is first cooled to the required carbonation temperature of 600–700°C prior to the sorbent injection point. Sorbent then is injected to remove CO₂ and SO₂ reactively from the flue gas. The reacted/spent sorbent then is separated from the flue gas and sent to the calciner for regeneration. The CO₂-depleted flue gas is cooled to approximately 50°C by aspirating ambient air into the gas stream. The cooled flue gas is then sent into a baghouse where the remaining sorbent and fly ash are separated. The calciner regenerates the spent sorbent, which is then conveyed back into the process for a subsequent CO₂ capture cycle. A screw feeder system is used for sorbent delivery.

One of the main difficulties associated with the process is solids handling. Lime, limestone, and calcium hydroxide are all cohesive particles. Sorbent attrition and agglomeration, and electrostatic charge effects can cause operational difficulty. This is specifically true in the case of calcium hydroxide because of its natural particle size \(D_{50} < 10 \mu m \) and tendency to form a cementitious solid when exposed to low moisture concentrations. However, OSU has developed techniques to ensure proper feeding and flow of sorbent through the reactor system. Figure 6.15 shows the inside of the U-bend section of the test loop. The figure shows that the section is clear from any sorbent clogging after a week of operation.

Another well-documented problem with using naturally occurring limestone is that the sorbent’s ability to capture CO₂ decreases over multiple cycles. However, based on the single-cycle study with a hydration step added in between each cycle, the results, shown in Figure 6.16, indicate that no decay in sorbent reactivity occurs over five cycles. If limestone calcination occurs between 900°C and 1,200°C, the lime product will significantly sinter

![Figure 6.14. Subpilotscale-CCR Process facility located at The Ohio State University.](image-url)
such that carbon dioxide can no longer diffuse effectively into the pore volume of the calcium oxide particle; however, the hydration reaction still can be effective. Once regenerated into calcium hydroxide, the sorbent effectively can capture CO$_2$.

A similar process is being demonstrated at CANMET Energy Technology Center in Canada.$^{51-54}$ The Ca:C molar ratios used for the CANMET Process range from 4 to 25.51 These molar ratios are significantly higher than those for the CCR Process, which can remove virtually all the CO$_2$ in the flue gas stream with a Ca:C molar ratio of 1.5 and a residence time on the order of a second.50 It is thus expected that, compared with the CCR Process, the CANMET Process will require higher solids circulation and higher parasitic energy consumption for a given rate of the CO$_2$ removal.

Figure 6.15. Internal view of the U-bend section of the subpilot-scale facility (given in Figure 6.14) after one week of operation.

Figure 6.16. Results of the CO$_2$ removal efficiency from Ohio State University cyclic testing of calcium hydroxide at a Ca:C molar ratio of 0.75.
6.4 Chemical Looping Gasification Integrated with Fuel Cells

The high efficiencies and flexibility to produce desired products, coupled with the integrated environmental benefits in terms of a readily sequestrable CO₂ stream, make chemical looping gasification of coal an attractive technology for energy conversion and management. As discussed in Chapter 5, the Coal-Direct Chemical Looping (CDCL) Process is very attractive because it is capable of converting as much as 80% of the thermal energy of coal into hydrogen. Here, energy conversion schemes that effectively extract chemical energy from the fuels are proposed by integrating the fuel cell with chemical looping.

6.4.1 Chemical Looping Gasification Integrated with Solid-Oxide Fuel Cells

Figure 6.17 illustrates an electricity generation scheme in which a chemical looping gasification system is integrated strategically with commercial solid-oxide fuel cells (SOFC) to minimize the exergy loss.

Under this configuration, the hydrogen-rich gas produced from the chemical looping oxidizer is introduced directly to the SOFC anode side for power generation. The exhaust of the SOFC anode, which is a hydrogen lean gas with

![Figure 6.17](image-url)
a significant amount of steam, is recycled back to the chemical looping oxidizer for hydrogen generation. As shown in the figure, a closed loop between the chemical looping oxidizer and the SOFC anode is formed through the circulation of the gaseous mixture of steam and H₂. The steam and H₂ mixture essentially acts as a “working fluid” for power generation. Although some recompression, purging, and makeup may be required for the working fluid, most steam is being circulated in the closed loop and will not be condensed. Therefore, steam condensation and reheating, a step that leads to significant exergy loss in the conventional power generation processes, can be minimized. The integration of the chemical looping oxidizer and the SOFC anode also eliminates the need for a gas turbine, which is required in a typical SOFC combined-cycle system. To enhance process efficiency, the chemical looping combustor can be configured such that the oxygen-lean exhaust air from the SOFC cathode is used to combust the Fe₃O₄ to Fe₂O₃. By doing so, the output of the high-grade heat is increased and the compression work for the air is reduced. Table 6.1 compares the efficiencies of the conventional IGCC process, the CDCL combined cycle, and the CDCL integrated with SOFC. As shown in the table, the CDCL–SOFC scheme has the potential of doubling the efficiency of state-of-the-art power generation processes. The significantly improved energy conversion efficiency results from the advanced energy integration scheme between chemical looping and the SOFC.

6.4.2 Direct Solid Fuel Cells

A more advanced electricity generation scheme includes the integration of a chemical looping reducer and a direct solid fuel cell. By modifying the electrochemical oxidation of supported Fe to supported Fe₂O₃, thus generating electricity, a system integrating a chemical looping reducer and a direct solid fuel cell can be developed as illustrated in Figure 6.18.

In this scheme, reduced metal particles are fed directly into a solid-oxide fuel cell that can process solids directly. Particles are reduced in the fuel reactor and then introduced to the fuel cell to react with oxygen or air at 500–1,000°C to produce electricity. The oxidized particles are recycled back to the fuel reactor to be reduced again. It is desirable for particles to be conductive when metal is at both the oxidized and the reduced states.

The Ohio State University (OSU), led by L.-S. Fan, and the University of Akron (UA), led by S. S. C. Chuang, are developing chemical looping solid-
oxide fuel-cell systems. The preliminary study of the solid-oxide fuel cell at UA indicates that the reduced Fe on Fe–Ti–O can serve as a fuel, producing 45 mA/cm2 at 0.4 V and 800°C. The resultant oxidized Fe–Ti–O composite remained in the powder form and did not adhere to the anode surface of the fuel cell. The results suggest that an integrated fuel cell with chemical looping could be a viable approach for generation of electricity and a nearly pure CO$_2$ stream from coal.

The step for the generation of the electricity from Fe on Fe–Ti–O involves the following reactions60,61:

$$\text{Cathodic} \quad O_2 + 4e^- \rightarrow 2O^{2-} \quad (6.4.1)$$

$$\text{Anodic} \quad 2Fe + 3O^{2-} \rightarrow Fe_2O_3 + 6e^- \quad (6.4.2)$$

The overall reaction corresponds to an ideal cell potential (i.e., open-circuit voltage) of 0.996 V at 800°C. The overall reaction is

$$2Fe + 3/2O_2 \rightarrow Fe_2O_3 \quad \Delta G = 384 \text{ kJ/mol} \quad (6.4.3)$$

The observation of electricity generation from the Fe–Ti–O composite indicates that the O$^{2-}$ can reach the reduced Fe to carry out the anodic reaction. Because this is one of the first attempts at using solid metal as the fuel for the fuel cell, the results appear promising. This direct solid fuel cell concept can be extended to other types of oxygen carriers such as Ni and Cu. Table 6.2 compares the ideal cell potentials of using these metals as fuels. Fe/Fe$_2$O$_3$ is the oxygen carrier that gives the highest ideal cell potential. CuO is not included, because it is not stable at 800°C; therefore, it will not be effective.
for coal chemical looping. Examining the anodic reaction suggests the need to build a pathway to facilitate the electrochemical oxidation of supported Fe.

Compared with the chemical looping–SOFC system discussed in Section 6.4.1, the direct solid fuel cell scheme is more challenging because of the relatively immature direct solid fuel cell technology. For the successful development of this direct solid fuel cell, the following issues need to be addressed.

1. The effectiveness of the direct solid fuel cell for generating electricity by using the supported Fe as a fuel.
2. The effectiveness of the supported Fe$_2$O$_3$ produced from the fuel cell for reaction with coal in the chemical looping process.

The overall potential of integrating a fuel cell with chemical looping for electric power generation should continue to be evaluated in more detail.

6.5 Enhanced Steam Methane Reforming

Chemical looping combustion integrated with the steam methane reforming process (CLC–SMR) was studied by Rydén and Lyngfelt at Chalmers University of Technology in Sweden. The utilization of chemical looping combustion (CLC) in steam methane reforming (SMR) represents another potential application for the chemical looping strategy. A schematic flow diagram of the CLC–SMR Process is shown in Figure 6.19.

The CLC–SMR Process uses a combustor that is identical to that used in the CLC Process discussed in Chapter 3. The CLC–SMR Process also uses a reducer that is unique in that it integrates the function of the reducer used in the CLC Process to that of a reformer. The integrated reducer/reformer reactor is composed of a low-velocity bubbling fluidized bed with reformer tubes that are placed inside the reactor. The tubes are filled with reforming catalysts and behave as fixed-bed reactors. In the operation of the reformer, steam and methane are introduced into the reformer tubes at a ratio of ~3:1. By
maintaining the reformer tubes at desirable reaction temperatures, typically 700–950°C, the methane is reformed into syngas, which is subsequently converted to hydrogen. This hydrogen stream is then purified through the WGS reaction and pressure swing adsorption (PSA) in the units downstream in the process.

The SMR reaction is highly endothermic as is the reduction reaction of the oxygen carrier particles in the reducer. Both reactions take place in the reducer/reformer reactor. The oxygen carrier reduction reaction occurs exterior to the reformer tube, whereas SMR occurs inside the reformer tube. The fuel for the oxygen carrier reduction is the PSA tail gas and recycled methane. The reduction reaction product gases, CO₂ and steam, then exit the reducer. The reduced oxygen carrier particles are transported from the reducer to the combustor, where they are oxidized with air. The high-temperature particles resulting from the exothermic oxidation reaction provide the necessary heat for reduction and reforming reactions in the reducer/reformer reactor. In the CLC–SMR Process, the CLC system is operated at atmospheric pressure, whereas the SMR reformer tubes are operated at typical reformer pressures (15–40 atm).

As shown, the methane-reforming reaction scheme in the CLC–SMR Process is practically identical to that in the traditional SMR Process with the exception of the heat integration scheme for the reformer. In the traditional SMR Process, the heat required for steam methane reforming is provided by combustion of the fuel exterior to the reformer tubes. In contrast, the CLC–SMR Process uses high-temperature oxygen carrier particles as a heat transfer medium.
To date, the studies on this novel scheme have been limited to theoretical analysis such as heat and mass balances. Experimental testing results are not yet available. Theoretical analysis indicates that the CLC–SMR Process has the potential to achieve a higher H₂ yield than the conventional SMR Process. Therefore, it offers a viable approach for an innovative reforming operation. Some challenges, however, still exist for this process as illustrated below.

1. Approximately 70% of the methane is reformed and converted to H₂ and CO₂ in the WGS reactors. Thus, most of the carbon in this process is separated by the traditional methods such as PSA rather than CLC. Although all of the carbon in the feedstock exits from the reducer/reformer, the CLC system is used to separate only approximately 30% of the total carbon in this process. Thus, the energy savings through carbon capture using the CLC system may not be significant.

2. Both the SMR reaction and the oxygen carrier particle reduction reaction, when nickel- or iron-based oxygen carriers are used, are highly endothermic. Thus, the heat required in the integrated reducer/reformer reactor will even be higher than that required in the traditional SMR reformer. The large heat requirement renders the heat integration in the CLC–SMR Process a challenging task.

3. Because high-temperature oxygen carrier particles are the sole heat carrier in the integrated reducer/reformer reactor, there will be a large solids circulation rate and likely a large temperature difference between the combustor and the reducer/reformer. An estimated solids circulation rate of 6,700 t/h for a 300-MWₜh CLC–SMR Process indicates a significant solid flow rate issue.

4. Heat transfer using fluidized oxygen carrier particles could pose an increased erosion problem on the reformer tubes.

6.6 Tar Sand Digestion via Steam Generation

In addition to producing hydrogen, reduced metal particles can be burned with air in an oxidation reactor, and the heat generated could be extracted using water to generate high-temperature steam. Figure 6.20 shows heat and steam generation by the chemical looping process. The steam could be used either for electricity generation or for various industrial applications. For example, steam can be used to extract heavy oil from tar sands. Providing steam via chemical looping technology is attractive for tar sand digestion, because less carbon is emitted throughout the overall process. This will better allow for this abundant energy source to be tapped with significantly reduced greenhouse gas emissions.
6.7 Liquid Fuel Production from Chemical Looping Gasification

Even beyond hydrogen, heat, and electricity generation the chemical looping gasification strategy can be used to achieve liquid fuel synthesis with high yield and low exergy loss. In Section 4.6, a scheme is illustrated in which the Syngas Chemical Looping Process is integrated with the indirect coal-to-liquid (CTL) Process to enhance the liquid fuel yield. In this section, an advanced liquid fuel generation scheme is introduced in which the coal gasifier and air separation unit are avoided in the liquid fuel generation process. The chemical looping gasification system produces CO$_2$, H$_2$, and heat/power from the carbonaceous fuel. The heat and power produced compensate for the parasitic energy requirements. Under this scheme as shown in Figure 4.33, part of the CO$_2$ generated from the reducer is sequestered, while the remaining CO$_2$ reacts with H$_2$ generated from the oxidizer in a reactor that simultaneously performs the reverse WGS and Fischer–Tropsch (F–T) reactions:

$$\text{CO}_2 + \text{H}_2 \leftrightarrow \text{CO} + \text{H}_2\text{O} \quad (6.7.1)$$
$$\text{CO} + 2\text{H}_2 \leftrightarrow -(\text{CH}_2)- + \text{H}_2\text{O} \quad (6.7.2)$$

The Fischer–Tropsch reaction of this type, also called CO$_2$ hydrogenation, has been studied since the 1990s to identify novel applications of CO$_2$ for greenhouse gas control.$^{63-65}$ It was determined based on these studies that such an F–T reaction is feasible when an iron-based F–T catalyst is used.
Compared with the conventional CTL processes discussed in Chapter 4, the chemical-looping-based reaction scheme given in Figure 6.21 has several distinct advantages.

1. The unique chemical looping gasification strategy effectively gasifies the fuel with minimal exergy loss (see Section 1.6).
2. Both the endothermicity of the fuel gasification reactions and the exothermicity of the F–T reaction are reduced; moreover, the F–T by-products such as steam and unconverted fuel are readily used in the chemical looping gasification system. Therefore, the exergy loss for the overall process is reduced further via an improved energy management scheme.
3. The fuel gasification and pollutant control schemes are simpler. For example, the elaborate partial syngas shift, COS hydrolysis, and acid gas separation steps in the conventional indirect CTL process are avoided.
4. The CO$_2$ by-product is concentrated and readily sequestrable.

A case study is performed to evaluate the exergy loss of the conventional CTL process and the chemical-looping-gasification-based CTL process using
assumptions similar to those given in Section 1.6. The results are given in Table 6.3. As shown in the table, through the utilization of the chemical looping gasification strategy, the exergy loss of the CTL process can be reduced by nearly 40%. Thus, the novel chemical-looping-based liquid fuel synthesis scheme has the potential to improve significantly the efficiencies of conventional CTL processes.

6.8 Chemical Looping with Oxygen Uncoupling (CLOU)

To combust carbonaceous fuels with metal oxide oxygen carriers, the chemical looping with oxygen uncoupling (CLOU) Process, initiated by Lewis and Gilliland and extensively tested at the Chalmers University of Technology, uses a reaction scheme different from that of the typical chemical looping process discussed thus far. The oxygen carrier in the reducer of a typical chemical looping process releases its oxygen directly through a reduction reaction with the fuel. In contrast, the oxygen carrier in the reducer of a CLOU Process releases the oxygen through decomposition to form molecular gaseous oxygen, which then oxidizes the fuels. When the CLOU reaction scheme is implemented, it yields a more effective process in oxidizing, particularly, the solid fuels in the reducer than does the typical chemical looping processes. The specific reactions that take place in CLOU include:

\[
\text{Me}_x\text{O}_y + (y-z)/2\text{O}_2 \rightarrow \text{Me}_x\text{O}_z + (y-z)/2\text{O}_2 \quad (6.8.1)
\]

\[
C_{n}\text{H}_{2m} + (n+m/2)\text{O}_2 \rightarrow n\text{CO}_2 + m\text{H}_2\text{O} \quad (6.8.2)
\]

\[
\text{Me}_x\text{O}_z + (y-z)/2\text{O}_2 \rightarrow \text{Me}_x\text{O}_y \quad (6.8.3)
\]

The first two reactions [Reactions (6.8.1) and (6.8.2)] occur in the reducer, and the third reaction [Reaction (6.8.3)] occurs in the oxidizer. For the first two reactions to occur effectively, the equilibrium partial pressure of the oxygen for Reaction (6.8.1) must be high at the reaction temperature. This unique requirement narrows the potential options for oxygen carriers. Three metal oxides satisfy this requirement; they are CuO, Mn$_2$O$_3$, and Co$_3$O$_4$. The

| Table 6.3. Performance Comparisons of Conventional CTL and Chemical-Looping-Gasification-Based CTL |
|--|------------------|
| Conventional CTL | Chemical Looping-CTL |
| Exergy Loss (MW)a | 835 | 503 |
| Marginal Change in Exergy Loss (%) | n/a | -39.8 |

aFor an 80,000-bbl/d (36,288-kg/d) plant.
equilibrium oxygen partial pressures for these three metal oxides as a function of temperature are given in Figure 6.22. It is shown that an increase in temperature leads to an increase in the oxygen partial pressure. When the heat of reaction for both Reactions (6.8.1) and (6.8.2) is considered, the reactions of the metal oxides CuO/Cu₂O and Mn₂O₃/Mn₃O₄ with the fuel are exothermic and are thus more suitable for CLOU than the reaction of metal oxide Co₃O₄/CoO with the fuel that is endothermic. Exothermic reactions are beneficial as the oxygen decomposition is enhanced with an increase in temperature.

Mattisson et al. tested the CLOU Process for methane conversion using a copper-based oxygen carrier of 125–180μm, synthesized by freeze granulation at 60% CuO and 40% ZrO₂. The test was performed in a 30-mm-ID quartz fluidized-bed reactor operated under batch mode with reduction and oxidation carried out by turns in the same reactor. Nitrogen gas was used between the oxidation and reduction steps to prevent any mixing of gases. The total mass of the oxygen carrier used was 10g, and the fuel flow rate was 600mL/min. The experiment was performed at 950°C. The results indicate that the oxygen carrier decomposition changes with the reactor temperature during the reduction step. During the oxidation step, the CO/CO₂ peaks were identified at the initial stage of air oxidation. This result reveals the deposition of carbon, which only occurs in the presence of metallic copper. It was there-
fore concluded that the CuO-based oxygen carrier was reduced to metallic copper during the reduction step.

After the gaseous fuel testing, studies using various solid fuels were conducted using a laboratory fluidized bed reactor, as shown in Figure 6.23. In the figure, a conical section above the distributor plate was used to provide proper mixing of the solid fuel and the oxygen carrier. A disengaging zone above the reaction zone prevented the entrainment of small particles from the bed. In all the solid fuel tests, 15 g of oxygen carrier was used and 0.1 g of solid fuel was introduced during each reduction cycle. The size range of the fuel, that is, 180–250 μm, is slightly greater than that of the oxygen carrier. The gas flow rate during oxidation and reduction was maintained at 900 mL/min for the air and nitrogen flows.

Mattisson et al. used a copper-based oxygen carrier (40% CuO and 60% ZrO$_2$) of 125–180 μm, synthesized by freeze granulation, to determine the rate of conversion of petroleum coke. Experiments were designed to study the influence of the reducer temperature on the conversion rate of petroleum coke. The results indicated a strong dependence of the conversion rate of petroleum coke on the reducer temperature. The time for 95% conversion
TABLE 6.4. Solid Fuels Testing Results Using the CLOU Concept: Copper-Based Metal Oxide vs. Iron-Based Metal Oxide

<table>
<thead>
<tr>
<th>Type of Fuel</th>
<th>Mexican Petroleum Coke</th>
<th>South African Coal</th>
<th>Indonesian Coal</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CLOU</td>
<td>CLC</td>
<td>CLOU</td>
</tr>
<tr>
<td>Time for 95% Conversion (s)</td>
<td>41</td>
<td>648</td>
<td>40</td>
</tr>
<tr>
<td>Rate of 95% Conversion (%/s)</td>
<td>2.3</td>
<td>0.15</td>
<td>2.4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type of Fuel</th>
<th>Columbian Coal</th>
<th>German Lignite</th>
<th>Swedish Wood Char</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CLOU</td>
<td>CLC</td>
<td>CLOU</td>
</tr>
<tr>
<td>Time for 95% Conversion (s)</td>
<td>51</td>
<td>606</td>
<td>25</td>
</tr>
<tr>
<td>Rate of 95% Conversion (%/s)</td>
<td>1.9</td>
<td>0.16</td>
<td>3.8</td>
</tr>
</tbody>
</table>

decreased from 130 s to 20 s with an increase in temperature from 885 °C to 985 °C. A similar conversion of petroleum coke was observed after 15 minutes when iron-based oxygen carriers were used in a typical CLC scheme, highlighting the significant conversion rate observed while using the CLOU scheme. Leion et al. tested the conversion rates for six different solid fuels using the copper-based oxygen carrier. The results were compared with those when the CLC scheme is used, and the outcome is summarized in Table 6.4. All the experiments were carried out at 950 °C. The oxidation of the oxygen carriers was carried out using 10% O2 balanced with nitrogen. The table highlights the increased reaction rates observed when adapting the CLOU scheme for solid fuels. Leion et al. also stated that the methane and CO emissions from the CLOU process are lower than those observed in the typical CLC process.

The activity involving CLOU testing using metal oxides other than copper oxide is limited. The application of the copper-based oxygen carrier is, however, constrained because of the low melting point of copper, as discussed in Chapter 2. Furthermore, as the extent of decomposition of copper oxide is low, a very high circulation rate of copper oxide is thus required for process applications. So far, the only testing performed has been in a laboratory-scale fluidized-bed reactor.

6.9 Concluding Remarks

This chapter presents examples of novel applications of chemical looping processes for H2 storage and onboard H2 production, CO2 capture in combustion flue gas, power generation using fuel cells, SMR, tar sand digestion, and
liquid fuel production. Each application employs a unique feature of the chemical looping strategy that characterizes process intensification, leading to a highly efficient process system. In these particular applications, metal oxide can be used to assist in tar sand digestion and steam methane reforming. The reduced metal oxide from the reducer can be used for the following applications: onboard H₂ production by reacting it with steam, power production by combusting reduced metal oxide in the fuel cell anode, and generation of steam or heat by reacting it with air. In processes such as CLOU, the metal oxide, instead of being reduced by the fuel, can be decomposed to yield molecular gaseous oxygen in the reducer at a high temperature. It is followed, in the reducer, by combustion of molecular gaseous oxygen with fuel to form CO₂ and steam. When this reaction scheme is implemented, the CLOU process is more effective in combusting the gaseous or solid fuels in the reducer than does the typical chemical looping process. The use of the calcium sorbent for CO₂ capture through the carbonation–calcination–hydration looping reactions provides a high-temperature, sorbent-based CO₂ separation method that is a viable alternative to the traditionally low-temperature, solvent-based separation methods. All these chemical looping examples represent energy conversion systems on the cutting edge of efficiency and technology where CO₂ separation, pollutant control, and product generation can be achieved readily. Employing the fundamental chemical looping concept, other chemical looping schemes also can be conceived, leading to highly efficient process applications.

References

