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ABSTRACT
The problem of social influence maximization is widely applicable

in designing viral campaigns, news dissemination, or medical aid.

State-of-the-art algorithms often select “early adopters” that are

most central in a network unfortunately mirroring or exacerbating

historical biases and leaving under-represented communities out of

the loop. Through a theoretical model of biased networks, we char-

acterize the intricate relationship between diversity and efficiency,

which sometimes may be at odds but may also reinforce each other.

Most importantly, we find a mathematically proven analytical con-

dition under which more equitable choices of early adopters lead

simultaneously to fairer outcomes and larger outreach. Analysis of

data on the DBLP network confirms that our condition is often met

in real networks. We design and test a set of algorithms leveraging

the network structure to optimize the diffusion of a message while

avoiding to create disparate impact among participants based on

their demographics, such as gender or race.

CCS CONCEPTS
• Theory of computation → Graph algorithms analysis; Sub-
modular optimization and polymatroids; Random network models;
• Information systems → Web crawling; Social networks; •
Human-centered computing→ Social networks; Social network
analysis; • Computing methodologies → Theorem proving algo-
rithms; Probabilistic reasoning.
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1 INTRODUCTION
Data-driven algorithms are increasingly affecting high-stakes deci-

sions in our everyday lives, including employment, online visibility,

and justice. With their advent, the concern that some automated
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processes mirror or amplify bias against disadvantaged groups has

become commonplace. The first observation regarding such issues

is that different groups or communities are unequally represented:

typically, minority groups are disproportionately absent from ad-

vantageous positions, creating a diversity gap. This immediately

leads us to the question: when can an intervention be effective in

(partially) restoring that lost diversity? As a social problem, legal

interventions and public opinion pressure may be required to alle-

viate this disparity gap, both raising the stakes in understanding

the possible benefits and drawbacks of diversity-enhancing rules.

Quite often, two sides emerge in this dilemma: one that argues,

especially in situations with historical prejudice, that awareness

of demographics and community-affiliation is essential in restor-

ing some parity as a goal towards eventual fairness, and one that

is more cautious, either from being reluctant to identify various

groups, or from fear of the ramifications of differential treatment.

Some of the arguments against diversity-enhancing interventions

may also be more cynical: the interventions might come at a non-

negligible cost to efficiency [16]. It is therefore especially critical to

identify cases where these views can be reconciled: one in which

diversity-enhancing strategies not only promote fairness and equal

representation but also measurably improve the outcome of a pro-

cess. This is the focus of our paper, where we carefully identify

through a theoretical argument backed by empirical validation

that diversity-enhancing rules maximize the outreach for the well-

known influence maximization problem, showing that being aware

of the features of the individuals and the network structure is cru-

cial in obtaining a more equitable and better outcome. Our result is

necessarily subtle (it comes from counteracting a form of bias in

an emerging graph), and thus the exact mathematical conditions

required are non-trivial and depend on the various graph and algo-

rithmic factors. Nevertheless, an evaluation of these techniques on

experimental data shows that the main property we prove holds

in most practical conditions: we find that improving diversity in

seeding has a drastic effect on restoring fairness in the outreach,

rarely at a significant cost to efficiency. In this paper, we present

the following contributions:

• We provide a model of network growth that embeds social

bias through unequal communities and prove the existence

of an analytical condition in which diversity acts as a catalyst

for efficiency. Our model allows an in-depth analysis of seed

selection heuristics with partial network information that

choose early adopters based on their network centrality (in

this case, their degree), proving that a large enough seed

set leads to better diversity and efficiency, while a small

seed set may incur a cost of fairness. Through our model

and synthetic networks, we show that including sensitive

attributes in the input of such algorithms is crucial in the
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design of more equitable heuristics and provide an analytical

study of the conditions in which disparity in seed selection

occurs. (Section 3).

• We analyze diversity-enhancing interventions on seeding

using a dataset of Computer Scientists collected from DBLP,

confirming that our results qualitatively hold even outside

of the strict assumptions embedded in our theoretical model.

We find that our theoretical lower bounds on the seed set

size are conservative (Section 4).

• Finally, we extend our results to evaluate our findings across

multiple centrality measures. For scenarios including a small

seed set budget, we find that an alternative diversity-enhancing

rule is effective at improving equity in information diffusion

at no cost to outreach (Section 5).

Social influencemaximization has been awidely-studied problem

in online networks, having impactful applications in information

diffusion, disease spread, marketing strategies, and many others.

A classical method is to pick a set of individuals who will be the

"early adopters" (a seed set), who either adopt the desired message

or product out of their own will or receive it at no cost. As they

share it with their friends, who may or may not adopt it themselves,

the process continues into a cascade. In the traditional formulation

inspired by marketing, one may aim to maximize the number of

people who adopt the product (the outreach). That goal was recently

called into doubt in cases where fairness is paramount, e.g., when

social influence is leveraged for public health, with a mandate to

equally protect members of various groups. It was quickly pointed

out that even if algorithms choose seeds based on their network

position (e.g., "most central") and seemingly ignore demographics,

properties of social networks also encode historical biases and

gender artifacts that algorithms can reinforce. The state-of-the-

art is to propose parity-restoring clauses inside an optimization

problem, which have been reported to navigate a fairness-efficiency

trade-off [1, 17, 42].

We aim to understand biases present in the graph through a

modeling approach, so that an algorithm may learn how to correct

for them. Far from introducing fairness as a top-down objective,

we experiment with interventions from the start and examine the

conditions under which diversity comes not at a cost, but as a

catalyst for maximizing outreach. We focus on situations where

information is sparse or the graph must be learned or approximated,

as this has been the most active line of work in the recent analysis of

influence maximization. In retrospect, all previous results showing

that seed diversity comes as a costly intervention with respect to

efficiency are built on the specific case of a greedy algorithm with

complete information.

2 RELATEDWORK
Several online services have recently come under scrutiny for re-

producing or amplifying bias against disadvantaged groups in soci-

ety [15, 18, 34]. Information diffusion is subject to similar concerns,

for instance via online advertising [2, 43], search engines [9], or pro-

file recommendations [40]. Leveraging social networks to accelerate

information diffusion follows a similar trend [1, 17, 42].

Judiciously choosing a seed set to create a cascading effect and

maximize the eventual spread of influence remains a practical chal-

lenge. Even when the network topology and the information diffu-

sion properties among nodes are known, most approximate algo-

rithms require costly polynomial steps [22, 23]. This is why seed

set selection deployed in practice exploits simpler heuristics based

on neighbors or centrality properties [11, 12, 24, 47]. These “rules

of thumb” are a fortiori indispensable to guide the choice of seeds

when the network is only partially known [37] or learned from ex-

periments [6]. Building on a preliminary version of our results [39],

no other paper so far has considered fairness in such a context to

our knowledge. Recent work [1, 17, 42] starts from the different

assumption that a polynomial greedy heuristic is run on a full in-

formation network. Like these papers, we find that algorithms that

are agnostic to community affiliation or sensitive attributes when

maximizing influence may come at a cost to diversity in both the

choice of seeds and the population reached. However, unlike this

past work, we conclude that diversity-enhancing rules can restore

diversity without decreasing performance. Indeed, contrary to it, our
theoretical analysis and empirical results give conditions under

which fairness presents a (modest) gain. We note that our results

resonate with a more general line of work concerned with algo-
rithmic fairness when processing human data, shedding light onto

the tendency of classification algorithms to reproduce or amplify

historical prejudices (see [3, 8, 46] and references therein).

Some of the conditions we analyze resemble the these for en-

suring equity in output [26, 33], and the diversity-enhancing seed-

ing we define resembles previous techniques for fair personaliza-

tion [10, 19, 27]. Our results contribute to recent evidence sug-

gesting that sensitive attributes should not be ignored but can be

leveraged to simultaneously improve fairness and accuracy [25].

The apparent paradox between fairness and accuracy (or efficiency)

is often explained [13, 38] by the presence of an implicit bias when

evaluating candidates of certain subgroups [27] according to simple

metrics. One may sometimes refine the metric used, leveraging

sensitive attributes, ideally so that selection is solely dependent on

the true outcome probability.

While diversity has been long studied as having performance-

enhancing benefits in many domains [21, 35], showing its strengths

beyond moral reasons, theoretical models encompassing diverse

agents have shown complicated dynamics of minority suppression

due to homophilic behavior and rich-get-richer effects [5, 29]. Our

work complements these results as we provide a theoretical founda-

tion for why social network metrics follow spontaneous dynamics

that give rise to such effects and when one can provide a strong

justification to introduce diversity-enhancing rules.

3 THEORY OF DIVERSITY SEEDS
In understanding the true causes of bias in influence maximization,

we introduce a theoretical model that reproduces disparity between

different communities in social networks. While emulating the or-

ganic growth of communities of individuals with different features

or interests, we are able to mathematically analyze the conditions

in which bias is firstly created and then captured by algorithms that

leverage network centrality, investigating the complex relationship

between diversity and optimality.
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3.1 Model of biased networks and influence
In studying the effect of information diffusion for different commu-

nities, we use an established model of network growth that encodes

two unequal populations, namely the biased preferential attach-
ment model. Built on the classical Barabasi-Albert model [7] and

extended to encompass more than one community [5], the model

has been shown to have real applications by encoding patterns of

human connections, from community affiliation to homophily and

a rich-get-richer effect [4, 5, 28, 40]. In this model, the network

grows through the sequential addition of new nodes, satisfying

three properties:

• Community affiliation: When a node enters the network, it

chooses one of two labels: red (R) with probability r , and
blue (B) with probability 1 − r . By setting r < 0.5, the red

community is the minority. For simplicity, we focus on a

network with two communities, but the model immediately

generalizes to any finite number of communities.

• Rich-get-richer: The new node chooses to connect to some

other node according to preferential attachment (chooses a
node with probability proportional to that node’s degree).

This step is repeated d > 1 times, giving each node an out-

degree of d .
• Homophily: If the two nodes from the previous step have

the same label, an edge is formed; otherwise, the new node

accepts the connection with probability ρ, where 0 < ρ < 1,

and the process is repeated until an edge is formed. This

models individuals’ tendency to be more likely to connect

with people belonging to the same group.

Previous studies of this model [5] show that the degree distribu-

tion follows a power law with different coefficients: β(R) and β(B)
for the two populations, where β(R) > 3 > β(B) > 2, showing that

the minority population encounters a "glass ceiling" effect in acquir-

ing a high number of connections, or equivalently, that minority

nodes will be under-represented at the top of the degree hierarchy.

With a large body of evidence for its pervasiveness in offline [14]

and online [5, 34] networks, the glass ceiling effect captures such

inequality due to historical prejudices in top-ranked individuals

of a population. This model in particular reproduces the observa-

tions [1, 17, 42] that seeds may be chosen disproportionately among

members of the majority group (see arguments below), affecting

the proportions of minority and majority nodes in outreach from a

fairness perspective.

Information diffusion: Assuming the network grows according to

the biased preferential attachment model, we use the independent
cascade model for information diffusion under a seed set budget con-

straint, where each individual adopts the information transmitted to

them from one of their friends with a probability p, independently
for every friend, for 0 < p < 1. We assume an undirected graph in

this study. Note that, given the complexity of the graph, any other

information diffusion model appears much harder to tackle. As we

prove below that even the simplest case of an approximation of the

independent cascade is non-trivial, how diversity affects outreach

in more complex diffusion processes becomes an interesting avenue

for future work.

3.2 A theoretical proof of diversity benefit
We denote by ϕV (S) the influence of a set S over a network V , i.e.
the set of nodes activated by the independent cascade model. We

can formally define statistical parity in outreach as

Definition 3.1. For a graph G = (V ,E) that adopts information
through an independent cascade model from a seed set S , there is
statistical parity in the outreach for communities C1, · · ·Ck if ∀i , j :

E|{u ∈ ϕV (S)|u ∈ Ci }|

|Ci |
=
E|{u ∈ ϕV (S)|u ∈ Cj }|

|Cj |
. (1)

This notion can ensure that the product or the information being

spread reaches the population in a representative way, i.e. reaches

the same percentage of each community. Note that, even for a

particular fixed seed set S , its outreach (or influence ϕV (S)) may be

costly or impossible to compute, for instance when not all pertinent

details are known. In such cases, we can require statistical parity

in seeding as a proxy towards parity in outreach (i.e., the same

condition where ϕV (S) is replaced by S). We note, however, that

parity seeding appears neither necessary nor sufficient.

Similarly, we can define statistical parity for a seed set S , and
use this notion as a tool to gain more parity in the outreach. Since

we do not have the full network information, optimizing directly

for parity in the outreach becomes impossible, and thus we use the

seed set as a proxy. This is particularly important in news spread,

wheremanipulating distribution of news can lead tomisinformation

and to amplifying an echo chamber effect, and maybe even more

compelling for public health concerns.

Seeding Strategically: While the greedy algorithm provides a

good approximation of the best seed set in the independent cas-

cade model [22], it is costly to compute and typically inaccessible

in many practical cases, when the network is only partially ob-

served and the nodes are only characterized by their degree or

other centrality measures. As mentioned before, a large body of

literature focuses on maximizing influence through different simple

heuristics [11, 12, 24, 47], obtaining scalable algorithms for seed

selection by leveraging network statistics such as degree centrality

and distance centrality. For concreteness, we focus in this section

on analyzing degree centrality before validating our results for di-

versity in other heuristics in Section 5. Degree centrality is arguably

simplistic but already presents an interesting behavior and approxi-

mates greedy for a small probabilityp of diffusion [22]. We hope our

study provides a starting point for analyzing other similar heuris-

tics. Note also that the glass ceiling effect proved in [5] implies

that seeding based on degree centrality can be arbitrarily far from

having statistical parity in the seed set.

Formally, the baseline agnostic seeding heuristic based on degree

centrality sets a threshold k(n) for degree above which all nodes are

chosen as seeds, regardless of their color or community affiliation:

Definition 3.2. The baseline agnostic seeding defines the seed
set of a bi-populated network V of red (R) and blue (B) nodes as
Sk (n) = {v ∈ V |deд(v) ≥ k(n)}.

Figure 1 (left) shows an illustration of that process for two com-

munities of red and blue nodes, where the blue nodes are the ma-

jority and have a higher degree. As a given budget for the size of
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Figure 1: Differentiated thresholds for strategic seeding.

the seed set is equivalent to choosing nodes above a certain degree

threshold k , a color-agnostic seeding heuristic would choose nodes

from the degree ranking, while a strategic one may include the color

of the nodes in the choice of seeds.

Through our concept of diversity, we define strategic heuristics

based on statistical parity of the seeds, called parity seeding (Figure 1
right) by increasing the threshold for the blue nodes and decreasing

it for the red nodes in order to achieve the same ratio of red and

blue nodes in the seed set as it is in the general population while

preserving the seed set budget:

Definition 3.3. Parity seeding defines the seed set of a bi-populated
network V of red (R) and blue (B) nodes based on two differentiated
thresholds kR (n) and kB (n) as

SRkR (n)∪S
B
kB (n) = {v ∈ R |deд(v) ≥ kR (n)}∪{v ∈ B |deд(v) ≥ kB (n)}

such that |Sk (n) | = |SRkR (n) ∪ SBkB (n) | and
|SR
kR (n)

|

|SB
kR (n)

∪ SB
kB (n)

|
=

|R |

|V |
.

(2)

We also propose an intermediary variant (Figure 1 center), which

we denote diversity seeding, by allowing the ratio of the two pop-

ulations in the seed set to vary between the agnostic one and the

parity one, again by setting differentiated thresholds for the blue

and red nodes (which need not be the same as in Definition 3.3):

Definition 3.4. Diversity seeding defines the seed set of a bi-
populated network V of red (R) and blue (B) nodes based on two
differentiated thresholds kR (n) and kB (n) as

SRkR (n)∪S
B
kB (n) = {v ∈ R |deд(v) ≥ kR (n)}∪{v ∈ B |deд(v) ≥ kB (n)}

such that |Sk(n) | = |SRkR (n) ∪ SBkB (n) |.

(3)

Finally, we need to introduce an approximation: since the func-

tion ϕV (S) remains elusive in such complex network, we approxi-

mate it in the analysis presented here by assuming influence spread

over one hop. This approximation is accurate for small probability

of diffusion (e.g. p = 0.01), not uncommon in practice. The results

for when this assumption does not hold are validated numerically

for more general values of p in Sections 4 and 5. Interestingly, it

seems that by making this approximation we tend to underestimate

the benefits of diversity.

Given these concepts, we find an analytic condition for which

strategic seeding improves both efficiency and outreach in the

diffusion process:

Theorem 3.1. In the independent cascade model in a network
V that follows the biased preferential attachment model with two
communities of red (R) and blue (B) nodes, there exists k0(n) known
in closed form such that the following statements hold:

(i) When k(n) ≤ k0(n), for a range of differentiated thresholds
kR (n) < kB (n) chosen to maintain the same expected budget
as agnostic seeding, diversity seeding obtains a larger expected
outreach while getting closer to outreach parity, i.e.,

E(|ϕV (Sk (n))|) < E(|ϕV (S
R
kR (n) ∪ SBkB (n))|),

with constraint E(|Sk (n) |) = E(|S
R
kR (n) ∪ SBkB (n) |), and

(4)

E(|ϕV (S
R
kR (n)

∪ SB
kB (n)

) ∩ R |)

E(|ϕV (S
R
kR (n)

∪ SB
kB (n)

)|)
>
E(|ϕV (Sk (n)) ∩ R |)

E(|ϕV (Sk (n))|)
. (5)

(ii) When k(n) ≥ k0(n), all diversity seeding heuristics with the
same expected budget as agnostic seeding can be closer to
outreach parity but always obtain a smaller expected outreach.

This result illustrates how seeding diversity and seeding effi-

ciency are intricately related: when aiming for selecting too few

seeds, diversity hurts overall outreach, intuitively because each

chosen seed among the minority group reaches a smaller commu-

nity. Having less “room to grow” than a typical majority node,

minority seeds are far down in the rankings. One should lower

the threshold significantly to move towards a fair representation

and that comes at a significant cost. However, with more seeds

and lower k(n), the situation starts to improve and it becomes less

and less costly to bring proportional representation in outreach.

As we approach a critical point, which is entirely known although

its exact value remains quite complex (see proof below), the cost

of equal representation virtually vanishes. Then, remarkably, the

opposite trend emerges past this point, where enhancing diversity

can increase the outreach both in absolute size and in proportional

representation. Intuitively, this is because a seed from a minority

group overlaps much less with prior seeds with better rankings,

making its individual contribution substantially better than even a

slightly higher rank majority node.

Finally, we find that parity seeding is also able to be more equi-

table and more efficient, given a sufficiently large seed set budget,

albeit much larger than for diversity heuristic (we omit the proof

here due to lack of space):

Corollary 3.2. In the independent cascade model in a network
V that follows the biased preferential attachment model with two
communities of red (R) and blue (B) nodes, there exists k1(n) known
in closed form such that the previous statements hold for the parity
seeding heuristic.

The rest of the section provides a sketch of the proof for Theo-

rem 3.1, limited due to space constraints.
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Proof. The intuition behind the proof is two-fold: on one hand,

the biased preferential attachment model allows us to compute the

probabilities of diffusion for different communities and to note that

homophily preserves influence within the group that seeds lie in;

on the other hand, we are able to use the diminishing marginal

return property of submodular functions in showing the benefits

of diversity. In a sense, although the high degree nodes are better

connected, they tend to have overlapping influence spheres, leaving

minority communities untapped. Note that an upper bound on the

degree threshold translates into a lower bound for the seed set size.

For the first part of the theorem, we continue with the following

lemma, for which we use the biased preferential attachment model

dynamics:

Lemma 3.1. The expected size of a seed set that includes nodes of
degree at least k(n) is:

E(|Sk (n) |) = n · α · d ·
β(R) − 2

β(R) − 1

· k(n)1−β (R)

+n · (1 − α) · d ·
β(B) − 2

β(B) − 1

· k(n)1−β (B),

(6)

where α is the fraction of edges with one end in R.

Proof. We can write

E(|Sk(n) |) = E(|Sk (n) ∩ R |) + E(|Sk(n) ∩ B |). (7)

Knowing the degree distribution of the model, we know that the

number of red/blue nodes of degree k is proportional to k−β (R/B).
Thus, we get

E(|Sk (n) ∩ R |) =
∑

k ′≥k (n)

k ′−β (R) ·CR (8)

= n · α · d · (β(R) − 2) ·

∞∫
k(n)

x−β (R)dx (9)

⇒ E(|Sk (n) ∩ R |) = n · α · d ·
β(R) − 2

β(R) − 1

· k(n)1−β (R) (10)

E(|Sk (n) ∩ B |) =
∑

k ′≥k (n)

k ′−β (B) ·CB (11)

= n · (1 − α) · d · (β(B) − 2) ·

∞∫
k(n)

x−β (B)dx

(12)

⇒ E(|Sk (n) ∩ B |) = n · (1 − α) · d ·
β(B) − 2

β(B) − 1

· k(n)1−β (B) (13)

□

Since we want to find kR (n) and kB (n) that satisfy our goal in

equation 4, we set kB (n) = k(n) · x , for a variable x . In order to

preserve the total number of seeds, we may compute the minimum

degree kR (n) in closed form in terms of the network parameters.

Writing these as functions of x , we define:

F (x) = E(|ϕV (S
B
kB (x ) ∪ SRkR (x ))|) − E(|ϕV (Sk (n))|), (14)

with the goal of solving for x such that F (x) > 0. Knowing that the

blue community is majority, we would like to increase diversity

and thus to choose x > 1 for which F (x) > 0. In order to do that,

we explicitly write the expected number of influenced nodes as:

E(|ϕV (Sk (n))|)

= n · P(v ∈ B) · P(v influenced by one of its d edges|v ∈ B)

+n · P(v ∈ R) · P(v influenced by one of its d edges|v ∈ R).

(15)

Then, considering the blue population (and performing the same

computations for the red one),

P(v influenced by one of its d edges|v ∈ B)

= 1 − (1 − P(v influenced by one edge|v ∈ B))d .
(16)

We can compute the probability for a node to be influenced by

one of its edges as:

P(v influenced by one edge|v ∈ B) =

P(v forms edge B → B |v ∈ B) ·
|{e = (u,w)|u ∈ B,w ∈ Sk (n) ∩ B}|

|{e = (u,w)|u,w ∈ B}|
+

P(v forms edge B → R |v ∈ B) ·
|{e = (u,w)|u ∈ B,w ∈ Sk (n) ∩ R}|

|{e = (u,w)|u ∈ B,w ∈ R}|
.

(17)

Computing and replacing these expressions in our original equa-

tion 14, we obtain a closed-form equation which we can solve for

k . Using the unequal dynamics provided by the glass ceiling effect,

we find that the power law exponent of the degree distribution of

the blue community dominates the one for the red community. We

obtain a bound k0 for which: for k < k0,∃x > 1 s.t. F (x) > 0, and

for k > k0∀x > 1, F (x) < 0, where k0 is computed as below:

k0 =

©­­­­«
2(1 − α)(

1−r
r

) 1

d−1
− 1

©­­«
1−r

αρ+1−α
ρr

α+ρ(1−α ) +
1−r

αρ+1−α

©­«
(
1 − r

r

) 1

d−1
+ 1

ª®¬ − 1

ª®®¬
ª®®®®¬

1

βB−2

(18)

Thus, we conclude with an analytical condition depending on

the network parameters for the bound k0, for which k < k0 allows
diversity seeding to achieve a better outreach than agnostic seeding,

while for k > k0 the opposite occurs and diversity comes at a cost.

These results show that, given enough seeds, diversity seeding is

able to achieve better outreach than being agnostic to community

affiliation. Moreover, it is also able to nudge the outreach in a more

equitable way, promoting diversity in the outreach:

Corollary 3.3. In the above-mentioned conditions, the minority
group R obtains better parity in the outreach:

E(ϕV (S
R
kR (n)

∪ ϕV (S
B
kB (n)

)) ∩ R)

E(ϕV (S
R
kR (n)

∪ ϕV (S
B
kB (n)

))
>
E(ϕV (Sk (n)) ∩ R)

E(ϕV (Sk (n))
. (19)

We only sketch the proof intuition showing that diversity in the

outreach also increases: since we are assuming a small probability

of diffusion and the two communities are homophilic, the red nodes

who are added to the seed set are influencing predominantly other

red nodes, while the blue nodes that are being removed from the

seed set for achieving better seed parity are losing their influenced

blue nodes. Thus, we can show that in expectation, the number
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Figure 2: Seed set size versus outreach for r = 0.186, n =
53, 307, ρ = 0.294, α = 0.179, d = 3.
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diversity > agnostic > parity 

agnostic > diversity > parity 

Figure 3: Minimum seed set size budget as r varies between
0 and 0.5, and n = 53, 307, ρ = 0.294, d = 3.

of red nodes in the outreach increases, while the number of blue

nodes decreases, leading to a more equitable ratio of the red nodes

in the outreach. □

3.3 How many seeds are enough?
As the theory suggests, given a large enough seed set, diversity can

act as a catalyst for increasing outreach. To realistically understand

these conditions, we compute the approximate bounds of the size

of the seed set emerging from the conditions that let us achieve

both fairness and efficiency for a synthetic network.

Using equation 18, we are able to approximate the upper bound of

the minimal degree in our seed set. From this, we can approximate

the number of nodes with a higher degree than this bound, obtain-

ing theminimum seed set size to achieve both fairness and efficiency.

We present this numerical computations for a simulated network

that resembles the DBLP dataset we used for empirical evaluation,

setting n = 53, 307 nodes, r = 0.186 the ratio of women, d = 3

average degree. We infer α = 0.179 from a fixed-point equation

of the biased preferential attachment model [5], and we compute

ρ = 0.294 as the homophily parameter associated to DBLP.
1

Figure 2 illustrates the performance of our three seeding heuris-

tics for this network: while parity seeding needs 11, 286 seeds (or

21% of the population) in order to be better than agnostic seeding,

diversity seeding only needs 9, 118 seeds (or 17% of the population).

For a smaller seed set, with 5, 000 nodes, both strategic heuristics

perform worse than the agnostic one, as theory predicts, yet within

amarginal bound. As the seed set size increases, parity seeding leads

to a similar outreach as being agnostic, while enforcing diversity

seeding leads to a better outreach.

Finally, we vary the minority proportion r to understand the re-

lationship between fairness and network disparity. Figure 3 shows

the different phase transitions that occur, for the two necessary seed

set budgets for parity seeding and diversity seeding, plotting the

necessary seed set size to encompass agnostic seeding as a function

of r for diversity seeding (blue line) and parity seeding (purple line).
As these budgets show the minimum seed set size for the strategic

heuristics to become better than the agnostic one, the red region

shows the parameter space for which both strategic heuristics en-

counter a loss in outreach to agnostic seeding (equivalent to having

too few seeds), the blue region shows that for a moderate amount

of seeds diversity is able to do better than agnostic but parity is not,

and finally the purple region shows that for a large enough seed set,

parity seeding is also able to perform better than agnostic seeding

(with diversity performing best since it’s a relaxed heuristic).

As r increases and the groups become more equal, we need

fewer seeds to achieve both better equity and efficiency for diver-

sity seeding, but not necessarily for the parity heuristic. Indeed,

as r increases from 0.1 to 0.45, the required budget for the seed

set size decreases from 17.8% to 4.3% of the total population for

diversity seeding, while parity seeding starts needing more seeds

as r approaches 0.5. Intuitively, a more equal population requires

fewer seeds that can achieve both fairness and efficiency, but as the

population becomes more equal, it becomes harder to achieve strict

statistical parity, as we would have more minority nodes in with

high degree and thus the minority population would have been

already partially influenced. Moving from partially influenced to

being influenced in a truly proportional way requires a much higher

cost than a relaxed condition on parity as our diversity seeding

heuristic ensures, and thus diversity seeding becomes a powerful

tool in achieving fairness.

4 DIVERSITY BENEFIT IN PRACTICE?
As the theoretical model provides us with a rigorous analysis of the

relationship between diversity and efficiency (when diversity comes

at a cost, and when it can improve efficiency), we aim to understand

its applicability in real-life scenarios. To such end, we collected a

co-authorship dataset of Computer Scientists from DBLP [30], an

online database that records most publications in Computer Science.

As professional opportunities for Ph.D. students, post-docs, as well

as collaborations, are often shared through word of mouth or email

1
Since rejected edges are lost, computing ρ is not as simple as counting the number of

cross-community edges. However, as one can approximate r and α , we can replace

them as parameters in the function F from Lemma 4.3 from [5], knowing that F has

α as its fixed point. Thus, F (α ) − α must be equal to 0 as a function of ρ from the

fixed-point equation, so we can obtain an approximate value for ρ .
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lists in the Computer Science community, we aim to study the effect

of network structure on who receives such opportunities, in a field

known to exhibit gender and race imbalance [20, 36, 41, 45].

4.1 Inequality in scientific networks
We collected the first 200, 000 articles from DBLP, recording the

listed authors as nodes and creating an undirected edge between

any two authors who have co-authored an article.We then extracted

the largest connected component of this graph, resulting in 53, 307

nodes and 288, 864 edges.

Perceived gender: similar to previous studies [5, 31], we used the

authors’ first names in understanding their perceived gender based

on the Social Security Data (SSN) in the U.S. between 1940 and

2007. The SSN data provides us with a list of names and genders,

from which we kept only those with at least 50 occurrences and

which assign one of ‘male’ or ‘female’ at least 95% of the time.

This created a dictionary of 32, 676 first names-gender with low

ambiguity, which allowed us to infer the perceived gender of our

graph. Out of the 53, 307 people, about 19% are perceived as female

and 81% as male, confirming a large imbalance known in the field.

The imbalance in representation leads to an imbalance in degree,

shown in Figure 4, illustrating the percentage of female researchers

amongst those with degree at least x , as x varies between 1 and

the maximum number of co-authors in the network. The size of

the points represents the relative size of the population who has

degree higher than the x-axis value. We note that there are always

more men than women for every degree in the network. Except

for a core of researchers who are very well-connected, the degree

distribution resembles a power law, with very researchers of high

degree. Although women do reach quite high degrees, the most

well-connected researchers are still men and there are very few

people with such high degrees. Indeed, choosing a seed set of size

5, 000−10, 000 is equivalent to choosing people of degree at least 8 or

10, for which the fraction of women on the y-axis is 15%. We further

notice that the network is quite clustered, the vast majority of edges

being intra-community. Thus, while the glass ceiling effect is not

extremely pronounced, disparity in influence still exists by choosing

only a few top people in the seed set and spreading influence in

their community, leading to under-representing women.

Homophily: Beyond the inequality in the degree distribution of

the two communities, the data also exhibits a tendency of people

to connect more with those of the same perceived gender. Indeed,

women have 24.3% of their edges directed at other women, while

men connect 83.5% of their edges towards other men. Therefore,

although many inter-community edges do exist, both genders ex-

hibit moderate homophily, reproducing the theoretical model from

Section 3.

Limitations: this gender inference method is constrained by lim-

itations on gender binarity in the SSN data, as well as the exclusion

of people who have more ‘ambiguous’ names, as defined above.

Above all, it is not intended to replace the private identity, but

rather to reflect the public perception, which is still a major factor

in discrimination [32].
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Figure 4: Log-scale plot of degree versus fraction of women
among researchers with degree at least x, sized by the rela-
tive proportion of population of that degree or larger.

4.2 Practical evaluation of diversity seeding
Algorithms: We implement the three degree heuristics for seed

selection on this dataset: agnostic seeding, parity seeding, and di-
versity seeding. While the agnostic heuristic chooses nodes above

a certain degree threshold, the strategic ones essentially choose

differentiated degree thresholds for each community, just like in

the theoretical set-up. To implement diversity seeding, we vary a

relaxation parameter ζ that allows us to shift between agnostic and

parity seeding and report the best results in terms of outreach as a

ζ varies, averaged over 1, 000 iterations.

Experiments: We simulate the cascading process in DBLP for

these three seeding algorithms. While theory provides a bound for

the seed set size needed to bemore fair andmore efficient, the model

assumptions render it only approximate in real life, where we find

that we need even fewer seeds to achieve our goal and that theory

only provides a conservative estimate of the seed set size bound. We

compute the minimum seed set size budget that theory predicts to

achieve both fairness and efficiency in the strategic algorithms to be

around 9, 100 nodes (∼ 17% of the population). We experiment with

seed sets of 1, 000, 5, 000, and 9, 100 nodes for p = 0.01 and p = 0.1

(Table 1). We bold the values for the best heuristic for each row and

seedset size, and show the increase and decrease of outreach values

of the strategic heuristics in green and red arrows, respectively, as

compared to the agnostic seeding baseline.

Indeed, choosing a relatively small seed set of 1, 000 nodes, both

strategic heuristics perform worse than agnostic seeding, obtaining

a lower outreach (Table 1 top) while increasing diversity. However,

increasing the seed set size to 5, 000 nodes, we note that the diver-

sity seeding slightly increases the outreach, yet parity seeding one

decreases it, while for a seed set size of 9, 100 nodes, both strate-

gic heuristics perform slightly better than the agnostic one. This

confirms our theoretical findings that when the seed set size is too

low, achieving parity comes at a cost of efficiency, but increasing it

diversity comes at no cost to efficiency, but quite the opposite.

Although the outreach increase is marginal, what is impressive is

to notice that, for 9, 000 seeds, replacing 100 (for diversity seeding)

and 200 (for parity seeding) male seeds with female seeds leads to a
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Table 1: Results for the DBLP dataset for p = 0.01 and p = 0.1, for 1, 000, 5, 000, and 9, 100 seeds.

1,000 seeds 5,000 seeds 9,100 seeds

p = 0.01 Agnostic seeding Parity seeding Diversity seeding Agnostic seeding Parity seeding Diversity seeding Agnostic seeding Parity seeding Diversity seeding

Total outreach 1,149.15 ↓1,147.874 ↓1,149.1 5,410.748 ↓5,408.762 ↑5411.191 9,554.934 ↑9,555.559 ↑9,556.349
F outreach 191.95 ↑210.456 ↑196.6 862.191 ↑1,004.232 ↑892.11 1,581.842 ↑1,776.037 ↑1,679.423

M outreach 957.2 ↓937.418 ↓952.5 4,548.557 ↓4,404.53 ↓4,519.081 7,973.092 ↓7,779.522 ↓7,876.926

F % in outreach 0.167 ↑0.183 ↑0.171 0.15934 ↑0.18567 ↑0.165 0.16555 ↑0.186 ↑0.176

F seeds 165 185 170 784 930 815 1,490 1,690 1,590

p = 0.1 Agnostic seeding Parity seeding Diversity seeding Agnostic seeding Parity seeding Diversity seeding Agnostic seeding Parity seeding Diversity seeding

Total outreach 3,479.65 ↓3,460.37 ↑3,480.2 9,861 ↓9,847.4 ↑9,862.73 14,343.6 ↓14,337.63 ↑14,344.6
F outreach 612.72 ↑616.9 ↑616.5 1,710 ↑1,810.547 ↑1,745.3 2,498.87 ↑2,642.333 ↑2,534.3

M outreach 2866.93 ↓2843.47 ↓2863.7 8,151 ↓8,036.861 ↓8,117.43 11,844.725 ↓11,810.3 ↓11,695.3

F % in outreach 0.176 ↑0.178 ↑0.177 0.17341 ↑0.1838 ↑0.17695 0.174 ↑0.1843 ↑0.176672

F seeds 165 185 175 784 930 830 1,490 1,690 1,540

decrease in male outreach which is overcome in both heuristics by

the increase in female outreach, even if females are less than 20%

of the population and have lower degrees.

While the case of p = 0.01 can be viewed as an approximation

for our one-hop theoretical model (since when the conducting

probability is as low as 0.01, the two-hop influence is negligible),

as we increase the conducting probability, the one-hop model is no

longer an accurate approximation of our simulation.

Table 1 (bottom) illustrates the p = 0.1 case, showing a larger

outreach achieved by both strategic heuristics than for p = 0.01.

Indeed, even for 1, 000 seeds, diversity seeding is able to do better

than agnostic seeding. Furthermore, there is a smaller loss in the

male outreach that was evident for p = 0.01, due to more cross-

community interaction, since information is able to travel beyond

the seeds’ immediate neighbors. Although parity seeding achieves

a better female ratio in the outreach, diversity seeding gains a better

total outreach and a better outreach for males as well, needing far

fewer seeds to do so.

5 DIVERSITY SEEDS IN BROADER CONTEXT
While our previous results show a promising direction in choosing

seeds fairly without losing efficiency, we present a set of extensions

that generalize our claims, including the case of small seed set

budget and different centrality measures for seed selection.

Diversity on a small budget: influence problems may often be

limited to a small budget for seed set size—perhaps only a small

number of free products can be given by a company for promotion,

or a small number of vaccines are initially available to the general

population. In these cases, even if theory predicts that a sufficiently

large seed set can achieve both efficiency and fairness, what to do

when that seed set size is simply not available?

To answer this question, we extend our analysis to add parity

constraints at a new level: at the neighbors of the seed set. We

call this variant of ranking nodes neighbor seeding. A node’s po-

tential to influence is a function of its neighbors’ potential. Thus,

more balanced neighborhoods will prevent influence from being

restricted to one community and may yield wider diffusion. Here,

we leverage the intuition given by networks that exhibit homophily:

since nodes with the same label cluster together, influence will also

be contained within those clusters. While we may apply this rea-

soning for ensuring parity at every level of the network, it is not
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Figure 5: Outreach (a) and female ratio in outreach (b) for
the degree heuristics in DBLP, p = 0.01.

0 5 10 15 20 25 30
Seed Number

0

25

50

75

100

125

150

175

To
ta

l O
ut

re
ac

h

agnostic seeding
diversity seeding
neighbor seeding

(a)

0 5 10 15 20 25 30
Seed Number

0.17

0.18

0.19

0.20

0.21

0.22

Fe
m

al
e 

Ra
tio

 in
 T

ot
al

 O
ut

re
ac

h

(b)

Figure 6: Outreach (a) and female ratio in outreach (b) for
the degree discount heuristics in DBLP, p = 0.01.

computationally feasible to do so, and thus we compare results for

agnostic seeding, diversity seeding, and neighbor seeding.

Diversity for different heuristics: We apply these variants to de-

gree and other centrality heuristics, showing that the intuition

behind these results is not limited to degree centrality, but it gen-

eralizes to other statistical measures of centrality. We thus im-

plement the three seeding heuristics on the DBLP dataset, for a

budget of 30 seeds and p = 0.01 and p = 0.1, comparing their

performance in terms of outreach and fairness for different state-of-

the-art centrality-based algorithms: degree, degree discount [12],

greedy [22], distance centrality [44], and random. The random al-

gorithm, while extremely simplistic, provides a good benchmark

for the difference between being completely agnostic to labels and

position, and being strategic through our heuristics. We report the

results from averaging each cascade 1, 000 times.
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Table 2: Female and male outreach for agnostic seeding (AS), diversity seeding (DS), and neighbor seeding (NS) heuristics.

Degree Degree discount Greedy Distance centrality Random

p = 0.01 AS DS NS AS DS NS AS DS NS AS DS NS AS DS NS

F outreach 37.984 ↑38.174 ↑38.151 37.901 ↑38.484 ↑38.135 42.215 ↑42.793 ↑44.251 6.332 ↑8.528 ↑6.581 8.99 ↑18.646 ↑31.433
M outreach 145.746 ↓145.71 ↑145.786 145.728 ↓145.523 ↑145.901 179.093 ↑180.128 ↓178.67 34.594 ↓32.6 ↑35.217 36.988 ↓34.021 ↑122.246

p = 0.1 AS DS NS AS DS NS AS DS NS AS DS NS AS DS NS

F outreach 44.494 ↓44.481 ↑97.949 137.856 ↑155.69 ↑148.924 215.441 ↑216.641 ↓207.07 63.498 ↑64.967 ↑68.068 22.414 ↑31.503 ↑57.104
M outreach 170.542 ↓170.54 ↑497.613 694.161 ↑747.224 ↑735.246 997.377 ↑1001.032 ↑1006.079 404.006 ↓400.938 ↑417.748 103.767 ↓93.218 ↑229.248
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Figure 7: Outreach (a) and female ratio in outreach (b) for
the greedy heuristics in DBLP, p = 0.01.

0 5 10 15 20 25 30
Seed Number

0

5

10

15

20

25

30

35

40

To
ta

l O
ut

re
ac

h

agnostic seeding
diversity seeding
neighbor seeding

(a)

0 5 10 15 20 25 30
Seed Number

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

Fe
m

al
e 

Ra
tio

 in
 T

ot
al

 O
ut

re
ac

h

(b)

Figure 8: Outreach (a) and female ratio in outreach (b) for
the distance centrality heuristics in DBLP, p = 0.01.
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Figure 9: Outreach (a) and female ratio in outreach (b) for
the random heuristics in DBLP, p = 0.01.

In almost all cases, neighbor seeding achieves a better ratio of

women in the outreach than diversity seeding (Figures 5–9 (b)), in

some cases considerably surpassing agnostic seeding (Figures 5, 7, 8).

The exception occurs for the random algorithm (Figure 9 (a)), for

which diversity seeding obtains a better parity ratio in for females

in the outreach than neighbor seeding, both of the them surpassing

agnostic seeding. However, neighbor seeding is able to obtain a

much better influence spread (Figure 9 (b)).

Moreover, neighbor seeding achieves a similar outreach, with

a marginal increase, for the other heuristics as well (Figures 5–9

(a)), showing that an increase in outreach diversity does not have

to come at a cost of efficiency. Although the outreach increase is

again marginal, investigating the male and female outreach gains

(or losses) shows the intricacy of our result: as more females are

added to the seed set, more are gained in the outreach as well, at a

male loss (Table 2 top). What is again impressive is to notice that

the female gain in outreach is able to compensate for the male loss,

given the large ratio difference between males and females in the

network. We obtain similar results for p = 0.1, for which we omit

the equivalent plots due to space considerations.

Pareto efficiency: Finally, while diversity seeding may reduce

the male outreach in some cases, especially for small p (Table 2

top), we notice that neighbor seeding increases both the female

and male outreach, suggesting that the agnostic heuristic is not

actually Pareto-efficient for larger values of p (Table 2 bottom). This

exceeds the expectations that female gain in outreach comes at a

male loss that theory suggests and may be intuitively explained as

larger p implies a more than one-hop influence, leading to a better

cross-community communication and showing that information

diffusion can be done in a win-win equitable way.

6 CONCLUSION
In this paper, we have unraveled the subtle dynamics of network

structure in influence maximization, showing that including sensi-

tive features in the input of most natural seed selection algorithms

substantially improves diversity but also often leaves efficiency

untouched or even provides a small gain. Through a detailed theo-

retical analysis of biased networks, we show that when the seed

set size is sufficiently large, promoting better parity in the seed

selection process leads to better parity in the outreach as well since

seed set diversity taps into inactivated communities that are hard

to reach only from central nodes. On the other hand, when the seed

set is too small, fairness comes at a small cost of efficiency. However,

as we show again on real-world data, alternative algorithms can

extend the benefits of diversity.

Beyond these immediate results, our paper opens future research

avenues to analyze more complex algorithms and diffusion pro-

cesses. Antithetical factors, such as fairness and efficiency, make

this a particularly worthwhile area in designing corrections that

make the algorithmic output more balanced and justified.
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