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ABSTRACT
In many practical scenarios, a population is divided into dis-
joint groups for better administration, such as electorates into
political districts and students into school districts. However,
grouping people arbitrarily may lead to biased partitions, rais-
ing concerns of gerrymandering in political districting and
racial segregation in schools. To counter such issues, in this
paper, we conceptualize such problems in a voting scenario,
and given an initial grouping, we propose the Fair Regroup-
ing problem to redistribute a given set of people into 𝑘 groups,
where each person has a preferred alternative and a set of
groups they can be moved to, such that the maximum margin
of victory of any group is minimized. We also propose the
Fair Connected Regrouping problem which additionally
requires the people within each group to be connected. We
show that the Fair Regrouping problem is NP-complete for
plurality voting even if we have only 3 alternatives, but ad-
mits polynomial time algorithms if everyone can be moved
to any group. We further show that the Fair Connected Re-
grouping problem is NP-complete for plurality voting even
if we have only 2 alternatives and 𝑘 = 2. Finally, we propose
heuristic algorithms for both problems and show their effec-
tiveness in political districting in the U.K. and in lowering
racial segregation in public schools in the U.S.
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1 INTRODUCTION
Dividing a population into smaller groups is often a practi-
cal necessity for better administration. For example, in many
democratic countries (most notably, in countries following the
Westminster System like the U.K., Canada, India, Australia, or
the Presidential System like U.S., Brazil, Mexico, Indonesia),
electorates are divided into electoral districts; in many organi-
zations, employees are divided into administrative units like
departments; students enrolled in public schools in the U.S. are
divided into school districts; and so on. However, the popula-
tion is not homogeneous, as it consists of people with different
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attributes—gender, race, religion, or ideological leaning. Divid-
ing people arbitrarily may lead to biased grouping, disallowing
minorities and underrepresented groups from accessing the
same services and opportunities as majority groups.

In electoral districting, given past voting patterns, ruling
political parties may draw district boundaries that favor them—
a practice termed as gerrymandering [38]. For example, they
may want to ensure that they enjoy a healthy lead over the
opponents in many districts, so that even if a handful of their
supporters change sides, it does not hamper the winnability.
Alternatively, they can assign the majority of the opposition
supporters to others districts, making themminorities in those
districts and thus weakening their power. There have been sev-
eral instances of such manipulations in electoral (re)districting
in the U.S., starting as early as in 1812, by then Massachusetts
governor Elbridge Gerry (the term gerrymandering originated
after him) [32]. Since then, efficient (re)distribution of voters
into districts remains an open problem due to the complex
dynamics involving voter mobility constraints, social and fi-
nancial burdens, as well as difficulty in testing efficacy of
proposed interventions [4, 17, 32].

Public schools in the U.S. are governed by school boards
representing local communities and are largely funded by local
property taxes [13, 19]. Most of the students go to a school
in the district they live, with proximity playing an important
role in the school choice [21]. The way in which the students
are distributed to schools determines the racial composition
of the schools, as well as the revenues they earn. Several re-
ports claim that wealthier, whiter communities have pushed
policies so that white families can live in white-majority ar-
eas and attend white-majority schools [15, 48]. Despite the
desegregating efforts following the landmark Supreme Court
verdict in Brown v. Board of Education case in 1954 (which ruled
racial segregation of children in public schools to be uncon-
stitutional), 63% of classmates of a white student are whites,
compared to 48% of all students being whites; similarly, 40%
of black and Hispanic students attend schools where over 90%
students are people of color [28]. As an economic consequence,
a recent report by an educational non-profit EdBuild claimed
that “non-white school districts get $23 Billion less than white
districts, despite serving the same number of students” [22].

Aside from the offline world, bias in grouping users can
exist in online settings as well. For instance, social media
platforms like Facebook allow advertisers to target groups of
users, raising concerns over the targeting of political ads and
housing, credit or job opportunity ads in such platforms [2, 3,
30, 47, 51]. The option of specifying a narrow target group



can be maliciously exploited for political benefits, where the
campaigns can tailor their political message solely to a single
ideological group, potentially leading to more polarized and
extreme messaging, and allowing misinformation to travel and
be accepted more easily [23, 41, 50].

To counter such biases in dividing people into groups, we
conceptualize these problems in a voting scenario: the goal is
to divide 𝑛 people, each having one preferred alternative (out
of𝑚), into 𝑘 groups. While the mapping of electoral districting,
or political ad targeting, into voting is direct and utilizes peo-
ple’s ideological preferences, we can think of context-specific
mapping in other scenarios. For instance, in school assign-
ment, we can think of students having preference according
to their sensitive attributes (such as gender or race). Once the
mapping is done, we utilize the concept of margin of victory
(defined as the number of people who need to change their
preference in order to change the winner) from computational
social choice to redistribute the population in groups in a more
equitable way, given certain constraints on the groups that
a user can be moved to. We propose the Fair Regrouping
problem to create 𝑘 groups such that the maximum margin of
victory of any group is minimized, and the Fair Connected
Regrouping problem which additionally requires people in
each group to remain connected in an underlying social graph.

Although by definition the margin of victory looks only at
the top two contenders, it could aid in situations where there
is a monopolistic advantage, such as in segregated political
areas or neighborhoods. Reducing margin of victory conceptu-
ally leads to groups in which there is no dominating opinion
and thus everyone’s opinion is valued, since the consensus of
the group can be changed even if a small number of people
change their preferences. In political districting, it would lead
to higher accountability from the elected candidate, incen-
tivizing them to truly engage with their electorate due to the
competition created. Moreover, it could also help avoiding cer-
tain gerrymandering practices by disallowing packing voters
into districts where one contender wins by a high margin. This
allows a minority group to have critical mass, thus indirectly
giving a better sense of security and belongingness among
people in that group. Similarly, it would lead to lower racial
segregation in schools.

For targeting political ads, a lower margin of victory would
deter political campaigns to resort to extreme political messag-
ing, given different points of view in the target audience. Note
that our proposal is aimed at the online platform (re)grouping
individuals when allowing political targeting from external
organizations. In the offline setting of local elections or school
choice, people’s geography and their social connections may
constrain the groups they can be a part of, whereas in the on-
line setting such constraints may come from users’ expressed
interests.

1.1 Contributions
We make the following contributions in this paper.
•We show that the Fair Regrouping problem isNP-complete
even when we have only 3 alternatives and there is no con-
straint on the size of individual groups [Theorem 4.1]. We
complement this intractability result by proving existence of

polynomial time (more specifically XP) algorithm, when (i)
every voter can be moved to any group (which we term as the
Fair Regrouping_X problem) [Theorem 4.5], and (ii) we have
a constant number of groups [Theorem 4.6].
• We further show that the Fair Connected Regrouping
problem is NP-complete even when there are only 2 alterna-
tives, 2 districts, the maximum degree of any vertex in the
underlying graph is 5, and no constraint on the size of dis-
tricts [Theorem 4.4]. This shows that, although both Fair
Regrouping and Fair Connected Regrouping problems are
NP-complete, Fair Connected Regrouping is computation-
ally harder than Fair Regrouping.
• We propose heuristic algorithms for both Fair Regrouping
and Fair Connected Regrouping problems, and show their
effectiveness in reducingmargin of victory in electoral districts
in the U.K., as well as in lowering racial segregation in public
schools in the U.S.

2 BACKGROUND & RELATEDWORK
Voting mechanisms have been at the center of historical, polit-
ical and sociological studies [5, 24, 39]. The problem of unfair
distribution of voters into districts, i.e. gerrymandering, has
received significant attention [4, 11, 32, 34], setting geograph-
ical [38] and social constraints [9, 17, 33] to population mobil-
ity. Puppe and Tasnádi [46], and Van Bevern et al. [52] proved
the problem to be NP-complete. Central to this problem is
the concept of representation: does a collective represent the
choices or attributes of those comprising it? While recent
papers conceptualize different measures of representation in
district-based elections [4, 14, 26, 27, 29, 34], to our knowledge,
we are the first to use the concept of margin of victory for
redistricting voters to achieve better representation.

Computing margin of victory for different voting rules has
been studied in [54]. Several works [8, 12, 20, 40] have at-
tempted to infer it in real elections, and showed that even
estimation becomes difficult in establishing robust elections.
A closely-related problem is bribery and robustness, studied
in [6, 10, 42, 43]. Yet, to our knowledge, the problem of min-
imizing margin of victory has not attracted much attention
from both a theoretical and an application point of view.

Another related area is achieving proportional representation
as a fairness goal in clustering, where every cluster contains
the same proportion of users from certain demographics as in
the general population [16, 37, 49, 55]. Our paper differs from
traditional clustering as the objective here is not to maximize a
similarity measure, but to use geographical or social similarity
as a constraint in minimizing the margin of victory. Note that
this is not equivalent to proportional representation, but rep-
resents a different metric aiming at better equity in elections.
While desirable in certain cases, proportional representation
is also NP-complete in general settings [45], and may dilute
voter power across many electoral districts.

These works show that the problem of grouping is a com-
plex one and that there is a gap between such measures of
robustness, proportional representation, and other gerryman-
dering metrics. Minimizing margin of victory aims to close this
gap in the current state of affairs that involve a deep inequality

2



among existing groups. In our setting, minimizing the margin
of victory serves the purpose of eliminating monopolistic ad-
vantage, creating a healthy competitive environment for the
top contenders. While we acknowledge the possibility of a
higher risk for manipulation due to small difference in votes,
we hope that election audits and other prevention measures
can deter such practices. Given classic gerrymandering con-
cerns such as cracking and packing, we argue that a minimal
margin of victory prevents such practices in political elections,
while a proportional representation constraint may correlate
with cracking a minority voter population into all districts,
disallowing them from winning any district.

In case of school segregation, the current state of public
schools in many cities, including our dataset from Detroit, is
of extreme racial segregation, which can be abstractly viewed
as a case of monopoly, which we aim to alleviate through min-
imizing the margin of victory. In an ideal world, all schools
would be composed of demographics in a proportional and
representative way, but we are yet far from achieving such an
ideal. What we can do is enact policies that are effective in
establishing more equitable access to education and opportu-
nity while being aware of the current state of social inequality.
Minimizing margin of victory aims to facilitate the enactment
of such policies (which have historical precedent in the form
of the desegregation busing decision of the Supreme Court
in 1971) with awareness of such inequality through process
fairness, considering existing social constraints.

3 PRELIMINARIES
Voting Setting: For a positive integer 𝑘 , we denote the set

{1, 2, . . . , 𝑘} by [𝑘]. Let A = {𝑎𝑖 : 𝑖 ∈ [𝑚]} be a set of 𝑚
alternatives and V = {𝑣𝑖 : 𝑖 ∈ [𝑛]} a set of 𝑛 voters. Each
voter has a most preferred alternative whom the voter votes
for. The plurality voting rule chooses the set of winners as the
set of alternatives who are the most preferred alternative by
the maximum number of voters. The number of voters who
prefer an alternative most is called the plurality score of that
alternative.

Margin of Victory: The margin of victory is the minimum
number of votes that needs to be changed to change the elec-
tion outcome. With the exception of the case where the top
two alternatives are tied (where the margin of victory is 1), it
easily follows that the margin of victory of a plurality election
is the ceiling of half the difference between the two highest
plurality scores of the alternatives. We now define our basic
problem of Fair Regrouping.

Definition 3.1 (Fair Regrouping). Given a set A of𝑚 al-
ternatives, a set V of 𝑛 voters along with their corresponding
preferences, initial partition of 𝑘 groups H = {𝐻𝑖 , 𝑖 ∈ [𝑘]}
along with the setV𝑖 of voters corresponding to each group
𝐻𝑖 for 𝑖 ∈ [𝑘] such that (V𝑖 )𝑖∈[𝑘 ] forms a partition of V , a
function 𝜋 : V −→ 2H \ {∅} denoting the set of groups that
each voter can be part of, minimum size 𝑠𝑚𝑖𝑛 and maximum
size 𝑠𝑚𝑎𝑥 of every group, and a target 𝑡 of maximum margin
of victory of any group, compute if there exists a partition
(V ′

𝑖
)𝑖∈[𝑘 ] ofV into these 𝑘 groups such that

(i) For every 𝑖 ∈ [𝑘] and 𝑣 ∈ V ′
𝑖
, we have 𝐻𝑖 ∈ 𝜋 (𝑣)

(ii) For every 𝑖 ∈ [𝑘], we have 𝑠𝑚𝑖𝑛 ⩽ |V ′
𝑖
| ⩽ 𝑠𝑚𝑎𝑥

(iii) The margin of victory in the group 𝐻𝑖 is at most 𝑡 for
every 𝑖 ∈ [𝑘]

We denote an arbitrary instance of this problem by
(A,V, 𝑘,H = (𝐻𝑖 )𝑖∈[𝑘 ] , (V𝑖 )𝑖∈[𝑘 ] , 𝜋, 𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥 , 𝑡).

An important special case of Fair Regrouping is when ev-
ery voter can be moved to any group; i.e., 𝜋 (𝑣) = H for every
voter 𝑣 ∈ V . We call this problem Fair Regrouping_X (where
the subscript X denotes that there is no user specific mobility
constraint). We denote an arbitrary instance of Fair Regroup-
ing_X by (A,V, 𝑘,H = (𝐻𝑖 )𝑖∈[𝑘 ] , (V𝑖 )𝑖∈[𝑘 ] , 𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥 , 𝑡).

The Fair Regrouping problem is generalized to define
the Fair Connected Regrouping problem, where the in-
put also have a social graph defined on the set of voters,
the given groups are all connected, and we require the new
groups to be connected as well. We denote an arbitrary in-
stance of Fair Connected Regrouping by (A,V,G, 𝑘,H =

(𝐻𝑖 )𝑖∈[𝑘 ] , (V𝑖 )𝑖∈[𝑘 ] , 𝜋, 𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥 , 𝑡). In this paper, we study
the above problems only for the plurality voting rule and thus
omit specifying it every time. The following observation is
immediate from the problem definitions.

Observation 1. Fair Regrouping_X many-to-one reduces
to Fair Regrouping which again many-to-one reduces to Fair
Connected Regrouping, both in polynomial-time.

4 THEORETICAL RESULTS
In this section, we present our basic theoretical results. Our
first result shows that Fair Regrouping is NP-complete even
with 3 alternatives. For that we reduce from the well known
SAT problem which is known to be NP-complete.

Theorem 4.1. The Fair Regrouping problem is NP-
complete even if we have only 3 alternatives and there is no
constraint on the size of any group.

Proof. Fair Regrouping clearly belongs to NP. To
prove NP-hardness, we reduce from the SAT problem. Let(
X = {𝑥𝑖 : 𝑖 ∈ [𝑛]} , C =

{
𝐶 𝑗 : 𝑗 ∈ [𝑚]

})
be an arbitrary in-

stance of SAT. Let us consider the following instance
(A,V, 𝑘,H = (V𝑖 )𝑖∈[𝑘 ] , 𝜋, 𝑠𝑚𝑖𝑛 = 0, 𝑠𝑚𝑎𝑥 = ∞, 𝑡 = 2) of
Fair Regrouping.

A = {𝑎, 𝑏, 𝑐}, 𝑘 = 3𝑛 +𝑚′

H = {X𝑖 , X̄𝑖 ,Z𝑖 : 𝑖 ∈ [𝑛]} ∪ {Y𝑗 : 𝑗 ∈ [𝑚′]}
∀𝑖 ∈ [𝑛], Votes in X𝑖 : 𝑚′ + 2 votes for 𝑎

𝑚′ votes for 𝑏,𝑚′ − 1 votes for 𝑐
∀𝑖 ∈ [𝑛], Votes in X̄𝑖 : 𝑚′ + 2 votes for 𝑎

𝑚′ votes for 𝑏,𝑚′ − 1 votes for 𝑐
∀𝑖 ∈ [𝑛], Votes inZ𝑖 : 𝑚′ + 2 votes for 𝑎

𝑚′ + 1 votes for 𝑐
∀𝑗 ∈ [𝑚′], Votes in Y𝑗 : 𝑚′ + 3 votes for 𝑎

𝑚′ votes for 𝑏
𝑡 = 2
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Let 𝑓 be a function defined on the set of literals as 𝑓 (𝑥𝑖 ) =
X𝑖 and 𝑓 (𝑥𝑖 ) = X̄𝑖 for every 𝑖 ∈ [𝑛]. We now describe the 𝜋
function. For 𝑖 ∈ [𝑛], no voter in Z𝑖 can move to any other
group except one voter who votes for the alternative 𝑐 and she
can move to X𝑖 and X̄𝑖 . For 𝑖 ∈ [𝑛], no voter voting for the
alternatives 𝑎 or 𝑐 in bothX𝑖 and X̄𝑖 leave their current groups;
any number of voters in X𝑖 (X̄𝑖 respectively) who vote for the
alternative 𝑏 can move to the group Y𝑗 for some 𝑗 ∈ [𝑚′]
if the variable 𝑥𝑖 (𝑥𝑖 respectively) appears in the clause 𝐶 𝑗 .
Finally no voter in the group Y𝑗 , 𝑗 ∈ [𝑚′] leave their current
group. This finishes the description of 𝜋 and the description
of the instance of Fair Regrouping. We claim that the two
instances are equivalent.

In one direction, let us assume that the SAT instance is a
yes instance. Let 𝑔 : X −→ {0, 1} be a satisfying assignment
for the SAT instance. Let us consider the following movement
of the voters: for 𝑖 ∈ [𝑛], if 𝑔(𝑥𝑖 ) = 1, then one voter in the
group Z𝑖 who votes for the alternative 𝑐 moves to the group
X𝑖 ; otherwise one voter in the group Z𝑖 who votes for the
alternative 𝑐 moves to the group X̄𝑖 . For 𝑗 ∈ [𝑚′], let the
clause𝐶 𝑗 be ℓ1 ∨ ℓ2 ∨ ℓ3 and 𝑔 sets the literal ℓ1 to be 1 (we can
assume this without loss of generality). Then one voter from
the group 𝑓 (ℓ1) who votes for 𝑏 moves to the group Y𝑗 . Since
the assignment 𝑔 satisfies all the clauses, the margin of victory
in the groupY𝑗 is 2 for every 𝑗 ∈ [𝑚′]. For 𝑖 ∈ [𝑛], if 𝑔(𝑥𝑖 ) = 0
(𝑔(𝑥𝑖 ) = 1 respectively), then the margin of victory in the
group X̄𝑖 (X𝑖 respectively) is 2 since it receives a voter voting
for the alternative 𝑐 . The rest of the groups (for 𝑖 ∈ [𝑛],X𝑖 if
𝑔(𝑥𝑖 ) = 0 and X̄𝑖 if 𝑔(𝑥1) = 1) remain same and their margin of
victory remains to be 2. Hence the Fair Regrouping instance
is also a yes instance.

In the other direction, let’s assume that the Fair Regroup-
ing instance is a yes instance. We define an assignment
𝑔 : X −→ {0, 1} to the variables in the SAT instance as follows.
For 𝑖 ∈ [𝑛], if a voter in the groupZ𝑖 who votes for 𝑐 moves
to X𝑖 , then we define 𝑔(𝑥𝑖 ) = 1; otherwise we define 𝑔(𝑥𝑖 ) = 0.
We claim that 𝑔 is a satisfying assignment for the SAT instance.
Suppose not, then there exists a clause 𝐶 𝑗 = ℓ1 ∨ ℓ2 ∨ ℓ3 for
some 𝑗 ∈ [𝑚′] which 𝑔 does not satisfy. To make the margin
of victory of the group Y𝑗 at most 2, one voter who votes for
𝑏 must move into Y𝑗 either from group 𝑓 (ℓ1) or from 𝑓 (ℓ2)
or from 𝑓 (ℓ3). However, since 𝑔 does not set any of ℓ1, ℓ2, or
ℓ3 to 1, none of these groups receive any voter who votes for
the alternative 𝑐 . Consequently, none of the groups can send
a voter who votes for the alternative 𝑏 to the group Y𝑗 since
otherwise the margin of victory of group which sends a voter
who votes for the alternative𝑏 becomes at least 3 contradicting
our assumption that the Fair Regrouping_X instance is a yes
instance. Hence, the SAT instance is a yes instance. □

Due to Observation 1, it follows immediately from Theo-
rem 4.1 that Fair Connected Regrouping problem for plu-
rality voting rule is also NP-complete. We next show that Fair
Connected Regrouping is NP-complete even if we simulta-
neously have 2 alternatives and 2 groups. For that, we reduce
from 2-Disjoint Connected Partitioning, defined as:

Definition 4.2 (2-Disjoint Connected Partitioning).
Given a connected graph G = (V, E) and two disjoint

nonempty sets Z1,Z2 ⊂ V , compute if there exists a parti-
tion (V1,V2) ofV such that Z1 ⊆ V1,Z2 ⊆ V2,G[V1] and
G[V2] are both connected. We denote an arbitrary instance
of 2-Disjoint Connected Partitioning by (G,Z1,Z2).

It is already known that the 2-Disjoint Connected Parti-
tioning problem is NP-complete [53, Theorem 1]. However
the proof of Theorem 1 in [53] can be imitated as a reduction
from the version of SAT where every literal appears in exactly
two clauses; this restricted version of SAT is also known to be
NP-complete [7]. This proves the following.

Proposition 4.3. The 2-Disjoint Connected Partition-
ing problem is NP-complete even if the maximum degree of the
input graph is 5.

Theorem 4.4. The Fair Connected Regrouping problem
is NP-complete even if we have only 2 alternatives, 2 groups, the
maximum degree of any vertex in the underlying graph is 5, and
we do not have any constraint on the size of groups.

Proof. The Fair Connected Regrouping problem is
clearly in NP. To prove NP-hardness, we reduce from 2-
Disjoint Connected Partitioning to Fair Connected Re-
grouping. Let (G′ = (U, E ′),Z1,Z2) be an arbitrary in-
stance of Fair Connected Regrouping. Without loss of
generality, let’s assume that the degree of every vertex in
Z2 is 2; 𝑧2 be any arbitrary (fixed) vertex of Z2. Let’s con-
sider the following instance (A,V,G = (V, E), 𝑘 = 2,H =

(𝐻𝑖 )𝑖∈[2] , (V𝑖 )𝑖∈[2] , 𝜋, 𝑠𝑚𝑖𝑛 = 0, 𝑠𝑚𝑎𝑥 = ∞, 𝑡 = 1) of Fair
Connected Regrouping.

A = {𝑥,𝑦}
V = {𝑣𝑧 : 𝑧 ∈ Z2}

∪ {𝑣𝑢 ,𝑤𝑢 : 𝑢 ∈ V \ Z2}
∪ D,D = {𝑑𝑖 : 𝑖 ∈ [|Z2 | + 1]}

E = {{𝑣𝑎, 𝑣𝑏 } : {𝑎, 𝑏} ∈ E ′}
∪ {{𝑣𝑢 ,𝑤𝑢 } : 𝑢 ∈ V[G′] \ Z2}
∪ {{𝑑𝑖 , 𝑑 𝑗 } : 𝑖, 𝑗 ∈ [|Z2 | + 1] , 𝑗 = 𝑖 + 1}
∪ {{𝑧2, 𝑑1}}

H2 = {𝑑𝑖 : 𝑖 ∈ [|Z2 | + 1]}
H1 = V \H2

Vote of 𝑣𝑢 , 𝑢 ∈ V : 𝑥 ≻ 𝑦

Vote of𝑤𝑢 , 𝑢 ∈ V \ Z2 : 𝑦 ≻ 𝑥

Vote of 𝑑𝑖 , 𝑖 ∈ [|Z2 | + 1] : 𝑦 ≻ 𝑥

𝜋 (𝑣𝑧) = {H1}, 𝑧 ∈ Z1
𝜋 (𝑑𝑖 ) = {H2}, 𝑖 ∈ [|Z2 | + 1]
𝜋 (𝑣) = {H1,H2} for every other vertex 𝑣

This finishes the description of the instance of Fair Con-
nected Regrouping. We now claim that the Fair Connected
Regrouping instance is equivalent to the 2-Disjoint Con-
nected Partitioning instance.

In one direction, let us assume that the 2-Disjoint Con-
nected Partitioning instance is a yes instance. Let (V1,V2)
be a partition ofU such thatZ1 ⊆ V1,Z2 ⊆ V2,G′[V1] and
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G′[V2] are both connected. We consider the following new
partition of the voters:

Voters ofH1 : {𝑣𝑢 ,𝑤𝑢 : 𝑢 ∈ V1}; voters ofH2 : others

Since G′[V1] is connected, it follows that G[H1] is also
connected. Similarly, since G′[V2] is connected, G[D] is con-
nected, and {𝑧2, 𝑑1} ∈ E[G], it follows that G[H2] is also
connected. In H1, both the alternatives 𝑥 and 𝑦 receive the
same number of votes and thus the margin of victory ofH1 is
1. InH2, the alternatives 𝑥 receives 1 less vote than the alter-
natives 𝑦 and thus the margin of victory ofH2 is 1. Thus the
Fair Connected Regrouping instance is also a yes instance.

In the other direction, let’s assume that there exists a valid
partition (H ′

1 ,H
′
2) of the voters such that both G[H ′

1] and
G[H ′

2] are connected and the margin of victory of both H ′
1

and H ′
2 are 1. Let us define V1 = {𝑢 ∈ V[G′] : 𝑣𝑢 ∈ H ′

1}
and V2 = V[G′] \ V1. It follows from the function 𝜋 that
we have Z1 ⊆ V ′

1 ,Z2 ⊆ V ′
2 . Also G′[V ′

1 ] is connected
since the voters inH ′

1 are connected. We also have G′[V ′
2 ] is

connected since the voters inH ′
2 are connected, the vertices

in D forms a path, and there exists a pendant vertex in D. We
also have Z2 ∈ V ′′

2 since the voters in {𝑣𝑢 :∈ Z2} belongs to
H2; otherwise the margin of victory ofH2 would be strictly
more than 1. Hence (V ′

1 ,V
′

2 ) is a solution of the 2-Disjoint
Connected Partitioning instance and thus the instance is a
yes instance. □

We now complement our hardness results with polynomial
time algorithm for a particular case for the Fair Regroup-
ing_X problem:

Theorem 4.5. The Fair Regrouping_X problem is polyno-
mial time solvable if the number of alternatives is a constant.

Proof. Let an arbitrary instance of Fair Regrouping_X
be (A,V, 𝑘,H = (𝐻𝑖 )𝑖∈[𝑘 ] , (V𝑖 )𝑖∈[𝑘 ] , 𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥 , 𝑡). For an
alternative 𝑎 ∈ A, let 𝑛𝑎 be the number of votes that 𝑎 re-
ceives. We present a dynamic programming based algorithm
for the Fair Regrouping_X problem. The dynamic program-
ming table T

(
(𝑖𝑎 ∈ {0, 1, . . . , 𝑛𝑎})𝑎∈A , ℓ ∈ [𝑘]

)
is defined as

follows – T
(
(𝑖𝑎)𝑎∈A , ℓ

)
is the minimum integer 𝜆 such that

the voting profile consisting 𝑖𝑎 number of voters voting for
the alternative 𝑎 can be partitioned into ℓ groups such that
the margin of victory of any group is at most 𝜆. For every
𝑖𝑎 ∈ {0, 1, . . . , 𝑛𝑎}, 𝑎 ∈ A, we initialize T

(
(𝑖𝑎)𝑎∈A , 1

)
to be

the margin of victory of the voting profile which consists of
𝑖𝑎 number of voters voting for the alternative 𝑎 for 𝑎 ∈ A.
We update the entries in the table T as follows for every
ℓ ∈ {2, 3, . . . , 𝑘}.

T
(
(𝑖𝑎)𝑎∈A , ℓ

)
= min

(𝑖′𝑎)𝑎∈A ,𝑖′𝑎⩾0 ∀𝑎∈A
𝑠𝑚𝑖𝑛⩽

∑
𝑎∈A 𝑖′𝑎⩽𝑠𝑚𝑎𝑥

max

𝑚𝑣

( (
𝑖 ′𝑎
)
𝑎∈A

)
,

T
( (
𝑖𝑎 − 𝑖 ′𝑎

)
𝑎∈A , ℓ − 1

)
In the above expression𝑚𝑣

( (
𝑖 ′𝑎
)
𝑎∈A

)
denotes the plurality

margin of victory of the profile which consists of 𝑖 ′𝑎 number
of voters voting for the alternative 𝑎 for 𝑎 ∈ A. Updating each
entry of the table takes O

(∏
𝑎∈A 𝑛𝑎

)
poly(𝑚,𝑛) time. The

table has 𝑘
∏

𝑎∈A 𝑛𝑎 entries. Hence the running time of our
algorithm is O

(∏
𝑎∈A 𝑛2

𝑎

)
poly(𝑚,𝑛) = O

(
𝑛2𝑚poly(𝑚,𝑛)

)
which is 𝑛O(1) when we have𝑚 = O(1). □

We next present a polynomial time algorithm for Fair Re-
grouping if we have a constant number of groups.

Theorem 4.6. The Fair Regrouping problem is polynomial
time solvable if the number of groups is a constant.

Proof. An arbitrary instance of Fair Regrouping be
(A,V, 𝑘,H = (𝐻𝑖 )𝑖∈[𝑘 ] , (V𝑖 )𝑖∈[𝑘 ] , 𝜋, 𝑠𝑚𝑖𝑛, 𝑠𝑚𝑎𝑥 , 𝑡). We
guess a winner and a runner up of every group – there are(𝑚

2
)𝑘

= O(𝑚2𝑘 ) possibilities. We also guess the plurality score
of a winner of every group – there are O(𝑛𝑘 ) possibilities.
Given a guess of a winner, its plurality score, and a runner
up alternative of every group, we reduce the problem of com-
puting if there exists a partition of V (respecting the given
guesses) which achieves the maximum margin of victory of
at most 𝑡 to a 𝑠 ′ to 𝑡 ′ flow problem (with demand on edges)
instance

(
G = (U, E) , 𝑐 : E −→ R+, 𝑑 : E −→ R+

)
as follows.

U = U𝐿 ∪U𝑀 ∪U𝑅 ∪ {𝑠 ′, 𝑡 ′} where
U𝐿 = {𝑢𝑣 : 𝑣 ∈ V}
U𝑀 = {𝑢𝑎,𝑖 : 𝑎 ∈ A, 𝑖 ∈ [𝑘]}
U𝑅 = {𝑢𝑖 : 𝑖 ∈ [𝑘]}
E =

{
(𝑠 ′, 𝑢𝑣) : 𝑣 ∈ V

}
∪
{
(𝑢𝑣, 𝑢𝑎,𝑖 ) : 𝑣 ∈ V, 𝑖 ∈ [𝑘],

𝑣 ’s vote is 𝑎 ≻ · · · ,H𝑖 ∈ 𝜋 (𝑣)}
∪
{
(𝑢𝑎,𝑖 , 𝑢𝑖 ) : 𝑎 ∈ A, 𝑖 ∈ [𝑘]

}
∪
{
(𝑢𝑖 , 𝑡 ′) : 𝑖 ∈ [𝑘]

}
The capacity 𝑐 of every edge from 𝑠 ′ to U𝐿 and from U𝐿 to
U𝑀 is 1. For every 𝑖 ∈ [𝑘], if 𝑥 and 𝑦 are respectively the
(guessed) winner and runner up ofH𝑖 and 𝑛𝑖 is the (guessed)
plurality score of a winner in H𝑖 , then we define the capacity
and demand of the edge (𝑢𝑥,𝑖 , 𝑢𝑖 ) to be 𝑛𝑖 and the capacity
and demand of the edge (𝑢𝑦,𝑖 , 𝑢𝑖 ) to be (𝑛𝑖 − 𝑡); if (𝑛𝑖 − 𝑡) is
not positive, then we discard the current guess. We define the
capacity of the edge (𝑢𝑧,𝑖 , 𝑢𝑖 ) to be 𝑛𝑖 for every alternative 𝑧
who is not the guessed winner in H𝑖 for 𝑖 ∈ [𝑘]. Finally we
define the capacity and demand of every edge from𝑈𝑅 to 𝑡 ′ to
be 𝑠𝑚𝑎𝑥 and 𝑠𝑚𝑖𝑛 respectively. We claim that the given Fair
Regrouping instance is a yes instance if and only if there
exists a guess of a winner, its plurality score, and a runner up
alternative of every group whose corresponding flow instance
has an 𝑠 ′ to 𝑡 ′ flow of value 𝑛.

In one direction, suppose the Fair Regrouping instance
is a yes instance. Let 𝑥𝑖 and 𝑦𝑖 be a winner and a runner up
respectively in H𝑖 and 𝑛𝑖 be the plurality score of a winner in
H𝑖 for 𝑖 ∈ [𝑘]. For the guess corresponding to the solution of
Fair Regrouping, we send 1 unit of flow from 𝑠 ′ to 𝑢𝑣, 𝑣 ∈ V ,
from 𝑢𝑣 to 𝑢𝑎,𝑖 if the voter 𝑣 belongs to H𝑖 in the solution
and 𝑣 votes for 𝑎. Since every vertex in U𝑀 has exactly one
outgoing neighbor, all the incoming flow at every vertex in
U𝑀 move to their corresponding neighbor inU𝑅 . Similarly,
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the outgoing neighbor of every vertex in U𝑅 is 𝑡 ′, all the
incoming flow at every vertex in U𝑅 move to 𝑡 ′. Obviously
the flow conservation property is satisfied at every vertex. Also
capacity and demand constraints are also satisfied at every
edge since the guess corresponds to a solution of the Fair
Regrouping instance. Finally since the total outgoing flow at
𝑠 ′ is 𝑛, the total flow value is also 𝑛.

In the other direction, assuming 𝑥𝑖 and 𝑦𝑖 being a guessed
winner and a runner up respectively in H𝑖 and 𝑛𝑖 being the
plurality score of a winner inH𝑖 for 𝑖 ∈ [𝑘], the corresponding
flow network has a flow value of 𝑛, we claim that the Fair
Regrouping instance is a yes instance. We can assume with-
out loss of generality that the flow value on every edge in a
maximum flow is an integer since the demand and capacity
of every edge are integers. We define a voter 𝑣 ∈ V to be
in the group H𝑖 , 𝑖 ∈ [𝑘] if there exists an alternative 𝑎 such
that there is one unit of flow in the edge (𝑢𝑣, 𝑢𝑎,𝑖 ). It follows
from the construction of the maximum flow instance that the
above partitioning the voters into the groups H𝑖 is valid (that
is, it respects 𝜋, 𝑠𝑚𝑖𝑛, and 𝑠𝑚𝑎𝑥 ) and the maximum margin of
victory of any group is at most 𝑡 . Hence the Fair Regrouping
instance is also a yes instance. □

We observe that the polynomial time algorithms in Theo-
rem 4.5 and 4.6 show that this problem belongs to the com-
plexity class known as XP parameterized by the number of
alternatives and by the number of groups, respectively. On
the other hand, the existence of tractable cases for the Fair
Connected Regrouping problem remains an open problem,
together with the general set-up of the Fair Regrouping_X
problem, when the number of alternatives is unbounded. In
future, we plan to study the existence of polynomial-time al-
gorithms for these settings where the order of the polynomial
is independent of the number of alternatives and the number
of groups, respectively. In the next section, we develop fast
heuristics for our problems and exhibit their effectiveness in
real-world and synthetic data.

5 EXPERIMENTAL EVALUATION
Given the high complexity of the Fair Regrouping problems,
in this section, we propose faster greedy heuristics to min-
imize the margin of victory by moving people between an
initial partition into groups, while respecting mobility and
connectedness constraints.

5.1 Greedy Algorithms
We develop three variants of a greedy heuristic, each includ-
ing different constraints related to one of the three defined
problems. Each heuristic starts from an initial grouping of peo-
ple, meant to mimic either a natural tendency of people with
common interests/geography to group, or an already existing
administrative division.

The algorithms then greedily ‘move’ people from the group
with maximum margin of victory (V𝑚𝑎𝑥 ) to others iteratively:
it loops through all other district and checks if it can move
any number of people from those districts toV𝑚𝑎𝑥 (or vice-
versa) in order to decrease the maximum margin of victory,
as Algorithm 1 illustrates in a general greedy framework.

Note that V is the set of voters, A the set of alternatives,
𝜋 : V −→ 2H \ {∅} denotes the set of groups that each voter
can be part of, 𝑠𝑚𝑖𝑛 and 𝑠𝑚𝑎𝑥 denote minimum and maximum
size, respectively, of every group,𝑚𝑣 (·) denotes the margin of
victory of a group, and P(𝑣𝑜𝑡𝑒𝑟𝑠V𝑖

(𝐴)) the power set of the
voters in groupV𝑖 whose top preference is 𝐴. The choice of 𝜋
models the different constraints we enforce:

Result: A partition ofV into groups (V𝑖 )𝑖∈[𝑘 ] with
minimal maximum margin of victory.

Input (V𝑖 )𝑖∈[𝑘 ] , 𝜋 : V −→ 2H \ {∅}, 𝑠𝑚𝑖𝑛 , 𝑠𝑚𝑎𝑥 ;
ChooseV𝑚𝑎𝑥 = arg max𝑖∈[𝑘 ]𝑚𝑣 (V𝑖 ).
for 𝑣 ∈ P(𝑣𝑜𝑡𝑒𝑟𝑠V𝑚𝑎𝑥

(𝐴)) do
if V𝑖 ∈ 𝜋 (𝑣) then

if |V𝑚𝑎𝑥\𝑣 | > 𝑠𝑚𝑖𝑛 and |V𝑖 ∪ 𝑣 | < 𝑠𝑚𝑎𝑥 then
if max(𝑚𝑣 (V𝑚𝑎𝑥\𝑣),𝑚𝑣 (V𝑖 ∪ 𝑣)) <
max(𝑚𝑣 (V𝑖 ),𝑚𝑣 (V𝑚𝑎𝑥 )) then

move 𝑣 fromV𝑚𝑎𝑥 toV𝑖 ;
end

end
end

end
forV𝑖 ∈ V and 𝐴 ∈ A do

for 𝑣 ∈ P(𝑣𝑜𝑡𝑒𝑟𝑠V𝑖
(𝐴)) do

if V𝑚𝑎𝑥 ∈ 𝜋 (𝑣) then
if |V𝑖\𝑣 | > 𝑠𝑚𝑖𝑛 and |V𝑚𝑎𝑥 ∪ 𝑣 | < 𝑠𝑚𝑎𝑥

then
if max(𝑚𝑣 (V𝑖\𝑣),𝑚𝑣 (V𝑚𝑎𝑥 ∪ 𝑣)) <
max(𝑚𝑣 (V𝑖 ),𝑚𝑣 (V𝑚𝑎𝑥 )) then

move 𝑣 fromV𝑖 toV𝑚𝑎𝑥 ;
end

end
end

end
end

Algorithm 1: Greedy Algorithm

▷ In Greedy Regrouping_X, 𝜋 is unconstrained, as peo-
ple can move to any other group.

▷ In Greedy Regrouping, 𝜋 models e.g. geographical
constraints, allowing people to move to closest groups.

▷ In Greedy Connected Regrouping, 𝜋 models the con-
nections between people, allowing them to move such
that no group becomes a disconnected subgraph.1

Greedy Regrouping_X is most-suited for an online setting
given the lack of physical constraints. However, we are not
advocating for moving people from one online community to
another, but rather offer a framework that platforms can take
into account for creating audience groups with low margin of
victory for advertisers to target, as motivated in the beginning
for settings such as targeting of political or opportunity ads.
In the offline world, Greedy Regrouping selects people to
move based on their mobility constraints (i.e., checking the list
of groups each person can be moved). Finally, Greedy Con-
nected Regrouping ensures both groups to remain connected
1Note that in this case the function 𝜋 can be updated as the algorithm is running.
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in the underlying social graph when moving people from one
to another. Since the maximum margin of victory is a positive
number, all algorithms terminate, with a termination condi-
tion defined through no movement between groups for ten
consecutive rounds (experimenting with different termination
conditions yields similar results).

5.2 Datasets & Experimental Results
To evaluate the applicability of greedy algorithms in real-world
scenarios, we consider three main datasets: a synthetic dataset
using graph models and two real ones, consisting of data from
the U.K. parliament elections in 2017 and demographic in-
formation of students in public schools of Detroit, U.S. The
synthetic dataset can be thought of emulating both offline
and online scenarios, for which we evaluate all three greedy
algorithms. In the political and school datasets, we evaluate
Greedy Regrouping_X and Greedy Regrouping, but not
Greedy Connected Regrouping, as we lack the social graph.

5.2.1 Synthetic Data.
We used the line model to simulate voters, alternatives, and
voters’ political affiliations [17]. For every node, we generated
the preference over alternatives according to the distance be-
tween the voter and the alternatives. In addition to this, we
simulated a set of graphs based on the Erdős-Renyi (ER) graph
model [25]. We then created 50 instances of the ER graph
model, where each node represents a voter and the edges are
formed according to the model with an added homophily fac-
tor based on the distance between nodes (as simulated by the
line model). Inputs to such graphs are the number of voters
𝑛 (100), number of alternatives𝑚 (5), number of groups 𝑘 (5),
and homophily parameter 𝛼 . We split the created graphs in
equally-sized groups assigning people to groups in the order
given by the line model, representing the initial partition from
their political affiliation indices (in sorted order, the first ⌊𝑛/𝑘⌋
are in the first district, and so on). The greedy algorithm re-
quires an initial partitioning of voters into districts that it then
attempts to improve. Since we start with quite homophilic
districts, the greedy algorithm improves the sum of margins
of victory in each graph instance, bringing it quite close to the
baseline value.

Such models capture the network and clustering effects
exhibited by voter districts in real world [1, 18, 35], and can
serve as a simulation of online networks as well. We further
add a baseline algorithm that computes the optimal parti-
tion of people into groups with minimal margin of victory
through a brute-force approach, given a network, the groups’
size constraints, and mobility constraints. Thus, given a popu-
lation with their preferences, it takes all possible groupings
into consideration. This makes it computationally infeasible
to scale at the size of the real data, but we use it in synthetic
scenarios for comparison with the greedy heuristics.

We simulated the greedy algorithms for each graph instance,
averaging over 10 iterations (yielding similar results as for a
higher number of iterations) the minimal maximum margin
of victory that it can reach and compared that to the baseline
value. Whether we aim to solve this problem in the online
world or the offline one, all these algorithms are effective in

improving the maximum margin of victory aggregated for
all graph instances (Figure 1(b)) and the total margin of vic-
tory (Figure 1(d)). For minimizing the total margin of victory,
we adapt Algorithm 1 to optimize over the sum of margin
of victory of all groups rather than the maximum, iterating
over all pairs of districts. For the graph creation process, we
vary the homophily factor between 0 and 1 (from totally non-
homophilic to fully homophilic. We allow groups to change
up to 20% in size, for a mobility constraint that allows peo-
ple to move to the closest 2 groups, noting that each of the 5
groups starts with approximately 20 people (we experiment
with different values and report this one, as for 𝑘 = 5 groups
allowing people to move to the closest 2 represents an average
case). We observe that no matter how homophilic the initial
graph is, the greedy heuristic is able to successfully reduce the
maximum margin of victory for all three algorithms: Greedy
Regrouping_X performs the best as it contains no constraints
on mobility, being evaluated close to the baseline value and re-
ducingmaximummargin of victory by 35% on average (from 10
to 6–7), Greedy Regrouping performs second-best, reducing
it by 20% on average (from 10 to 8), while Greedy Connected
Regrouping reduces it by 10% on average (from 10 to 9), per-
forming worse than the other two due to a tighter connectivity
constraint. Figure 1(d) shows the overall decrease in margin
of victory, where the effect is more significant: Greedy Re-
grouping_X and Greedy Regrouping achieve a result close
to the baseline, reducing the total margin of victory by 75–80%
(from 31–32 to 7–8), while Greedy Connected Regrouping
performs slightly worse, reducing the total margin of victory
of 46% on average (from 31–32 to an average of 13.6).

5.2.2 UK General Elections Data.
We collected data about the U.K. Parliament elec-
tions in 2017 from The Electoral Commission
(electoralcommission.org.uk), using constituencies
as groups and parties as alternatives. Although the votes are
cast for individuals, the number of seats for each party is
the number that counts in the Parliament, and thus we are
interested in the effect of grouping on the distribution of
votes over parties rather than over individuals. Knowing the
number of votes each party got in each constituency, we
simulated the top preference of the voters given a plurality
voting mechanism.

We tested our heuristics on 10 neighboring constituencies
out of the 650 in the region of Scotland bordering Edinburgh,
which represents a very diverse area in terms of voting prefer-
ences. Indeed, each of these constituencies had a clear major-
ity (Figure 2).2 We subsampled this dataset, working with a
randomized sample of approximately 50, 000 people and we
recorded the center location of each constituency. While we
experimented with different mobility constraints, results are
qualitatively similar and thus we report an average case, en-
forcing in Greedy Regrouping that voters can be incentivized
to move or to vote only in their closest two constituencies.

2The 10 constituencies we sampled are: Dumfriesshire, Clydesdale and Tweed-
dale, Berwickshire, Roxburgh and Selkirk, East Lothian, Midlothian, Edinburgh
South, Edinburgh East, Edinburgh North and Leith, Edinburgh South West,
Edinburgh West, and Livingston, for which an interactive map with the vote
distribution can be found at https://www.bbc.com/news/election-2017-40176349.
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Figure 1: Maximummargin of victory for all algorithms in (a) real data and (b) synthetic data. Total (sum) of margin
of victory in (c) real data and (d) synthetic data.
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Figure 2: Voters’ distribution in UK constituencies be-
fore and after applying Greedy Regrouping.

Figure 1(a) shows that both Greedy Regrouping and
Greedy Regrouping_X are able to reduce the maximum mar-
gin of victory of this dataset by approximately 91–92%, from
an initial 776 to 67 and 55, respectively. Figure 1(c) shows the
effect greedy had on minimizing the total margin of victory,
showing an even larger decrease by almost 95%, from an initial
2, 652 to 148 and 135, respectively. Note that the total of 50, 000
sampled people are distributed approximately equally among
the 10 constituencies. Since Greedy Regrouping represents
the more realistic application given its embedded mobility
constraints, we show in Figure 2 its effect on the voters’ dis-
tribution in East Lothian and Edinburgh East, showing that it
created a stronger opposition for the leading parties (Labour
in East Lothian and SNP in Edinburgh East).

5.2.3 US Public School Data.
Neighborhood racial segregation is still widespread in many
places in the US, trickling down to segregation in schools [28,
48]. Here, we attempt to show that our algorithms can be
used to increase racial diversity in schools, if accompanied
by government policies that facilitate movement of students
between schools [44].

We collected school data from the National Center for
Education Statistics (NCES: nces.ed.gov/ccd) about public
schools in Detroit, MI, which is still one of the cities with high-
est rate of segregation, and most economic and social struggles
encountered by minorities [31, 36]. We gathered data from
61 schools in Detroit, each containing between 40 and 5000
students, summing up to 41, 834 students and their reported
race. We modeled this data in the form of an election, where
the 𝑣𝑜𝑡𝑒𝑟𝑠 are the students, the 𝑎𝑙𝑡𝑒𝑟𝑛𝑎𝑡𝑖𝑣𝑒𝑠 are their reported

race (NCES data has 7 reported races: Asian, Native American,
Hispanic, Black, White, Hawaiian, and Mixed-race), and the
groups are the schools. Given each student’s race, we mod-
eled this ‘election’ as a plurality voting scenario, where each
student only ‘votes’ for their reported race. Furthermore, we
recorded the location of each school, enforcing in Greedy Re-
grouping that students can only go to their closest five schools.

Both algorithms decrease the maximum margin of victory
by 11–12% on average, from an initial 2, 501 to 2, 213 and 2, 311,
respectively (Figure 1(a)), showing a significant decrease in
the overall margin of victory by 18–24%, from an initial 18, 870
to 15, 360 and 14, 376, respectively (Figure 1(c)). As Greedy
Regrouping represents themore realistic scenario, we observe
that schools containing students from one predominant racial
group become more equilibrated (Figure 3), from the initial
racial distribution in these schools that has a clear majority of
a certain race (Black for Dove Academic, White for Universal
Academy, and Hispanic for Cesar Chavez Academy).

Of course, since minimizing margin of victory only consid-
ers the most predominant two races, we may need to enforce
an additional diversity constraint to preserve a minimum frac-
tion of students from other races in a school (e.g., the 2.5%
Black students in Universal Academymay need to stay), which
we leave for future work. What we do notice, however, is that
the demographic variance (which shows how the student de-
mographics of individual schools are spread out from the un-
derlying population distribution, with smaller variance denot-
ing more equal demographic spread) decreases after applying
Greedy Regrouping algorithm, by approximately 50% for all
three schools, from 54, 400 to 26, 324 for Universal Academy,
from 27, 355 to 11, 266 for Cesar Chavez, and from 593, 367 to
313, 439 for Dove Academy. Other measures may also be used
to compute racial disparity effect of Greedy Regrouping.
Choice of mobility: We have experimented with different
settings in these datasets, allowing students and voters tomove
between various distances; our heuristics perform better if we
allow movement to farther distances. Ultimately, however, the
choice of mobility lies in the hands of the policy-makers who
implement measures for redistributing the population. We
hope that our conceptual framework enables decision-makers
in proposing effective policies for more equitable outcomes,
regardless of the exact choice of mobility constraints.
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Figure 3: Racial distribution of students in selected schools before and after applying Greedy Regrouping.

Group size: Since political districts as well as school sizes can
not be arbitrary, we set a parameter 𝜏 which models group
resizing, allowing the algorithm to move individuals in and out
of a district without changing its size by more than a 𝜏 factor
of its original size. Note that the choice of 𝜏 lies again in the
hands of the policy-makers. We experimented with values in
[0.1, 0.5], and observed qualitatively similar results (we report
results for 𝜏 = 0.2). Furthermore, the size constraints can also
be utilized to ensure balance in group sizes.

In summary, Greedy Regrouping and Greedy Connected
Regrouping are designed to portray the effect of governmen-
tal policies that incentivize physical regrouping of people,
whether it is through electoral redistricting or busing (moving
students to different schools), while Greedy Regrouping_X
is intended as a version of these with no mobility constraints,
applicable in online settings like political ad targeting.

6 CONCLUSION & FUTURE DIRECTIONS
In this paper, we considered the problem of fairly dividing
people into groups through a voting scenario, with the goal of
minimizing the maximum margin of victory across groups. In
doing so, we provide a rigorous framework to reason about
the complexity of the problem, showing that redistributing
people with constraints on their mobility is NP-complete in
general, and admits XP algorithms for particular cases.

Furthermore, our fast greedy heuristics show significant
improvement of the margin of victory in electoral district-
ing, school assignments, and synthetic experiments. In case of
elections, minimizing margin of victory leads to better repre-
sentation of opposition parties in electoral districts. For school
assignment, we show that our greedy algorithms are able to
provide more diversity in highly segregated schools. While
government policies are ultimately crucial in reducing segre-
gation, we hope that this quantitative analysis can show their
potential efficacy.

Multiple directions remain open for future work, such as
extending synthetic experiments to real-world effects of polit-
ical advertising and analyzing the social connections in real
datasets, which may change people’s mobility constraints. Fi-
nally, it would be worthwhile to measure the effect of min-
imizing the margin of victory on different gerrymandering
metrics as well as the effect of decreasing racial segregation
on school revenues.
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