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ABSTRACT
As social recommendations such as friend suggestions and peo-

ple to follow become increasingly popular and influential on the

growth of social media, we find that prominent social recommenda-

tion algorithms can exacerbate the under-representation of certain

demographic groups at the top of the social hierarchy. To study

this imbalance in online equal opportunities, we leverage new In-

stagram data and offer for the first time an analysis that studies

the effect of gender, homophily and growth dynamics under social

recommendations. Our mathematical analysis demonstrates the ex-

istence of an algorithmic glass ceiling that exhibits all the properties

of the metaphorical social barrier that hinders groups like women

or people of color from attaining equal representation. What raises

concern is that our proof shows that under fixed minority and ho-

mophily parameters the algorithmic effect is systematically larger

than the glass ceiling generated by the spontaneous growth of so-

cial networks. We discuss ways to address this concern in future

design.
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1 INTRODUCTION
Geographical distance and social prejudice have a long history of

preventing equitable access to information and commercial trans-

actions. One hope of an increasingly connected world is to at least

take a step towards equal opportunities by removing some of those

barriers. But, in the social networks now governing the knowledge,

jobs and deals one can seek, what matters most today is one’s posi-

tion in a graph of advantageous connections. Those connections

take time to set up and maintain. Recommender systems play a

key role in assisting individuals in directing their social sharing
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activity towards the most valuable sources and partners. But under

which conditions can we ensure that those suggestions are not

reproducing, or worse, reinforcing our historical biases, combined

with a cloudy illusion of objectivity? One would a priori expect
similarity metrics, usually the basis of recommender systems, to

contribute to sustaining disparities among various groups. We show

much more: using empirical evidence from newly collected data

on Instagram and a rigorous analysis of mathematical models, we

prove that prominent recommender algorithms reinforce the rate
at which disparity grows.

While the issues introduced affect countless situations where

suggestions are algorithmically produced, we focus for concrete-

ness on an elementary case: the suggestion to build a new edge

with another participant. Features like “People you may know”

(Facebook), “Who to follow” (Twitter), “Suggested Accounts” (In-

stagram) are now pervasive across most popular social network

services. Their impact on the evolution of connection graph has

been demonstrated [16]. To quote the Chairs’ opening statement

from the FATREC workshop (2017), “If recommendation applica-

tions did not alter participants’ behaviors, those applications would

not exist”. As a thought experiment, one may picture the organic
growth of a connection graph (i.e., the addition of edges occurring

in absence of any suggestions) as a reference point. An algorith-
mic growth, in contrast, results from suggestions. An algorithm

to determine new edges to suggest is generally evaluated either

via its predictive power (i.e., does it anticipate organic growth?),

or its hit rate (i.e., are its suggestions well received?). We ask a

different question: are there safe (respectively unsafe) conditions

under which a well-know metric of disparate impact is no worse

(respectively strictly worse) for algorithmic growth than for or-

ganic growth? Unfortunately, our study demonstrates that no safe

conditions exist outside trivial cases for frequently used algorithms

and three definitions of disparate impact. However, we quickly note

that future suggestion algorithms could be designed to account for

and correct that bias, and offer a short discussion of simple ways

to address this in future design.

This paper presents the following contributions:

• To better investigate the role of gender in organic and artifi-

cial growth of social networks, we conduct a large crawl of

the Instagram service and its active relationships (comments

and likes). The graph has a moderate but distinct majority

of female profiles. Nevertheless, with high statistical confi-

dence, the organic growth we captured exhibits traces of a

so-called glass ceiling preventing females from rising to the

most commented and liked profiles. But that pales by com-

parison with the algorithmic glass ceiling which is observed

when two well known algorithms are used: only in that case
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do we observe a drastic gap arising in the degree distribu-

tions by gender. A sudden decrease of female representation

at the top ensues (Section 3).

• We follow a mathematical analysis of the effect of random

walks on dynamic graphs to investigate the conditions creat-

ing algorithmic glass ceiling. Previous works highlighted how
combining an uneven population with homophily prepares

the ground for glass ceiling in the typical organic growth of

preferential attachment. Our method allows one to study the

eventual perturbation effect of a recommendation algorithm

as the result of a new polynomial fixed point equation. This is

used to prove two major results: First, a simple recommenda-

tion algorithm leveraging random walks is not only subject

to some bias, it also reinforces the rate at which a gender

gap arises. Second, we prove numerically that this effect is

always noticeable for observed parameters (Section 4).

• We provide two important theoretical follow ups. First, we

address the apparent contradiction between empirical obser-

vations (showing glass ceiling against a female majority) and

mathematical results (predicting glass ceiling at the expense

of a minority). The two are reconciled by an extension of

the above model we call differentiated homophily where the

two groups exhibit varying propensity to favor their own

peers. We prove that this can flip the glass ceiling effect to

come at the expense of a majority. We document that, in-

deed, male accounts on Instagram exhibit much stronger

homophily among each others when compared with female

accounts. Finally, as a proof of concept we quickly describe

a simple "rejection method" for an improved random walk

recommendation algorithm. This approach makes stringent

assumptions but offers the advantage of making the algorith-

mic growth more equitable than organic growth (Section 6).

As we detail immediately below, the sharp amplification of the

glass ceiling effect by an algorithm is an entirely new result, which

has no equivalent that we know of. It is a special case of a widely

open problem: how to correct a seemingly neutral algorithm when

the structure it exploits is not fair to begin with. Some might argue

the algorithm is simply legitimate as it leverages sensible metrics

and is not solely responsible for the unfairness found in the system.

That remains however unsatisfactory for anyone wishing more

equal opportunities for all. Those who abide by a strict fairness

requirement (e.g., defined as statistical parity [18] or equality of op-

portunity), may suggest a correction step be applied. Unfortunately,

without a deep understanding of the cause and reverberation of

bias, any post-hoc correction can be harshly debated. Our paper

offers an alternative way: identify some structural causes of the

emerging unfairness, and require algorithms to be designed in a

way that leverages structure while carefully avoiding those biases

in the presence of the above conditions.

2 RELATEDWORK
Our work addresses the fairness concerns recently raised for deci-

sions informed by algorithms run on Big Data. Even with no explicit

intention to discriminate and without access to sensitive attributes

such as gender and race, such algorithms can potentially create

undue biases [2]. Most related work on this issue centers on binary

classification tasks such as loan approval, with a goal to maintain

operational efficiency under various conditions of equal treatment

or opportunity [4]. Similarly, fairness was studied for word embed-

dings [3] and nodes ranking [17]. But to our knowledge, an analysis

of social recommendation and the effect of graph algorithms has

yet to be conducted. The main difference is that one must analyze

the effect of network structure.

We build on a growing body of evidence that online services

(including Twitter[14], TaskRabbit [8], and Airbnb [7]) can repro-

duce well-known prejudices against historically under-represented

groups. Issues raised include disparate treatment and evidence of

a metaphorical glass ceiling. The latter denotes an invisible bar-

rier preventing given demographics (most commonly females) to

reach superior levels of recognition. This manifests itself when (1)

chances of advancement to a higher level are uneven for members

of that demographic group, (2) when it is not explained by task-

relevant characteristics, and (3) when that inequality increases for

higher and higher levels. We observe that these three conditions

hold for the Instagram dataset, in particular for people who like and

comment on others’ posts. In addition, we collect for the first time

the graph connecting individuals within our crawl. This leads us to

observe whether algorithms (in this case, profile recommendation)

would alleviate or reinforce this trend. Recent work suggested that

the growth of Twitter was also impacted by recommendation [16].

Combining such previous results with ours raises concerns that

the current engineered growth of social media may in the end

systematically misrepresent entire groups of the population.

Homophily, a tendency of individuals to favor interactions with

similar peers – widely established to hold for social networks and

online communites [5, 12] – is at the core of our result. The result

most relevant to ours is a recent proof that rich-get-richer dynam-

ics combined with homophily naturally exacerbate the advantage

of a majority group [1]. That model can explain why, as in other

services, organic interaction on Instagram exhibits the aforemen-

tioned bias against some of its participants. We, on the other hand,

introduce random walk dynamics, which closely capture the way

recommender systems operate.

3 COMPARISON OF ORGANIC AND
ALGORITHMIC GROWTH

3.1 Data Collection
Instagram activity graph. We performed a crawl on Instagram’s

public profiles starting from the founder of Instagram, Kevin Sys-

trom. Through the Instagram API, we collected profile information

and recursively followed the lists of followers. For each profile, we

collected the name, username, unique id, and crawled the meta-data

for each photo, which include: unique photo id, number of likes,

number of comments, hashtags, location, timestamp, tagged users,

and a random subset of 3-5 likes and comments with their authors.

For each user, we aggregated this information in obtaining the total

number of likes, comments, tags, first and last photo timestamp,

and the set of used hashtags. In total, we collected 115, 796, 284

photos from 245, 038 different users over multiple months of 2014

and 2015. While the data might not encompass the full diversity

of Instagram users, it is sufficient to obtain statistically significant

results most of the time.
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Table 1: Male vs. Female Poisson Regression for degree, Instagram-activity, no control variables.

Full Bottom 25% Bottom 25 − 50% Top 50 − 25% Top 25% Top 10% Top 1% Top 0.1%

Male 0.011*** -3.6e-17*** 4.4e-17*** -3.6e-17*** 0.08*** -0.05*** -0.12*** 0.13***

Male IRRs 1.11*** 0.99*** 1*** 0.99*** 1.09*** 0.94*** 0.88*** 1.14***

Obs: 553,628 138,407 138,407 138,407 138,407 55,363 5,537 553

Table 2: Male vs. Female Poisson Regression for Adamic-Adar recommendation frequency, no control variables.

Full Bottom 25% Bottom 25 − 50% Top 50 − 25% Top 25% Top 10% Top 1% Top 0.1%

Male 0.08*** -2e-16*** -2e-16*** 0*** 0.11*** 0.14*** 0.14*** 0.21***

Male IRRs 1.08*** 0.99*** 0.99*** 1*** 1.12*** 1.15*** 1.15*** 1.23***

Obs: 295,919 73,980 73,980 73,980 73,979 29,592 2,959 295

Gender inference. Our gender inferencemethod adapted from [13]

leverages first name and social security data. Mislove et al. inferred

the gender balance using a dataset of names from social security

data ranging between 1890 and 2015. We only included name data

between 1940 and 2007, as reported demographic statistics predict

that less than 4% of Instagram users would be born before that [6].

We filtered reported names for those having at least 50 occur-

rences for either men or women, with at least 95% of a single gender.

This created 32, 676 unique unambiguous first names, which we

use to label 92, 935 Instagram users. That is approximately 38% of

the population. Among those 49, 583, or 53%, are labeled as female,

and 43, 352, or 47%, as male. We tested a small sample of classified

names by hand, obtaining 97% accuracy. We call this graph the

Instagram-labeled-core.

The graph of likes and comments. Users of Instagram-labeled-
core collectively posted 44, 725, 840 photos, out of which we ran-

domly sample 1million photos. For each photo in this set, we looked

at the 3-5 likes and comments received and extracted all authors,

keeping those only when their gender could be labelled as above.

We create an edge between the authors of the pictures and the

authors of the likes or comments. We choose to focus on likes and

comments as interactions, since they are a more involved way of

connecting online than followers.

This created a graph of 553,628 nodes and 652,931 edges,
where everyone has a labeled gender. Here, we obtained 54.43%

users labeled as female, and 45.56% users labeled as male, showing

that gender balance appears the same as above. This graph is called

Instagram activity and is the main graph we will use in the rest

of this article. Note that it is much larger, authors of comments

may not have been in the original crawl and hence we do not have

all meta-data about their activity and following. Building a graph

implies that a user’s degree count how many distinct (and labeled)

users either received or gave a comment or a liked to one of her

pictures.

DBLP graph. We validated our results against a selection of the

DBLP co-authorship dataset [10], confirming the analysis fromAvin

et al. [1] that shows a gender discrepancy between male and female

researchers in the numbers of mentees they have.

Table 3: Gender ratio for the initial graph

Male Female

Male 57%(1.2x ) 43%(0.8x )
Female 40%(0.9x ) 60%(1.1x )

We sample the first 200, 000 articles from the latest version of the

DBLP dataset, from which we extract the authors and perform gen-

der inference as above. We further create a graph of co-authorship

between authors for whom our inference method finds a gender.

The resulting graph, the DBLP graph, consists of 102, 263 nodes, out
of which 80.7% are labeled as male and 19.3% as female, and 199, 679

edges. As an existing bias towards male researchers is proven to

exist in this dataset [1], we analyze the effect of recommendation

algorithm on such a gap.

3.2 Bias under organic growth
Instagram’s "Suggested accounts” feature was introduced after our

data crawl. The data we collected is hence a representative view of

an organic growth, which is how the network evolves from interac-

tion in the absence of algorithmic suggestions.

A rich body of literature focuses on the effect of gender in acquir-

ing visibility and impact in the online world [14] [15] [1], where

measures of wealth are redefined as volume of user-user interac-

tions (such as the degree we defined above).

We conducted multiple analyses reproducing methodology from

papers cited above, that we briefly summarize for space reasons.

First, in the Instagram-activity graph, we use Poisson Regression

with no control variables. This analysis reveals that in the last

quartile containing most prominent accounts, male users have an

incidence rate ratio (IRR) of 1.09*** (a 9% increase, where *** denotes

statistical confidence p < 0.001) for comment/like degree. All other

quartiles show no effect of gender. The effect is however relatively

small, and most prominent at the top 0.1% which contains half a

thousand nodes (see Table 1). In fact, among the top 5,000 or top

1%, women are statistically significant to have larger degrees up to

12%.

Figure 1 further illustrates this effect in both the Instagram ac-

tivity graph and the DBLP graph. For the Instagram dataset (a), we
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Figure 1: (a) Representation of nodes with degree or frequency of recommendation at least x in the original graph (blue) and
the graph under recommendations (green and red), respectively, for the Instagram activity graph. The nodes’ relative size is
shown by vertex size, and where y-axis denotes the fraction of female among those. The dotted line reminds us the actual
percentage of females in the dataset; (b) Idem for the DBLP graph.

observe that while in the initial graph the disparity between the two

genders is not very large (blue dots and circles), it is still present.

While females make up 54% of the total population, they represent

only 48% of those with degree > 10 (which corresponds roughly to

the top 1% most connected users), 54% of those with degree > 100

(a subset which exhibits no particular gender imbalance), and 45%

of those with degree > 2000.

In summary, the organic growth we observe confirms a signifi-

cant effect of gender. We obtain similar results (omitted here) when

controlling for content productivity. Overall, women appear under-

represented at the top, although they form the largest group, yet

not completely excluded from large levels of recognitions. This

motivates us to study how those biases change when Instagram’s

organic growth is complemented by recommendations.

3.3 Recommendation algorithms
Recommendation algorithms typically leverage structure to find

compatible matches among similar but not yet connected individu-

als. Many heuristics have been proposed and it is challenging to

choose a representative subset of them. Two stand out from prior

comprehensive comparisons:

The Adamic-Adar index. We first note that if algorithms were

perfectly predictive and only suggested edges that nodes would

have made in organic growth, we should not observe a significant

effect. We therefore include social recommendation based on the

Adamic-Adar index, as it is shown in [11] to be the most accurate

in prediction and therefore a conservative choice from a pertur-

bation standpoint. The Adamic-Adar index adapts a simple rule,

“choose node with maximum-common-neighbors” to avoid always

recommending high degree nodes. Our own analysis of maximum-

common-neighbors revealed that indeed that would be impractical

and too simplistic to obtain sensible results, as suggestions are

chosen in a restricted set. We define Adamic-Adar index between

two nodes u and v as (u,v ) →
∑

w ∈Γ(u )∩Γ(v )
1/ log |Γ(w ) |, where

|Γ(u) | denotes all neighbors of u [11]. Note that in this index com-

mon neighbors that are very popular would carry a smaller weight

than common neighbors with a smaller degree. For each node, the

social recommendations is computed by finding another node v
with largest index that is not already a neighbor (breaking ties

randomly).

Random Walk. Another interesting comparison point would be

an algorithm that best reproduces suggestions that are actually
given today. That is a difficult task since many of the algorithms

currently deployed are complex and often kept secret to keep com-

petitors and cheaters at bay. To best address this need, we choose

an algorithm based on a random walk of length 2, as it was deemed

similar to real recommendations in the only article we know that

had access to this proprietary data [16]. This algorithm, in contrast

with Adamic-Adar index, returns a random recommendation for

each node u, by starting a random walk at a point X1 = u and

returning v with probability

P(X3 = v |X1 = u). (1)

We note that the results we obtained seem to hold independently

of the algorithms chosen. That could be because both algorithm,

and indeed most recommendations, would more likely select a node

with multiple common neighbors of small degrees, and differ only

in how they combine those features.
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Figure 2: Distribution of recommendation frequency as
CCDF under Adamic/Adar algorithm, separately drawn for
female (red) and male (blue), and for the Instagram dataset
(solid lines) and the DBLP dataset (dashed lines).

3.4 Bias under algorithmic growth
The natural equivalent of degree as a measure of recognition or

wealth under recommendations is the number of users who get

recommended to connect with you, i.e., frequency of recommenda-
tion. For every node in the Instagram-activity graph and the DBLP

graph, we computed a single recommendation and collected the

frequency of various nodes to appear as suggestions, which relates

to degree growth under such dynamics.

We first present in Table 2 results allowing a direct comparison

to organic growth. We use Poisson Regression with the dependent

variable as the frequency of recommendation under Adamic-Adar

for the Instagram activity graph (note that the total population in

this case is 295, 919, i.e. individuals who have been recommended

at least once). Omitted results for the random walk algorithm are

similar. Here, one sees a more noticeable and consistent glass ceiling

effect. All the population in the last quartile sees male with larger

frequencies, and this trend always grows with higher degrees.

While organic growth generates degree distributions for each

gender that are hard to distinguish, it is immediately clear that the

frequency of recommendation distribution for the Adamic-Adar

algorithm exhibits a gap between males and females (Figure 2) for

both the Instagram dataset and the selected DBLP dataset. This

confirms and extends the results obtained by Avin et al [1], where

a gender bias is observed in the DBLP network.

This gap, exhibited to grow in log-log scale, is a sign of different

power coefficients governing the statistical chance to reach at least

x recommendations, depending on gender. As one progressively

selects to retain only the most successful individuals, the aforemen-

tioned effect translates into a sudden and accelerating drop of the

observed fraction of females. That drop of female representation is

illustrated on Figure 1 in red for Adamic-Adar recommendations

and green for the Random Walk, where the size of the circle drawn

helps interpret the relative size of the selected group. The con-

trast with a similar statistic on organic growth shown in blue is

remarkable.

As females are the majority even in the set of recommended

users, the effect of gender disparity in recommendations amplifies,

since simple homophily would suggest that females should be rec-

ommended more throughout. This suggests that degree alone is

not sufficient in creating wealth, and that homophily also plays a

role and can go as far as inverting inequality.

Table 3 shows this analysis for the initial graph, having as rows

the whole set of nodes (split by Male and Female), and as columns

the users to whom they are connected. For each row, we show the

percentage of males and females, and in parenthesis the ratio to the

actual percentage of males and females, respectively. We observe

that users labeled as male are more homophilic than users labeled

as females, showing an instance of differentiated homophily.

4 MODEL AND DEFINITIONS
We now introduce a model of algorithmic growth under a recom-

mendation algorithm which reproduces the observed reinforcing

bias. This serves two purposes: first, it validates that our results

are not limited to activity and gender on Instagram, but are more

broadly applicable. Second, it offers a starting point to investigate

its causes, which may help to alleviate bias in future design. We

build upon an extension of preferential attachment dynamics (or

the linear copying model, equivalently) [1, 9].

4.1 Organic growth
The first model we introduce, adapted from an existing model,

reproduces a network’s spontaneous addition of edges, where each

node has a label, blue (B) or red (R), and at each point in time the

network grows as:

• Minority-majority partition: a new node X0 enters the net-

work and receives label R with probability r and B with

probability 1 − r (for 0 ≤ r ≤ 1/2).

• Randomness: with probability η, the new node X0 chooses

an existing node X1 at random (Figure 3 (a)).

• Preferential attachment (rich get richer): with probability 1−η,
X0 chooses a node uniformly at random and copies one of
its edges. This is equivalent to the new node connecting

proportional to the ending node’s degree, P(v is chosen) =
δt (v )/

∑
u ∈Vt

δt (u), where δt (x ) denotes the degree of node

x at time t and Vt is the set of nodes in the graph at time t
(Figure 3 (b)).

• Homophily: if the new node has a different label than the

node it chooses to connect to, the connection is accepted

with probability ρ and the process is repeated until an edge

is formed. The homophily parameter 0 ≤ ρ ≤ 1 captures that

a person less similar is less likely to be eventually chosen

that one of the same kind.

Thus, as the network grows according to this model, exactly one

node and one directed edge are added at each timestep. We call this

process the "organic growth" of the network, as individuals enter

the network and form new connections without the influence of

any external forces.
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Figure 3: Growth of organic and recommendationmodel. In each of the three cases, a newnodeX0 appears (red in this example).
In the organic growth model, with probability η, X0 connects to a random item X1 (a), and with probability 1 − η it chooses
X1 according to preferential attachment (b). In the recommendation growth model, with probability ζ it follows the organic
growth model, and with probability 1 − ζ , a phantom node X0 is created, chooses a node X1 at random and follows a random
walk of length 2 as X1 −X2 −X3 from that item (c) through the bolded arrows. In the end, X1 connects to X3. In each case, if the
connecting nodes have the same color, they connect; if not, they connect with probability ρ.

4.2 Recommendation algorithm
We extend the organic growth model by adding sparse recommen-

dations between existing nodes. Most recommendation algorithms

[11] rely on connecting nodes with one of distance-2 neighbors

or friends-of-friends (e.g., common neighbors, Adamic-Adar, Jac-

card, random walks). For the purpose of this theoretical analysis,

we focus on the random walk of length 2 (see Eq.1 above), as it

encompasses the general properties of such algorithms and makes

theoretical analysis tractable. We assume that the network grows

under the recommendation algorithm in the following way:

• Minority-majority partition: a new node X0 enters the net-

work and receives label R with probability r and B with

probability 1 − r (for 0 ≤ r ≤ 1/2).

• Organic growth: with probability ζ , X0 connects through

organic growth.

• Recommendation: with probability 1 − ζ , X1 is chosen uni-

formly at random, and follows a random walk of length 2:

X1 → X2 → X3. At the end,X1 connects toX3 (if same color,

connect; if different color, connect with probability ρ). X0

can be thought as a virtual node in this case, that disappears

as it does not receive any connection (Figure 3 (c)).

We analyze the effects of recommendation asymptotically, as-

suming that the network size tends to infinity.

4.3 Definitions
Definition 4.1 (Power inequality). A graph sequenceG (n) exhibits

a power inequality effect for the red nodes if the average power of

a red node is lower than that of a blue (or a random) node.

∃c < 1 such that lim

n→∞

1

n (R )
∑
v ∈R δ (v )

1

n (B )
∑
v ∈B δ (v )

≤ c . (2)

where n(R) is the number of red nodes, and δ (u) the u’s degree.

Definition 4.2 (Tail glass ceiling effect). A graph sequence G (n)
exhibits a tail glass ceiling effect for the red nodes if there exists an

increasing function k (n) (for short k) such that

lim

n→∞
topk (B) = ∞ and lim

n→∞

topk (R)

topk (B)
= 0, (3)

where topk (R), topk (B) denotes the number of red and blue nodes

with degree at least k , respectively.

Avin et al. [1] proves that organic growth leads to the two sub-

populations having their degree distributions following two power

laws, with different coefficients, which in turn proves the existence

of a glass ceiling effect as per the definitions above.

5 PROOF OF ALGORITHMIC GLASS CEILING
Our theoretical contribution is a novel analysis of how recommen-

dation algorithms can produce an even higher bias than organic

growth. In our analysis, we note that the algorithms we analyzed

do not create bias ex nihilo, but simply amplify bias in networks

where it exists. For that reason, we focus on the Biased Preferen-
tial Attachment Model with the added effect of randomness and

recommendation through random walks. We first provide a novel

analysis of the way a random walk of length 2 affects the evolution

of the in-degree distribution of nodes in the network, and show

that the in-degree distribution follows a power law with different

coefficients for the red and blue nodes, respectively. We analyze the

in-degree since the graph is directed and the out-degree is constant

by construction.

We use the formal definitions of the glass ceiling effect from Avin

et al. [1], which rely on defining individual wealth as the degree

of a node, and collective wealth as the sum of individual wealth

values. Thus, we denote by R the set of red nodes and by B the set

of blue nodes, βi,t the number of red nodes, ui,t (R) as the sum of

degrees of all R nodes after t recommendations following random

walk (and similarly for blue nodes) for the organic model (i = 1)
and the recommendation model (i = 2).

Since an edge is added at each step, it makes sense to introduce

ut (R) = tαt and ut (B) = t (1 − αt ) for the organic model, where

αt is equivalently defined as the sum of degree of the red nodes
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divided by the total sum of degree, or simply the fraction of edges

created towards R nodes under the recommendation dynamics. We

define similarly α2,t for the recommendation model.

Finally, we introduce some useful notation: Pi (A|B) for i = 1, 2, 3

as the conditional probability that a node of color B connects to a

node of color A through randomness, preferential attachment, and
recommendation, respectively. We observe that

P1 (R |R) =
β2,t

β2,t + ρ (1 − β2,t )
,P1 (R |B) =

ρβ2,t
ρβ2,t + 1 − β2,t

,

P2 (R |R) =
α2,t

α2,t + ρ (1 − α2,t )
,P1 (R |B) =

ρα2,t
ρα2,t + 1 − α2,t

,

P3 (R |R) =
P(X3 ∈ R |X1 ∈ R)

P(X3 ∈ R |X1 ∈ R) + ρ · P(X3 ∈ B |X1 ∈ R)
,

P3 (R |B) =
ρ · P(X3 ∈ R |X1 ∈ B)

P(X3 ∈ B |X1 ∈ B) + ρ · P(X3 ∈ R |X1 ∈ B)
.

(4)

Note that Pi (B |R) = 1 − Pi (R |R) and Pi (B |B) = 1 − Pi (R |B)
for all i ∈ {1, 2, 3}. The denominator in each case represents the

competition that a node faces when receiving a connection through

each dynamic.

The important step in computing each of these probabilities

is to analyze the probability for a red (respectively, blue) node to

receive a connection, which depends on the dynamics of connection.

Figure 4 shows an instance of this analysis, where the random walk

X1 − X2 − X3 is decomposed into edges X1 − X2 and X2 − X3 To

compute the probability for X1 − X2 to have formed, we see that it

could have been created through random connection or through

preferential attachment, enclosed in circles in Figure 4.

As the random walk can be decomposed in two independent

edges, P(X3 ∈ R |X1 ∈ R) may be written

P(X3 ∈ R |X2 ∈ R,X1 ∈ R) · P(X2 ∈ R |X1 ∈ R)

+ P(X3 ∈ R |X2 ∈ B,X1 ∈ R) · P(X2 ∈ B |X1 ∈ R).
(5)

Then, denote by
˜P (A|B) = η · P1 (A|B) + (1 − η) · P2 (A|B), for

any two colors A and B. Using a similar reasoning we obtain

P(X3 ∈ R |X1 ∈ R) = ˜P (R |R)2 + ˜P (R |B) · ˜P (B |R),

P(X3 ∈ B |X1 ∈ R) = ˜P (R |R) · ˜P (B |R) + ˜P (B |B) · ˜P (B |B),

P(X3 ∈ R |X1 ∈ B) = ˜P (R |B) · ˜P (R |R) + ˜P (B |B) · ˜P (R |B),

P(X3 ∈ B |X1 ∈ B) = ˜P (B |B)2 + ˜P (R |B) · ˜P (B |R).

(6)

5.1 Glass ceiling in the organic growth model
To show that the organic growth model exhibits a glass ceiling

effect, we employ similar techniques to [1], with the additional

effect of random connections apart from preferential attachment.

Randomness, however, does not affect the degree distribution coeffi-

cients (except for nodes of in-degree 0), but only the rate of growth

of edges towards the red population.

We firstly note that the rate of growth of edges towards the red

population converges towards a constant α < r . To see this, we

make use of the following lemma, where the function F models the

growth of edges towards R:

X1 X2

X3r

1 - r

X2
X1

α

1 - α

X2

P(X3 is R)

P(X3 is B)

X1

Figure 4: Evolution of the recommendation model. Each
edge of the random walk of length 2 (right) is assumed to
have been created through organic growth: either through
a random connection (top left) or preferential attachment
(bottom left). The end node can be red or blue with different
probabilities, (r , 1 − r ) in random connections, (α , 1 − α ) in
preferential attachment, and (P(X3 ∈ R), 1−P(X3 ∈ R)) in the
random walk.

Lemma 5.1. E[αt+1 |αt ] = αt +
F (αt )−αt

t+1 , where

F (αt ) = ηr · P1 (R |R) + ζη(1 − r ) · P1 (R |B)+

(1 − η)r · P2 (R |R) + ζ (1 − η) (1 − r ) · P2 (R |B).

We omit the proofs here due to space constraint and similarity in

methods, reserving space for the analysis of the recommendation

model. We note that α is the fixed point of the function F .

Degree distribution. We note that the in-degree distribution of

the two populations follows a power law with different coefficients,

similar as in [1], with a slight addition of the randomness factor.

Denote by mk,t (B) and mk,t (R) the number of blue and red

nodes of degree k at time t , and define

Mk (x ) = lim

t→∞

E(mk,t (x ))

t
. (7)

Theorem 5.2. For the organic growth model, the in-degree distri-
bution of the red and blue populations also follows a power law, i.e.,
Mk (R) ∼ k

−β (R ) andMk (B) ∼ k
−β (B ) for coefficients β (R) = 1+ 1

CR

and β (B) = 1 + 1

CB , where

CR = (1 − η) ·
( r
α
· P2 (R |R) +

1 − r

α
· P2 (R |B)

)
for k > 0,

CR = η ·

(
r

βt
· P1 (R |R) +

1 − r

βt
· P1 (R |B)

)
for k = 0.

(8)

A similar analysis follows for the blue population.

5.2 Glass ceiling in the recommendation model
Convergence of wealth of red nodes. We begin by showing that

the sum of degrees of the red nodes converges to a constant that is

smaller than r , and even smaller than in the organic case:

lim

t→∞
α2,t = α2 < α < r . (9)

Track: Web and Society WWW 2018, April 23-27, 2018, Lyon, France

929



This first shows that power inequality is even stronger under

recommendation, since the average degree of a red node is α/r in
the organic model and α2/r in the recommendation model.

To show this, we define a new function F2 that represents the
rate of growth of the number of edges towards R. We make a few

important assumptions:

• edges considered in the random walk are assumed to have

formed through organic growth
1
.

• edges considered in the random walk are assumed to exist

independently of each other
2
.

• edges that already exist are naturally formed at different

steps in time; however, when computing an evolution equa-

tion, we set their time of formation to the current time, t .

Lemma 5.3. E[α2,t+1 |α2,t ] = α2,t +
F2 (α2,t )−α2,t

t+1 , where

F2 (α2,t ) = ζ · η · r · P1 (R |R) + ζ · η · (1 − r ) · P1 (R |B)+

ζ · (1 − η) · r · P2 (R |R) + ζ · (1 − η) · (1 − r ) · P2 (R |B)+

(1 − ζ ) (r · P3 (R |R) + (1 − r ) · P3 (R |B)) .

Proof. We analyze the number of edges towards R that appear

at each step. In doing so, we note that

E(u2,t+1 (R) |α2,t ) = 0 · P(u2,t+1 (R) = u2,t (R))+

1 · P(u2,t+1 (R) = u2,t (R) + 1).
(10)

The formula for F2 encapsulates P(u2,t+1 (R) = u2,t (R) + 1) as it is
defined as the rate of growth of edges towards R. □

The following lemma summarizes properties of F2 (proof omit-

ted here due to space constraints), which exploits the polynomial

property of the function. The final property, the hardest to prove,

exploits a proof by contradiction as α∗ < α∗
2
(Figure 5 (a)) implies

that from a given fraction of edges towards R, the fraction increases

under the random walk dynamics while it decreases under organic

growth, which can be shown to be impossible. Moreover, α∗ and α∗
2

cannot be equal unless ρ = 1 or r = 1/2, given the polynomial func-

tion they satisfy. Considering F2 as a function of x , the following
holds:

Lemma 5.4. For r < 1/2 and ρ ∈ [0, 1], we have
(1) F2 is monotonically increasing.
(2) F2 has exactly one fixed point in [0, 1], denoted by α∗

2
, which

is stable.
(3) F2[0, 1] ⊂ [0, 1].
(4) α∗

2
< α∗ where α∗ denotes the fraction of edges going towards

red nodes in the organic growth.

Degree distribution. We show that the degree distribution of the

two populations also follows a power law, and that its coefficients

for the blue and red populations are even further apart than the ones

stemming from organic growth (Theorem 5.6). Following similar

notation as for organic growth, denote bym
2,k,t (B) andm2,k,t (R)

the number of blue and red nodes of degree k at time t in the

1
Note that this may be a feature of the recommendation system, as it is desirable to

avoid its own previous suggestions and feed solely on the organic growth behavior.

2
Edges lead to older nodes, the choice of the first edge may differ owing to (among all

others) how the second edge was chosen. That effect is very small and we neglect it.
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Figure 5: (a) Functions F (orange) and F2 (purple) for
(ζ ,η, r , ρ) = (0.9, 0.1, 0.3, 0.5); (b)Functions F (orange) and Fd
(green) for (η, r , ρR , ρB ) = (0.1, 0.3, 0.2, 0.5).

recommendation model andM2,k (x ) as the limiting expectation,

similarly.

Theorem 5.5. In the case of the randomwalk of length 2, the degree
distribution of the red and blue populations also follows a power law,
i.e.M

2,k (R) ∼ k
−β2 (R ) andM

2,k (B) ∼ k
−β2 (B ) for coefficients β2 (R)

and β2 (B).

Proof. We first derive a recurrence relation form
2,k,t (R) and

m
2,k,t (B), respectively. Conditioning on the history of the growth

until time t , F2,t , we find that the evolution can be written as

E[m
2,k,t+1 (R) |F2,t ] =

m
2,k,t (R)

t

(
1 − k ·CR

2,t −T
R
2,t

)
+
m

2,k−1,t (R)

t
·
(
(k − 1) ·CR

2,t +T
R
2,t

)
,

(11)

TR
2,t is the rate for red nodes to receive edge through randomness:

TR
2,t := ζ · η ·

(
r

βt
· P1 (R |R) +

1 − r

βt
· P1 (R |B)

)
, (12)

k ·CR
2,t is the rate at which nodes connect to red nodes of degree k

through preferential attachment or recommendations:

CR
2,t := ζ (1 − η)

(
r

α2,t
· P2 (R |R) +

1 − r

α2,t
· P2 (R |B)

)
+ (1 − ζ )

(
r

α2,t
· P3 (R |R) +

1 − r

α2,t
· P3 (R |B)

)
.

(13)

Note that the additional factors of
1

β2,t
and

1

α2,t
come from the

fact that the node receiving the connection must be of degree k (a

similar analysis for degree k − 1), and so the probability to choose

it between all other red nodes is

m
2,k,t (R ) ·k
t ·β2,t

when the choice is

random and

m
2,k,t (R ) ·k
t ·α2,t

when the choice is through preferential

attachment or recommendation.

We note that a similar concentration argument applies as in [1],

showing that β2,t → r and α2,t → α2. Thus, we may define CR
2
:=

lim

t→∞
CR
2,t andT

R
2

:= lim

t→∞
TR
2,t . From here, one can reuse equations 7
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and 11 and Lemma 4.14 from Avin et al. [1] to write, for large k ,

Mk (R)

Mk−1 (R)
=

(k − 1)CR
2
+TR

2

1 + kCR
2
+TR

2

= 1 −
1 + 1/CR

2

k
+O

(
1

k2

)
, (14)

thus proving that the degree distribution follows a power law (the

factor pertaining to random choices vanishes). A similar analysis

follows for the blue population, and we can deduce that degrees

quickly converge to a power law as t gets large, where coefficient

β2 (R) = 1 + 1

CR
2

and β2 (B) = 1 + 1

CB
2

. □

Theorem 5.6. For r ∈ [0, 1/2] and ρ ∈ [0, 1], we have

β2 (R) > β (R) > 3 > β (B) > β2 (B). (15)

where β (R) and β (B) are the equivalent power law coefficients under
organic growth. This implies tail and strong glass ceiling effects that
are even more pronounced under algorithmic recommendations.

Proof. Due to space constraints we present a sketch of the proof.

It leverages the previous comparison α∗
2
< α∗ together with an

invariant equation that is, to the best of our knowledge, novel.

Lemma 5.7. Given α and α2 the limits of the fraction of edges
towards R as defined above, the following holds:

α ·CR + r ·TR = α , and α2 ·CR
2
+ r ·TR

2
= α2. (16)

This lemma follows from the observation that at equilibrium,

when t is large, the rate at which red edges appear must equal

the current fraction of red edges, as it does not evolve anymore.

Revisiting Eq. (11-13), we find that the rate at which edges towards

red nodes of degree k are created is

mk,t (R )
t · (k ·CR

t +T
R
t ). Summing

up after all nodes, the rate at which edges towards R are created is:∑
k≥0

mk,t (R)

t
·(k ·CR

t +T
R
t ) = CR

t ·
∑
k≥0

k ·mk,t (R)

t︸              ︷︷              ︸
αt

+TR
t ·

∑
k≥0

mk,t (R)

t︸          ︷︷          ︸
βt

When t is large, this must be equal to the rate at which edges

towardsR are created, which is by definitionα . An identical analysis
follows for the recommendation model, leading to Theorem 5.6.

Using α2 < α and the invariant equation above, CR
2
< CR follows

as ζ is close to 1 and TR and T 2

R differ only by a factor of ζ .
A similar proof indicates that (1−α ) ·CB+(1−r )TB = 1−α , shows

that the coefficient for the blue population degree distribution after

the randomwalk is larger than the one after organic growth (C2,B >

CB ⇔ β2 (B) > β (B)). □

6 EXTENSIONS
As we have seen, homophily plays a central role in the creation of

a glass ceiling effect, yet characterizing its contribution precisely

becomes challenging in complex models. For populations exhibiting

equal rates of homophily, our results show that the majority have an

advantageous position. But what happens in the case of differential
homophily, where some populations may accept to connect with

more diverse individuals than others? A natural question is: can

the homophily parameter be used advantageously by the minority

population in reversing the glass ceiling effect? We explore this

question below, showing that in cases where the minority has a

higher homophily parameter, the hierarchy between the majority

and minority populations can be reversed.

For the organic growth model, define ρR and ρB as the accept

probability for incoming red and blue nodes, respectively. A new

growth function F (denoted Fd ) then occurs as P1 and P2 change:

Fd (x ) = η ·

(
r ·

r

r + ρR (1 − r )
+ (1 − r ) ·

ρBr

ρBr + 1 − r

)
+(1 − η) ·

(
r ·

x

x + ρR (1 − r )
+ (1 − r ) ·

ρBx

ρBx + 1 − x

)
.

(17)

Setting ρR < ρB , we effectively allow the red population to fewer

more incoming edges from B than the blue nodes accept from R,
in a sense "protecting" themselves. We show an instance of this in

Figure 5 (b), where we set ρR = 0.2 and ρB = 0.5 for Fd (green)

and ρR = ρB = ρ = 0.5 for the original F (orange). Note that the

fixed point of Fd , αd is now larger than r , which shows that the

accumulated wealth of the red nodes has surpassed the expectation

(their fraction, r ), effectively reversing the hierarchy between the

red and the blue nodes.

Thus, in alleviating the algorithmic glass ceiling effect, we pro-

pose that the homophily parameter ρ be accounted for in designing

structure-based recommendation algorithms. In our case, given a

network with labels, a majority-minority partition, and a recom-

mendation model based on random walks, one can infer and use

the value of ρ in counteracting the bias, i.e., conduct a random

walk which "accepts" with probability ρ a transition that leads to

same label connection. This would be able to cancel the effect of

homophily on the randomwalk and ought to equalize influence and

power law coefficients among labels. It is not evident how to infer

ρ from the dataset, as it is not simply equal to the observed fraction

of mixed-label edges, since rejected edges are lost. However, as

one can approximate the fraction of minority population r and the

fraction of their total power, α , we can replace them as parameters

in the function F from Lemma 4.3 from [1], knowing that F has α
as its fixed point. Thus, considering F (α ) − α as a function of ρ, we
know that it must be equal to 0 from the fixed-point equation, so

we can solve for ρ and obtain an approximate value.

7 CONCLUSIONS
Our theoretical and empirical analysis unravel subtle dynamics

of network growth, showing the way homophily and preferential

attachment tie into the creation of a glass ceiling effect in a network

that undergoes recommendations. We have thus formalized the

algorithmic glass ceiling effect, and showed that while algorithms

do not create disparity out of nowhere, they canworsen pre-existing

inequality.

Our empirical results reverse the hierarchy projected by the

theoretical analysis in an unequal network in a surprising but not

contradictory manner. Indeed, we show how a subtle mechanism of

network growth, namely, differential homophily, can contribute in

reversing the glass ceiling effect against themajority population.We

hope these results will help future design of social recommendations

that optimize relevance while preventing glass ceiling.
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