Should a Team Be Homogeneous?

Andrea Prat*
London School of Economics, Tilburg University, and CEPRT

August 16, 2000

Abstract

Should an organization hire people with similar backgrounds or with
different backgrounds? We formulate this question within the frame-
work of team theory. The team is formed by n agents. The type of each
agent is endogenous and determines his information structure and his
cost for the team. We show that the sign of complementarity between
jobs determines workforce homogeneity. With positive complementar-
ities, the team should be composed of agents of the same type, while,
with negative complementarities, workforce heterogeneity is optimal.
These results do not rely on restrictions on the way uncertainty is
modeled or on the feasible set of agent types: they can be explained
in terms of correlation between errors committed by different agents.
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1 Introduction

The backgrounds of the people who work in an organization are not ex-
ogenously given. The organization (be it a firm, a government agency, a
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nonprofit, etc.) chooses whom to hire. This paper is concerned with one
dimension of the hiring policy: the degree of variety in the backgrounds of
the people who are hired.

On this dimension, different organizations can adopt strikingly different
policies. Some organizations pursue a policy of hiring people with homo-
geneous backgrounds, while other organizations actively seek a degree of
background diversity in their workforce. What characteristics of an organi-
zation determine its optimal degree of background homogeneity? Clearly,
this is a complex question and one could approach it from several angles.
Motivational factors, incentive issues, the need for secrecy all play a role in
this choice. This paper, however, will restrict its attention to one factor:
informational efficiency.

Even when examined in isolation, informational efficiency constitutes a
highly complex problem. Crémer [8, 9] has pioneered the idea of apply-
ing team theory to issues of corporate culture. Team theory, developed by
Marschak and Radner [15], examines the problem of several decision makers
who maximize a joint objective but have different information when they
choose their actions. The agents share a common prior but may receive
different signals about the state of the world. The challenging aspect is that
each agent makes his decision without knowing the information of the other
agents, and thus uses his own information to infer both the state of the world
and the information received by the others. For a given information struc-
ture, a team problem can be seen as a game of incomplete information in
which players have the same payoffs. The solution to the team problem for
a fixed information structure (a decision rule for each agent) corresponds to
a Bayes-Nash equilibrium of the game, with the restriction that the equilib-
rium must be Pareto efficient (that is, there are no coordination problems).
However, the question that team theory usually asks is not only what the
optimal decision rules are for a given information structure but also how the
information structure of the team affects its performance.

This paper uses team theory to model the problem of workforce hetero-
geneity. The section on Related Literature will describe the precise contri-
bution of this paper with respect to the existing team-theoretical literature.
The remainder of this section summarizes the results of the paper in simple
terms.

An organization is made of n agents (n is given exogenously). The type
of an agent, which is endogenous, determines his information structure —
the most important concept of this paper. The information structure is
the grid through which the agent observes the world. Mathematically, it



is a mapping from the state of the world (a random variable not directly
observed) into a signal available to the agent. For instance, an agent with
the type “doctor” has an information structure which, when confronted with
a patient, provides him with a signal on the patient’s health. The type of an
agent also determines the cost of that agent for the team. The endogeneity
of agents’ types has two interpretations. The direct one is that the team
spends resources to endow the existing agents with information structures.
A less direct interpretation is that the team is made of n slots that are filled
by hiring agents from a labor market. The cost of an information structure
is the market wage of an agent with that information structure.

Given the information structures, each agent is given a decision function,
that tells the agent how to respond to each signal he may receive.l Of course,
the decision function can vary from agent to agent. When the state of
the world is realized, agents observe their signals through their information
structures and choose their actions through their decision functions. The
gross payoff to the organization is a function of the state of the world and
of the actions taken by the agents. The team problem consists of selecting a
type and a decision function for each of the n agents in order to maximize the
expected value of the gross payoff minus the cost of information structures.
Figure 1 depicts the problem for an organization in which n = 2.

We assume that the payoff function is symmetric in the agents’ actions.
This means that the total payoff does not depend on the job labels the
agents carry but only on the actions they choose. With a sport analogy,
this assumption implies that the number on a player’s shirt is immaterial
in determining the outcome of the player’s actions (true in basketball; false
in soccer because of the goalkeeper’s special status). An intrinsically asym-
metric payoff function would clearly bias results in favor of heterogeneous
agent types.2

With this assumption, we prove the two central results of the paper.
First, if the agents’ actions are complements in the payoff function, then the
set of optimal solutions contains a solution in which all agents have the same
type. In that case, the team problem reduces to looking at configurations
with only one type of agents. Second, if two additional assumptions hold
(concavity and nonuniqueness of the single-type optima), we prove that,

'In contrast to most of the recent economic literature on organizations, this paper is
not directly concerned with incentive issues. We assume that there is no moral hazard on
the part of agents: if an agent is given a decision function, he will follow it.

2An earlier version of this paper shows that the main results hold also in a particular
asymmetric environment (Prat [22]).
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Figure 1: An Organization with Two Agents

if the agents’ actions are substitutes in the payoff function, then the set
of optimal solution contains a solution with at least two distinct types of
agents.

Complementarities are represented through the lattice-theoretic notions
of supermodular and submodular functions (Topkis [25], Vives [27], Milgrom
and Roberts [17]). The main advantage of lattice theory is that its definitions
are applicable also when continuity and differentiability are not assured,
which is the case in this paper. Moreover, proofs are made simpler and
statements more intuitive. Indeed, the intuition for the main results for
this paper is captured by the following lattice-theoretic result, also proven
in the paper. Consider a function the argument of which is a vector of
random variables. We show that if the function is supermodular, then the
expected value of the function is higher if the random variables are perfectly
correlated rather than stochastically independent. On the other hand, if the
function is submodular, the expected value is higher if the random variables
are stochastically independent. In the problem at hand, agents do not in
general have perfect information. Thus, they are bound to deviate from the
full-information solution. If their actions are complements, it is optimal for
them to deviate in a coordinated manner, which occurs if their information
structures are identical. Thus, having agents of the same type is optimal.
An analogous line of reasoning can be followed when the agents’ actions are
substitutes.



As the intuition is general, one would expect the results to hold in a
very general setting. Indeed they do. In this paper, thanks to the use
of lattice theory, no particular functional form is assumed for the payoff
function. Moreover, the set of possible states of the world and the probability
distribution on it are defined in a general way. Finally, no assumption is
made on the set of agents’ type, on information structures, or on decision
functions.

The results are illustrated by two examples. In the first, a product is
made of two components produced by two different divisions of the same
firm. We show that the presence of complementarities in the production
function pushes the team to have division managers with the same type. The
second example is a search problem with two researchers choosing in which
direction to devote their search efforts. We show that the team objective is
submodular and hence researchers should have different types.

The plan of the paper is as follows. Section 2 introduces the model.
Section 3 reports the main results. Section 4 provides intuition for the main
results based on the idea of error correlation. Section 5 concludes.

Related Literature As stated above, we adopt the team-theoretical frame-
work. Team theory was developed in the Sixties by Marschak and Rad-
ner [15]. In the Seventies it gave rise to a literature on the possibility of
decentralizing decision-making, such as Groves and Radner [12] and Arrow
and Radner [4]. After more than a decade of limited use — which coin-
cided with the development of principal-agent theory — team theory has
been experiencing a renewed interest. Several authors have applied it to
problems in organization theory that do not seem to find a satisfactory
answer within the principal-agent framework. Examples are Aoki [1, 2],
Crémer [7, 8, 9], Geanakoplos and Milgrom [11], Li [14], Ponssard, Stein-
metz, and Tanguy [20], and Qian, Roland, and Xu [23, 24].

The closest source of inspiration for this paper is Crémer [8, 9], who uses
team theory to study corporate culture. Crémer considers a team with a
quadratic objective function. The coeflicient of the linear term is unknown
and represents the state of the world. The state of the world is a normally
distributed random variable. Each agent observes the state of the world
plus a normally distributed disturbance. Crémer considers two cases: (1)
the disturbances are identical across agents (shared knowledge) and (2) the
disturbances are uncorrelated across agents (diversified knowledge). He finds
that if the sign of the second-order cross-derivative in the agent actions is



positive, then shared knowledge is optimal, while if the sign is negative than
diversified knowledge is optimal.

The original contribution of the present paper is to extend Crémer’s
problem beyond a particular formulation. This generalization is of interest
in itself, but is especially valuable because it allows us to identify the sign
of complementarities as the main driving force in the choice between a ho-
mogeneous and a heterogeneous workforce. This finding appears to be new
in economics and management science.?

The assumptions made by Crémer — quadratic payoff function and nor-
mally distributed signals — are common to all the recent team-theoretical
literature. Although those assumptions are quite restrictive, they are made
because they allow for a closed-form solution. An incidental contribution of
the present paper paper is to show that those assumptions are not needed if
team theory is combined with lattice theory. We formulate an organizational
problem in a general way. Finding a closed-form solution is impossible and
is not attempted. Instead, we apply lattice theory concepts and we study
the set of optimal solution. This is sufficient to answer the question we are
interested in and to generate testable implications. Hopefully, this method-
ology can be used to study other questions in organization theory that are
still open.*

2 The Model of a Team

The state of the world « belongs to a finite set X. The state of the world is
not observed directly. Every agent has common prior distribution ¢ : X —
R.

A team is composed of n agents and its payoff depends on the decisions
taken by the agents and on the state of the world. The payoff function is

3A note by Prat [21] presents some results on complementarity and workforce homo-
geneity. However, that work does not consider agent types but only information structures
and therefore cannot directly relate to workforce homogeneity. Moreover, the scope of the
present work is much broader.

4This paper differs from the industrial organization literature on information sharing
in oligopoly, like Gal-Or [10] and Vives [26]. Those works examine the incentives of
oligopolists to communicate to each other the private signals they have received. The
choice between sharing or not sharing information is dictated by strategic consideration.
In contrast, there are no strategic considerations in the present paper. As agents do not
have conflicting interests, they always have an incentive to share information with each
other.



given by
w(ai,...,an,x) (1)

where a; € A represents the action taken by agent i. A is an ordered set.
No assumption is made on the form of w except the following:

Assumption 1 (Symmetry) For all x € X,
w(ala"'aa’nax):“':w(anw"?al’x) (2)
for any rearrangement of the action indices.

Agent 7 is endowed with an information structure 6; € ©, where 6 : X —
Y. We will often refer to an agent’s information structure as his “type”.
The assumption that Y does not depend on 6 is without loss of generality.”
The function 6; induces a partition Py on the set X. This corresponds to the
standard definition of information structure (see Marschak and Radner [15,
p. 48-49)).

Information structures are costly. Endowing an agent with structure 6
costs the team ¢y, so that the total cost incurred is } ;. cp,.

We denote Agent i’s decision function by «; : ¥ — A. The decision
function must be taken from a set of feasible decision functions denoted by
A. Then, the action taken by ¢ in state x is a; = o;[0;(x)].

To summarize, the givens of the team problem are: a set of states of
the world (X)), the prior distribution (¢), the payoff function (w), a set of
actions (A), a set of information structures (H), a set of agent types (©),
a set of decision functions (A), and the cost function (¢). The team must
select, for each agent ¢, an information structure 6; and a decision function
a; (which we will refer to as the team’s configuration). The goal of the team
is to maximize the expected payoff less the cost of information structures:

n

. S E{w[on(61(x)), ..., an(0n(x)), 2]} — ;%—

In the remainder of the paper, we assume that the team problem has at
least one solution.

5Suppose that Yy denotes the set of possible signals received by an agent of type . We
just need to let Y = Ueee Yo.



3 General Results

3.1 Defining Complementarities

To represent complementarities, we adapt the general definition of super-
modular and submodular functions to the problem at hand (See for instance
Milgrom and Shannon [19] for general definitions):

Definition 1 The payoff function w is supermodular in the agents’ actions
if, for any two vectors (ai,...,a,) € A" and (ay,...,a,) € A" and for all
x € X, the following holds

w(@1y...,ln, ) +w(@,...,a0n,T)

< w[min(ay,a),...,min(ay,, a,), ] + wmax(a,ai),. .., max(a,, a,), .

Conversely, w is submodular in the agents’ actions if, given any two vectors
(G1,...,a,) € A" and (G1,...,a,) € A", for all x € X, the following holds

w(@1y. .., ) +w(@1,...,a0n,T)

> wmin(ay, ay), . .., min(ay,, a,), ] + wmax(a,ai),. .., max(a,, a,), .

How does supermodularity relate to the notion of complementarity based
on cross-derivatives? The latter definition is applicable only if the func-
tion is twice-differentiable. Topkis [25, Th. 3.2] shows that, if a func-
tion is twice-differentiable, then the function is supermodular if and only if
the second-order cross derivatives are all nonnegative (in the present case:
0*w/da;0a; > 0 for i # j), while the function is submodular if and only if
the cross derivatives are all nonpositive. Thus, supermodularity is a gener-
alization of the traditional notion of complementarity. Its use derives from
the fact that in many problems the second-order cross derivative is not well-
defined (for instance, because the agent’s action is a discrete variable).

The following result (proven in the appendix) will be used repeatedly in
the paper.

Lemma 1 Given an ordered set A and a vector a = (ai,...,an) € A",
define P(a) as the set of all vectors obtained by permuting elements of a.
Consider f: A" — R. If f is supermodular (submodular), then

LY e <@ Y fana)

(P1,..,Pn)EP(a) i=1,..,n



Consider a function, the arguments of which are all defined on the same
ordered set. Take a particular vector of arguments. If the function is super-
modular, then the average value of the function for all possible permutations
of the vector is smaller or equal to the average value of the function of vec-
tors in which all elements are equal to one of the arguments of the initial
vector. The converse holds if the function is submodular.

The following is immediate:®

Corollary 1 Suppose f is such that f(ai,...,an) == f(ap,...,a1) for
any rearrangement of the vector a. If f is supermodular (submodular), then

f(al,...,an)g(z)% S fan. . a)
i=1 n

3.2 Sufficient Condition for the Optimality of Workforce Ho-
mogeneity

It is now possible to state the main result of this paper. Provided that
the team’s problem has at least one optimal solution and provided that
Assumption 1 holds, we have the following:

Proposition 1 If w is supermodular in the agents’ actions, then the set of
optimal solutions to the team problem contains at least one configuration in
which 61 = ... =10,.

Proof Suppose w is supermodular in the agents’ actions. We will prove
that, for any configuration in which not all agents have the same type, we
can find a configuration which gives a greater or equal expected payoff and
in which all agents have the same type.

Consider a feasible choice of types, denoted by 64, ...,0,, and a feasible
choice of decision functions, denoted by a;(+),...,ay(:). Notice that

wlag(61(x)), ..., an(Op(x)), 2]

8Corollary 1 has been proven in a direct way by Meyer and Mookherjee [16, Proposition
1]. To the best of my knowledge, Lemma 1 — which is of independent interest — is new.
The Corollary is sufficient to prove the results in Sections 3.2 and 3.3. The Lemma is
needed for Section 4.




is supermodular in a;(01(x)),..., o, (0, (x)) for all z € X. By Corollary 1
and Assumption 1, we have that, for all z € X,

elar(Br(@), . ar(03(2)),
b wlan(On(o)), - 0 (Oa®)), 4T}
> la (@), (), 0

Take expectations over the set of possible states and add the total cost
of wages on both sides

L(E{wlon(tr(2)), .- ar (Or(x), 2]} + ey,

)y -
+ ...+ E{w[an(0p(2)), .. ., an(0n(x)), ]} + ncy,)

> E{w[a1(61(x)), - .., an(On(x) S

=
—
+
(]
$

Then for at least one of the types, say 0,
Efwlag(k(x)), - - ., ar(Ok(2)), x]} + ncy,

> Blwfon(6:(2)), .., an(0n(@)), 2]} + o
i=1

Thus, for any feasible choice of types and of decision functions, there ex-
ists a feasible choice of types and decision functions in which 6; = ... =6,
who does at least as well. Then, if the set of solutions to the team prob-
lem is not empty, as we have assumed, it must contain a solution in which
0h=...= 0,

The intuition behind Proposition 1 is that if the payoff function is su-
permodular then the team is better off if agents commit correlated errors
rather than uncorrelated errors. We will explore this theme in Section 4.7

Proposition 1 says that, among all the possible solutions to the team’s
problem, there is at least one in which all agents have the same type. It

"Suppose instead that the payoff function is strictly supermodular, that is, that ‘<’
replaces ‘<’ in the definition of supermodular function given in Section 4. Then, it is easy
to see that, for any solution in which 6; = ... = 6,, does not hold, it is almost always
possible to find at least one solution in which #; = ... = 0, and which yields a strictly
higher expected payoff. Then, the set of optimal solutions will generically contain only
configurations in which 6; = ... = 0,,.

10



does not identify which, among all the solutions of that kind, is the optimal
one. However, a proposition like 1 greatly simplifies the task of designing an
optimal organizational structure. The organization designer can, without
loss of generality, focus on solutions in which all agents have the same type.
For example, if there are 20 agents and 4 information structures, the number
of possible configurations — counting symmetric structures only once — is
8855. However, by applying Proposition 1, the organization designer knows
that the number of configurations she needs to check is just 4.

The following example illustrates the use of Proposition 1:

Example 1 (A Product Made of Two Components): Consider a
firm made of two divisions. Agent 1 is the manager of Division 1 and Agent
2 is the manager of Division 2. The final product of the firm is obtained by
assembling a component produced by Division 1 and a component produced
by Division 2. Agent 1 decides a1, the quantity produced by Division 1, and
Agent 2 decides ag, the quantity produced by Division 2. Because each prod-
uct needs both components, the number of items produced is min(ay,az).
The firm faces an inelastic demand curve. It can sell up to x products at a
unit price p. If it produces more than = products, the excess will be unsold.
Therefore, the number of products sold is the minimum between the number
of products produced and the number of products demanded: min(ay, as, x).
Demand depends on the state of the world represented by the real random
variable z with a given probability distribution p(x). The unit cost is the
same for both components: k (let us assume that k& < 0.5p). The payoff
function of the firm is

w(ay,as, ) = pmin(ay, az, z) — k(a; + ag) (3)

The structure of the problem suggests that the agents’ actions are com-
plements. Indeed, it can be verified that the payoff function (3) is super-
modular in a; and as for all = (See the Appendix for a formal verification).
Therefore, we can apply Proposition 1: the set of optimal solutions contains
at least one solution in which Agent 1 and Agent 2 have the same informa-
tion structure. This result is independent of the distribution of z and of the
feasible set of types.

11



3.3 Sufficient Condition for the Optimality of Workforce Het-
erogeneity

This subsection presents a partial parallel of Proposition 1 for workforce
heterogeneity. Two additional assumptions are necessary. First,

Assumption 2 (Concavity of the Payoff Function) The set A is con-
vex and the payoff function w is concave in ai,as, ..., ay.

Assumption 2 guarantees that the team is risk-averse. A risk-loving
manager may want to hire homogeneous agents in order to coordinate on
riskier actions.

The second additional assumption excludes situations in which one type
of worker is superior to all other types:

Definition 2 A one-type optimum is a solution to

max E{wlai (0" (x)),...,ay (0" (x)),z]} — nb*
0* {aj ti=1,...n
Assumption 3 (Nonuniqueness of One-Type Optima) There exist two
distinct values 0* and 6** and two sets of decision functions {a }i—1,... n and
{af*}iz1,. n such that (0%, {a}}iz1,..n) and 0**, {a;* }i=1, . ) are both one-
type optima.

Assumption 3 considers a restricted problem. Suppose the team can only
hire agents of one type: which type of agents would it hire? The assumption
requires that there are at least two optimal types. Without this assumption,
it could be the case that a type of agent is strictly ‘better’ than the others.
This would imply that workforce homogeneity is optimal in a trivial way.
On the contrary, in reality, the labor supply is heterogeneous and, for any
given profile, it comprises several types of workers, none of which clearly
dominates the other.®

Of course, Assumptions 2 and 3 do not imply that heterogeneity is the op-
timal solution. In particular, if the payoff function is strictly supermodular,
then all optimal configurations still require full homogeneity, as predicted
by Proposition 1.

With Assumptions 1 through 3, the following holds:

8For instance, if a department wants to hire a faculty, it can choose from graduates of
various graduate schools. There will be several schools with similar rankings. However,
within the set of schools in the same ranking, there may be large differences in terms of
focus or style.

12



Proposition 2 If w is submodular, then the set of optimal solutions con-
tains at least one solution in which it is not true that 81 = ... = 05.

To illustrate the scope of Proposition 2, consider the following;:

Example 2 (A Search Problem): Consider a team of two researchers:
1 and 2. There are two possible fields of research: Left and Right. Only
one of the fields is promising, but the researchers do not know which. Let
z be a random variable which can assume the values 0 and 1 with equal
probability. If z = 0, Left is promising. If z = 1, Right is promising. Each
agent works for a unitary amount of time. Agent i chooses a; € [0, 1], which
represents the percentage of his work time that he devotes to searching Left.
The percentage of time that he devotes to searching Right is given by 1 —a;.

Within a research field, there are decreasing returns to scale. For in-
stance, assume that the probability of success is proportional to the square
root of the total research time spent in that field. If the research is suc-
cessful, the team receives a payoff of (). The team’s payoff can be written

 Vma—w Java
w(ay,ag,z) = QZT +Q(1 — Z)T (4)

where the denominator v/2 is used to normalize the probabilities.

Suppose that there are two types of researchers: those educated in uni-
versity H (with information structure § = h) and those educated in univer-
sity K (with # = k). Both types observe y with some error, but the errors
are uncorrelated across types. Let the state of the world be = = (y, e, €x),
where €y and €x are independently uniformly distributed on [0, 1]. The two
possible information structures are defined as follows:

) oz ifeg >p
h(z)—{ 1—2z ifeg>p

and

)z ifex >p
k:(z)_{ 1—2 ifeg>p

where p € (0.5,1] denotes the precision of the signal.

It is easy to check that the function in (4) is submodular in a; and as.
Moreover, Assumptions 2 and 3 hold as well. Therefore, by Proposition 2,
the search problem described here always has an optimal solution in which
one agent is of type h and the other is of type k.

13



Search problems typically entail submodular payoff functions. The more
one agent searches in a direction, the more the other agents should search in
other directions. Of course, the team can always order the agents to spread
equally on all possible directions. However, this decision function is clearly
not optimal because it does not take into account the agents’ signals. The
best thing the team designer can do is to hire agents who receive uncorrelated
signals, so that agents can spread on different directions without renouncing
their signals.”

4 Error Coordination

This section does not directly refer to the central theme of the paper. How-
ever, it illustrates a property of supermodular and submodular functions
that is useful in interpreting the results of this paper. Consider a function
of random variables. Suppose the random variables can be either perfectly
codependent or mutually independent. This section proves that, if the func-
tion is supermodular, the expected value of the function is higher when the
variables are perfectly codependent, while, if the function is submodular, it
is higher when the variables are mutually independent. In the light of this
result, we can provide some intuition on the results presented in Section 3.
Consider two random vectors:

y' = (1,y2, -, un)

y” = (0,40, - ,¥0)

where yo,y1,Yy2,: - ,Yn are identically distributed, mutually independent
random variables. Consider a function f : R” — R. The following can
be proven.1®

Proposition 3 If f is supermodular, then E[f(yP)] > E[f(y!)], while if f
is submodular, then E[f(yP)] < E[f(y')].

If a function is supermodular, then the expected value is higher in the
case of correlated errors than in the case of uncorrelated errors. The opposite

9For a discussion of the role of uncorrelated information in search problems, see also
Bassan and Scarsini [5]. They consider a class of multi-agent search problems and demon-
strate the value of heterogeneity based on the idea of experimentation externalities.

OProposition 3 was conjectured by Milgrom and Roberts [18]. The proof is in the
Appendix.

14



holds if the function is submodular. Although Proposition 3 is not used to
prove Propositions 1 and 2, it provides intuition for those results.

Suppose the agents of an organization are bound to commit errors. The
y’s can be interpreted as the actions of the agents. The actions are random
because the agent’s signal has a random disturbance. Assume that the
organization designer cannot reduce the entity of errors, but can choose
whether the errors are perfectly codependent or mutually independent. If
the team payoff function is supermodular, the organization designer will
want the errors to be perfectly codependent. Workforce homogeneity is a
device to make the errors perfectly codependent. On the other hand, if the
team payoff function is submodular, the organization designer will want the
errors to be mutually independent and heterogeneity is a device to make
errors mutually independent.

5 Conclusion

We have considered the problem of a team that must decide the information
structure of its agents. This paper has established a general connection be-
tween complementarities across agents and the opportunity of hiring agents
with similar characteristics. If the payoff function is supermodular, agents
should be homogeneous. If the payoff function is submodular, agents should
be heterogeneous.

While the analysis presented here has been purely theoretical, its main
ideas can be applied to important organizational issues. This paper predicts
that the workforce homogeneity of a company is determined by the type
of interaction between its agents. Therefore, activities for which good fit
between various units is the first concern will have a homogeneous work-
force in order to maximize coordination. On the other hand, activities that
revolve around exploitation of new opportunities will have a more hetero-
geneous workforce in order to maximize the chance of developing successful
innovations.

Perhaps the most limiting assumption of this paper is that agents cannot
communicate with each other between the time they observe their signals
and the time they take their actions. Of course, if there is an exogenous level
of communication, the present model can easily be extended to apply to the
that part of information which has not been communicated. However, the
real challenge is to let communication be endogenous. Arrow [3, p. 56-59]
noted that each organization develops its code — a set of channels of intra-

15



organizational communication. How organizations develop their codes is a
problem which is central to real organizations but has not yet been studies in
economic theory. Future research might use a model similar to the present
one to study coding.

6 Appendix: Proofs

Proof of Lemma 1 Suppose that S is an ordered set and that ¢ : S™ — R
is supermodular. Then, it is immediate from the definition of supermodu-
larity that, for any t € S and w € S,

m — 1 times m — 1 times m times m times
N N ——
q(t, w,...,w ) +qw, t,...;t ) <qw,...,w)+q(t,...,t)

Consider now § : S — § and assume that § is supermodular in all its

arguments. Then, for any vector (z1,..., %) € S', any t € S, and any w € S,
m — 1 times m — 1 times
G(z1,--.,21,t, mu?)+(j(zl,...,zl,w, m )
m times m times
< 67(21,---,21,m)+§(Zl,---,zz,m) (5)

If we apply (5) to the problem at hand, we have that for any k& =
2,3,...,n and for any (py,...,px) € AF,

n —k+ 1 times n —k + 1 times
e e e e
f(pla"'apk—%pk—la Pr,--- 5Dk )+f(p17”'7pk—27p/€7pk—17"'7p/€—1)
n —k + 2 times n — k + 2 times
e e e e
< f(p1,---»Pk—2, Dks--->0k )+ f(p1,- - PE—2,Pk—1,---,Pk—1)  (6)

%e)t Pr(a) = {(p1,---p6)(P1,---,Pn) € Pla)}. Let pp = (p1,.--,pk). By
6),

n — k+ 1 times n — k+ 1 times

——— ———
> fprs-pk-20k 15 Dro-opR )Hf P PR-2, Pk P15 -5 PR D))
PrEP(a)
n — k + 2 times n — k + 2 times
——— —N—
< > U1, pk-2s Dro--o0k )+ f(015- - Ph—2Dk1,- - PE1)]
ﬁkEPk(a)

(7)
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However, it is easy to see that

n —k+ 1 times
e e
> fpr,- - pk—2.Pk—1, Dio--oDk )

PrEPx(a)
n —k + 1 times
e N
= Z f(p17"‘7p/€—27p/€7p/€—17"‘7p/€—1)
ﬁkGPk(a)

and

n —k + 2 times

———
> 1o Pe-2s Drr---PR )

PrEPx(a)
n —k + 2 times
e N
= Z f(pla'"7p/€—27pk—17"'7p/€—1)
ﬁkGPk(a)

so that (7) becomes:

n—k+ 1 times

———
Z f(p17"'7pk:717 pk:""’])k: )

ﬁkGPk(a)
n —k + 2 times
e e
< > flpr-- pr—2.Pk—1,- - PE-1) (8)
f)kGPk(a)

Notice, however, that now py, does not appear in the right-hand side of (8).
Thus, for any (p1,...,pk—1) € Px_1(a), the summation contains n — k + 1
identical elements corresponding to the possible values of pg. Hence, (8)
becomes

n —k + 1 times

——
Z f(pla'”apk—la Pks- -5 Pk )
PrEP(a)
n — k + 2 times

< (n—k+1) Y f(or,e P2k 1, PED) (9)
Pr—1€P;—1(a)

By applying (9) recursively, we have

Z f(pla"'apTL*Qapn*lapn)

Pn€Pn(a)
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IA
—_

Z f(pla---apan;pnflapnfl)

ﬁn—lepn—l(a)

n — k+ 1 times

S 1-2-.--. (TL—]C) Z f(pl;---apkfla Pk, - -, Pk )
PrEP(a)
ntlmes
< n_]- Z fp17 ‘7p1) (10)
p1€P(a)

Notice that the left-hand side of (10) is equal to

Z f(plaapn)

(p1,-spn)E€P(a)

and that

n times

Z flai,...oa0) =Y fb1,- . Prr-. .01

yeeen T plepl( )
Hence, (10) becomes

Z f(pl,---,Pn)S(n—l)! Z f(aiv"'aai)

(p1,-..,pn)EP(a) i=1,..n

By dividing both sides of (6) by n!, the proposition is proven for f super-
modular. If f is submodular, the proof goes through in the same fashion
with switched inequality signs.

Verification That the Payoff Function in Eq. (3) Is Supermodular
Consider any two vectors of strategies (a},a)) and (af,ay). By Definition 1,
we have to prove that, for all x,

Assume without loss of generality that af Z aj. If also af > ab, then (11)
holds as an equality. Hence, suppose that ay < ab. Then, (11) becomes

min(af, a4, ) + min(a},ay, ) > min(a},ab, x) + min(af, al, z) (12)
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Given that af > a) and af < af, without loss of generality, we can assume
that af > af (if it happens that of < a), we can switch the suffixes ’ and ”
and also switch the indexes 1 and 2). There are three possible cases:

n
a

v
S~
v
S
v

!/
ay > ay > aq

"

"
a

Qg

v

a
d > df

(AVARNAVS
S
_~ o~
Vv

\Y]

"
ay

Y

a

For all three cases it is easy to verify that (12) holds. Therefore, the payoff
function in Eq. (3) is supermodular.

To prove Proposition 2 the following is useful

Lemma 2 Under Assumption 2, the set of one-type optima includes a so-
lution in which

Lemma 2 refers to the problem in which agents are artificially restricted
to be of the same type. In that case, convexity of the action space and
concavity of the payoff function are together a sufficient condition to have an
optimal solution in which agents all agents have the same decision function.

Proof of Lemma 2 Suppose all agents have the same type 6. For all
y € Y, the team chooses a rule of action which maximizes

gler(y), - -, an(y)] = E{wlas, . .., an, 2]|0(x) = y} (13)

Suppose w is symmetric and concave in a. Because the expectation is a

linear operator, also g is symmetric and concave in a.

*

Assume the rule of action a* = (a}, a3, -+, a}) is a maximum of g(a,y).

By symmetry, all reorderings of a* are maxima, too. If we define

) >ttty
n n n

then, by concavity of g, we get g(a*,y) > g(a*,y). This holds for all possible
signals y. Moreover, a* is a symmetric rule of action. Then, if there exists
an optimal rule of action — as has been assumed throughout this paper —
then there also exists a symmetric optimal rule of action.
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Proof of Proposition 2 By Assumption 3, there exist distinct types ¢’
and 0" such that

(¢7,6") € argmaxy, o, 0,,0,w[01(61(2)), - ., o (On()), 2] — co, — co,

Suppose that o/ is the optimal rule of action associated to 6’ and " is the
optimal rule of action associated to #”. By Lemma 2, for #' there exists

an optimal set of decision functions oj(-) = --- = al,(-) = &/(-) and for ¢
there exists an optimal set of decision functions off () = --- = al'(-) = o’ ().
Suppose w is submodular. By Corollary 1,
k agents n—k agents
AQE @, @18 @), 1 @)@ B @)} — [hew + (0 — k)cor]
n agents

> %w{o/[H'(:E)}, A0 (@) — key
n agents

Q[0 (@), -, " [0" (@)1} — (n — K)ew

n—k

_|_

for all x € X and for any k = 1,2,...,n. Take expectations and recall that
0" and 0" yield the same expected net profit. Then, for k =1,2,...,n —1,

k agents n—k agents
E(w{a'[0'(2)],...,d[¢ (2)],a"[0"(2)),...,a"[0" (2)]}) — [k + (n— k)cor]
n agents
> E{w[d[0'(2)],...,d[0(2)]]} — ncer
n agents
= Ew[d"[0"(2)],...,a"[0"(x)]] — ncyn

It follows that diversified knowledge is optimal.

Proof of Proposition 3 Suppose f is supermodular. Because the y’s are
identically distributed, the expected value of f is invariant to permutations
of the y’s:

Elf(yr,- - yn)] == E[f(Yn, - y1)]

and, obviously,
E[f(y277yl)] :E[f(yO;;yO)} for i = 1,2,...,71
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If f is supermodular, its expected value is supermodular as well. Con-
sider the arithmetic average of all the possible permutation of the y’s. By
Lemma 1,

Z(yjl,...,yjn)eP(y) f(ij s 7y]n) 1
NIP() =@

implying
E[f(y1,- -+ ym)] < E[f (o, -+, v0)]

E[f(yh] < E[f(yP)]

and conversely when f is submodular.
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