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ABSTRACT
Algorithms for social influence maximization have been extensively

studied for the purpose of strategically choosing an initial set of

individuals in a social network from which information gets prop-

agated. With many applications in advertisement, news spread,

vaccination, and online trend-setting, this problem is a central one

in understanding how information flows in a network of individu-

als. As human networks may encode historical biases, algorithms

performing on themmight capture and reproduce such biases when

automating outcomes.

In this work, we study the social influence maximization problem

for the purpose of designing fair algorithms for diffusion, aiming to

understand the effect of communities in the creation of disparate im-

pact among network participants based on demographic attributes

(gender, race etc). We propose a set of definitions and models for

assessing the fairness-utility tradeoff in designing algorithms that

maximize influence through a mathematical model of diffusion and

an empirical analysis of a collected dataset from Instagram. Our

work shows that being feature-aware can lead to more diverse out-

comes in outreach and seed selection, as well as better efficiency,

than being feature-blind.

CCS CONCEPTS
• Theory of computation → Network flows; • General and
reference → Empirical studies.
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1 INTRODUCTION
Social influence maximization has been a widely studied problem

in online networks, having impactful applications in advertisement

campaigns, viral online content, news propagation, disease spread,

and many others. In spreading an idea, product, or technology

through a social network, the network structure plays a crucial

role in the efficient propagation of such a process: who has the
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information and who they are connected to determines who that

information reaches. Thus, the status of being ’early-adopter’, who

either adopts the desired product out of their own will or receives

it for free, is a privileged position for their social status and their

direct impact in the diffusion process. The early-adopters promote

the content to their friends, who in turn may or may not adopt it

and continue the process, resulting in a cascade.

In maximizing the outreach, choosing the early-adopters strate-

gically is crucial. Many algorithms have been proposed in finding

an optimal set, from a greedy choice to leveraging the network

structure through degree or distance centrality. In theory, such

algorithms are blind to demographics, as they typically assess the

chance for a given individual to be an early-adopter solely based

on their position in a network. In practice, however, properties of

social networks also encode historical biases and gender artifacts

that algorithms can reinforce.

In this paper, we aim to understand the mechanisms behind in-

formation diffusion in social networks and to design algorithms

that maximize social influence in a fair way. Fairness in machine

learning and in graph algorithms is becoming an increasingly pop-

ular field in the computer science, sociology, policy, and law, as

recent work shows the effect of automated algorithms in mirroring

or amplifying bias in human datasets. This is an even more urgent

problem in the case of relational data, where connections between

individuals may be used as proxies for location, income, social sta-

tus, and can thus be used by algorithms to exacerbate inequality

between different demographic groups.

To our knowledge, however, fairness in social influence maxi-

mization has yet to be defined, nevertheless solved. Thus, we begin

by analyzing the state-of-the-art algorithms for information dif-

fusion and the underlying graph models, following by adapting

various fairness definitions used in classification settings. We per-

form an empirical analysis using a collected dataset from Instagram,

analyzing the effect of different seeding heuristics on the commu-

nity structure. Furthermore, we develop a mathematical model to

formally compare strategic and non-strategic seeding and quantify

their effect on disparate outcome among different populations of

a network, using as a diffusion process the independent cascade

model. We conclude by formulating a way of tackling fairness in

the social influence maximization problem, arguing that a strategic

heuristic that is feature-aware can be fairer and more efficient.

2 RELATEDWORK
Previous literature tackles this problem as an optimization problem

by finding a submodular function that models the reach and opti-

mizing it to find the best seed set. The pioneering work of social

influence algorithms by [11, 12] in 2003 kicked off by proving that

submodular optimization extends to a large collection of social influ-

ence processes. Amongst other more robust heuristics and efficient

implementations [6], more recent papers extended such methods to
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Figure 1: Complementary cumulative distribution function
of the degrees in the Instagram graph, plotted for the males
(blue) and the females (red).

deal with uncertain networks through online adaptive queries [18],

and recently established the importance of exploiting community

structure to best direct influence [4]. In this paper, we focus on the

algorithmic aspect of the problem, analyzing current algorithms

for maximizing influence and their implications on social bias.

A recent line of work focuses on fairness in algorithmic design

for human data, with a large focus on classification tasks. From the

classic example of predictive policing algorithms that reproduce

bias in the data [1, 5, 22], the field of fairness in machine learn-

ing developed several ways of measuring and defining fairness,
from defining statistical constraints on the output based on the

particularities of the input data [8, 14], to pre-processing biased

data [9, 10, 23], and to identifying the causal relationships between

features in the data that lead to bias [13, 16]. Measurement tech-

niques have also been developed in order to understand bias in

massive data [21].

Amongst these efforts, two schools of thought emerge, one that

argues for a feature-blind strategy in order to not reinforce biases

from input data, and one that argues for a feature-aware strategy

that mitigates bias after learning it from data. While both have

applications in different contexts, an argument that [7] makes is

that feature-blindness might lead to amplifying bias through con-

founding factors. In our work, we explore these two views and

show indeed that a feature-blind strategy for social influence may

cause unfair outcomes. In order to understand the effect of strategy

in seed selection, we ask the question: what does it mean to be fair

in information diffusion?

As mentioned in the introduction, we are interested in the effect

that social influence maximization has on the different communities

present in the network. As such, we may define the following:

(1) Fairness for early-adopters: Given a network with communi-

tiesC1,C2, · · ·Ck , a social influence maximization algorithm

is fair in choosing a seed set S if the proportion of all com-

munities in the seed set is equal,

E|{u ∈ S |u ∈ Ci }|

|Ci |
=
E|{u ∈ S |u ∈ Cj }|

|Cj |
. (1)

(2) Fairness in outreach: Given a network with communities

C1,C2, · · ·Ck , a social influence maximization algorithm is

fair in the outreach it achieves if the cascade reaches all

communities in a calibrated way,

E( |{u adopted |u ∈ Ci }|)

|Ci |
=
E( |{u adopted |u ∈ Cj }|)

|Cj |
∀i, j . (2)

This notion can ensure that the product or the information

being spread reaches the population in a calibrated manner,

reaching the same percentage of each community. This is

particularly important in news spread, where manipulat-

ing distribution of news can lead to misinformation and to

amplifying an echo chamber effect, and maybe even more

compelling for public health concerns..

Both definitions are in essence a form of calibration or statis-

tical parity (as defined in [14]), and we argue that both are nec-

essary: while the outreach definition ensures that the product or

idea reaches all communities equally, early-adopters have a special

role in the diffusion process. Having early access to products may

establish their role as influencers in the network and allowing them

to acquire social capital and trust, as well as to leverage that idea

or product for financial gain. A classic example is being an early

adopter in Bitcoin, where any user who had access to early mining

had the chance of exponentially increasing their profits even when

individual mining stopped being profitable. Similarly, influencers

on Instagram get paid by companies to promote products. Due to

the popularity of the users, the product is more likely to be seen or

adopted, and thus being an early-adopter has its perks.

3 EMPIRICAL ANALYSIS
We performed experiments on a collected dataset from Instagram,

consisting of public profiles, photos, usernames, likes and comments

received on photos, and so on. As Instagram is one of the main hubs

for advertisement purposes, with users continuously promoting

paid content through the photos or descriptions they are posting,

this network provides a comprehensive view of how information

diffusion occurs.

3.1 Data Collection
In collecting the data, we used the Instagram API to crawl public

profiles, starting from the founder of Instagram, Kevin Systrom.

For each such public photo, we recorded the author, the number of

likes and comments, and who liked and commented on the item.

In total, we collected 115, 796, 284 photos over multiple months

of 2014 and 2015, which amounted to 539, 023 different users for

whom we could infer gender from their names, as described below.

While the data might not encompass the full diversity of Instagram

users, it is sufficient to obtain statistically significant results most

of the time.

Gender inference. We inferred the gender of the users from their

first name, adapting the method from [17] that leverages first names

and social security data. Filtering for names with less than 50 oc-

currences for either gender, we obtained a set of 32, 676 unique first
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(a) Greedy (b) Degree (c) Greedy (d) Degree

Figure 2: Percentage of females among chosen seeds for the greedy algorithm (a) and the degree algorithm (b), and among the
outreach for the greedy algorithm (c) and the degree algorithm (d) for different values of p .

names that we used to label about half a million users. The gender

proportions are 45.57% males and 54.43% females.

The graph of likes and comments. In creating a network structure

out of these aggregated users and their information, we used the

likes and comments they left on eachother’s posts as interactions.

Whenever someone gave a like or comment on a photo, we created

an edge from the originator to the recipient, ending upwith 640,211
edges between 539,023 nodes.

We will be using this graph for the purpose of our analysis. The

dataset consists of many more users and interactions for which we

could not determine gender.

A first analysis reveals a disparity in the degree distribution for

the two genders. As Figure 1 shows, although males are in minority,

they have higher degrees (number of interactions) than females,

gap that increases for highly connected nodes.

3.2 Influence maximization algorithms
In studying strategic choices of seeds versus label-blind choices, we

focus on two main algorithms, the greedy algorithm as a strategic

one and the high-degree algorithm as one that ignores the labels of

the nodes, and their effect on a bipopulated network represented

by the Instagram dataset.

Greedy algorithm. The greedy algorithm is defined as choosing

the seeds sequentially, each time choosing the node that gives the

best marginal increase in the resulting cascade (outreach), until we

reach a seed set of a predefined size. [11] shows that this provides

a 1 − 1/e-approximation to the best choice of seeds overall. In our

implementation, we choose the seedset size to be equal to k = 30

nodes, and assume the independent cascade model for information

diffusion. Since thismodel is probabilistic, at each step of the process

we choose the node that gives the best marginal outreach averaged

over 1000 realizations, choosing conducting edges pseudo-randomly

while varying conducting probability p. This algorithm is strategic

since the marginal contribution of a node might be dependent on

the history of chosen seeds and their labels.

Degree algorithm.Widely used in sociology literature [20], this

heuristic chooses nodes as seeds in decreasing order of their degree

in the graph and is commonly known as a degree-centrality heuris-

tic. The node selection is done independently of the labels and of

the conducting probability p, yet measuring outreach is not and

requires again an approximation technique due to the intractability

of the problem. We again average over 1000 realizations just as

above.

Fairness in seed selection. Figure 2 (a-b) shows the percentage of
females in the choice of seed sets for each of the above algorithms.

For the greedy algorithm, we notice that for p = 0.01 the fraction of

females is lower than their fraction in the network, 54%, for small

seedset sizes, and it slowly converges towards their true fraction

as the seedset increases. However, for p = 0.1, 0.2, 0.3, the seedset

starts by being exclusively female and slowly converges towards a

more equilibrated gender ratio as more seeds are added.

For the degree algorithm, men are at the top with higher de-

grees than women, so the seed selection captures this in Figure 2

(b). We observe that even after choosing k = 30 seeds, women are

under-represented, given their true fraction of 54%. Our results are

consistent with varying the seedset size. Given that the degrees

of women are not only lower at the very top but in general (Fig-

ure 1), this disparity will continue as the number of seeds increasing,

deeming the degree algorithm generally unfair in representing one

of the populations. It is generally difficult to assess whether this

algorithm reinforces or simply perpetuates a present inequality,

yet it raises the question of whether and how can we leverage the

degree information in a way that is both fair and efficient.

Fairness in outreach. Figure 2 (c-d) shows the percentage of fe-
males in outreach as the seedset size increases up to k = 30, for the

greedy and degree algorithms. Consistent with the measurements

for seedset composition, the percentage of females in outreach con-

verges to their true fraction of 54% as p increases from 0.1 to 0.3.

For p = 0.01, however, both algorithms fail to reach a proportionate

number of women in the network, the degree algorithm performing

slightly worse than the greedy one.

Such results give a sense of the trade-off between fairness as

diversity and efficiency. Figure 3 shows that the greedy algo-

rithm achieves far better outreach than the degree heuristic for

p = 0.1, 0.2, 0.3, and more or less the same for p = 0.01. Coinci-

dentally, for p = 0.01, both algorithms prefer male over female

although the male community is in minority. This is even the more

meaningful as the first seed generally carries most of the marginal

gain for influence for p = 0.1, 0.2, 0.3 (see Figure 3 (b-d)), and so
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(a) (b) (c) (d)

Figure 3: Performance in terms of average outreach for the greedy algorithm (green) and the degree algorithm (orange) for
p = 0.01 (a), p = 0.1 (b), p = 0.2 (c), p = 0.3 (d).

p = 0.01 represents a case where the influence of each subsequent

seed really affects the outcome.

Thus, for such a case being strategic can also mean being more

fair. As [4] argues in a similar fashion, in the case of an independent

cascade, diversifying between communities gives a better outreach

to nodes that otherwise would not be reached.

While the choice of the conducting probability p may differ

in different scenarios and should be measured when such data is

available, clearly the case in between p = 0.01 and p = 0.1 is

the most notable one, since beyond that the first seed carries a

disproportionate amount of the weight.

However, even in such cases being strategic doesn’t necessarily

mean implementing a greedy heuristic. Due to the computational

difficulty of the greedy algorithm and the potential availability of

other metrics in the data (such as degree, for example), it is im-

portant to understand the implications of such metrics. While an

available metric might lead to a label-blind heuristic, that might

also lead to disparate outcomes. As we have seen, a degree heuristic

will always be unfair in the seed selection in a network whose popu-

lations follow different degree distributions (in this case, a majority

population gets under-represented because of lower degrees).

In exploring this avenue of strategic seeding in a fair manner

we turn to a theoretical model for understanding the cascading

process.

4 THE LIMITATIONS OF LABEL-BLIND
SEEDING

An established model of network growth that encapsulates cluster-

ing dynamics and a power-law degree distribution is the preferential

attachment model. Prior work [2, 3, 15, 19] stresses the applicabil-

ity of such a model into describing real-world network formation,

having the caveat of a theoretical understanding of its dynamics.

For the purpose of this study, we use the preferential attachment

model with two communities and homophily, as defined below.

Preferential attachment model with homophily:

• Minority-majority partition: every timestep a new node ap-

pears and chooses a label, red (R) w.p. r and blue (B) w.p.

1 − r , where 0 < r < 1.

• Every timestep the new node connects to some other node

according to preferential attachment, meaning that it choses

a node in the network with probability proportional to that

node’s degree. In our model each new node forms d > 1

connections.

• Homophily: if the two nodes have the same label, connect,

otherwise accept the connection w.p. ρ, where 0 < ρ < 1.

This model results in a community structure (nodes of each label

are homophilic), and when the two communities differ in sizes,

so do their degree distributions. Indeed, [3] show that the degree

distribution of this network follows power law for the R and B

nodes with coefficients

β (B) = 1 +
1

r ρ
2α+2(1−α )ρ +

1−r
2αρ+2(1−α )

, (3)

β (R) = 1 +
1

(1−r )ρ
2αρ+2(1−α ) +

r
2α+2(1−α )ρ

, (4)

where α denotes the fraction of edges that emerge from red nodes

and the total number of edges.

When the proportions of R and B nodes are different (r < 1/2),

we know that β (R) > 3 > β (B) > 2 and that a so-called glass ceiling

effect is present (the difference in degrees for the two communities

increases for more well-connected nodes). Our Instagram dataset

follows a two-community structure as well (men and women), and

while men are in minority, they have higher degrees than women,

with a degree distribution resembling a power-law with different

coefficients (Figure 1).

Independent cascade: On top of this model we simulate the

independent cascade mechanism, where each node that receives

the information/product/etc will adopt and promote to his friends

with probability p, for 0 < p < 1, in order to achieve an optimal

seedset of size k (n), a function that depends on the network size n.

Strategic seeding: In the social influencemaximization problem

the task is to find a set of "seeds" in the network starting fromwhich

information diffusion has maximal outreach. In the independent

cascade model, the greedy algorithm is shown to approximate the

optimal choice of sees [11], yet it is NP-complete and thus very

hard to analyze. However, in many cases, choosing the nodes of

top degree achieves a similar effect as the greedy algorithm. For

the purpose of this study we assume that baseline strategic seeding
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Figure 4: Model of choosing seed nodes based on the degree hierarchy, in a label-blind manner (a) and in a differentiated way
based on label (b).

chooses nodes from the degree ranking tomaximize social influence,

setting a threshold k (n) above which all nodes of higher degree are

chosen as seeds (Figure 4 (a)).

Hypothesis: Our claim is that color-blind seeding is not neces-

sarily as efficient as color-aware seeding, meaning that choosing

only from the highest degree nodes is equivalent to choosing only

from the B community in a glass ceiling context, effectively ignor-

ing a whole community, the R nodes. We aim to show that in some

conditions choosing differentiated thresholds for the top degree

nodes in each community is a better strategy that achieves higher

outreach and more diversity simultaneously (Figure 4 (b)). The

intuition behind is that at some point there will be more uncon-

verted/uninfluenced nodes in the minority community.

Definition 4.1. The baseline blind strategy defines the seedset as

Sk (n) = {v ∈ V |deд(v ) ≥ k (n)}.

Definition 4.2. The influence of a set S over another set T is

defined as the expected number of edges with one end point in S
and one in T :

ϕS (T ) = |{(u,v ) ∈ E |u ∈ S,v ∈ T }|. (5)

Given this influence, we know that each edge conducts with

probability p, so the number of conducting edges within each com-

munity is p · ϕSk (n ) (B/R).

Goal: Our goal is to find two thresholds kR (n) and kB (n) that
give in expectation the same amount of seeds as a general ("blind")

threshold k (n) but better influence (Figure 4 (b)):

Theorem 4.3. For the independent cascade model in a network
that follows the preferential attachment model with homophily of two
communities of red (R) and blue (B) nodes, and a general threshold
k (n) for choosing seeds according to their degree, there exists kR (n)
and kB (n) with kR (n) < kB (n), for choosing seeds according to these
respective degree thresholds for which

E(ϕ (Sk (n) )) < E(ϕ (SkR (n) ∪ SkB (n) )), under the constraint

E( |Sk (n) |) = E( |SkR (n) ∪ SkB (n) |).
(6)

We only give a proof sketch of the above result due to space con-

siderations. Assume that at each timestep t , a new node comes into

the network and forms exactly d edges according to the preferential

model with homophily, for d ≥ 1. Then we can write the expected

influence a seed set Sk (n) has on the network as

E(ϕ (Sk (n) )) =

n · P(v ∈ B) · P(v influenced by one of its d edges|v ∈ B)+

n · P(v ∈ R) · P(v influenced by one of its d edges|v ∈ R).

(7)

Computing these probabilities for the preferential attachment

model (omitted here due to space constraints), we get that

E(ϕ (Sk (n ) )) = n · (1 − r ) · *
,
1 − *

,
1 − 2 *

,

1−r
α ρ+1−α

r ρ
α+ρ (1−α ) +

1−r
α ρ+1−α

· (1 − α )

·k (n)2−β (B ) +

ρ (1−r )
α ρ+1−α

r
α+ρ (1−α ) +

ρ (1−r )
α ρ+1−α

· α · k (n)2−β (R )+/
-

+/
-

d
+//
-
+

n · r · *
,
1 − *

,
1 − 2 *

,

r
α+ρ (1−α )

r ρ
α+ρ (1−α ) +

1−r
α ρ+1−α

· (1 − α ) · k (n)2−β (B )+

r
α+ρ (1−α )

r
α+ρ (1−α ) +

ρ (1−r )
α ρ+1−α

· α · k (n)2−β (R )+/
-

+/
-

d
+//
-

(8)

We note that in computing these probabilities in closed form we

are limited by the un-constrained nature of the cascading process.

For the purpose of this study we make the assumption that the

process of diffusion expands to two steps, friends of friends, with

the hope of generalizing this work in the future. Since we want to

find kR (n,x ) and kB (n,x ) that satisfy our goal in equation 6, we
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set kB (n,x ) = k (n) ·x , for a variable x , and find that solving for the
constraint,

kR (n,x ) =

(
1 − α

α
·
β (B) − 2

β (B) − 1
·
β (R) − 1

β (R) − 2
· k (n)1−β (B )

·(1 − x1−β (B ) ) + k (n)1−β (R )
) 1

1−β (R ) .

(9)

Then, we can write

F (x ) = E(ϕ (SkB (n,x ) ∪ SkR (n,x ) )) − E(ϕ (Sk (n) )), (10)

with the goal of finding x such that F (x ) > 0. For such an x , it would
mean that a more diverse choice of seeds can actually achieve a

better outreach, compensating for the intrinsic bias of a network.

We observe that F (1) = 0, and if x < 1, we are essentially

lowering the threshold for the B nodes to make it to the seed set.

Since the seed set is already consisting of mostly B nodes, we would

like to do the reverse in order to increase diversity, namely to choose

x > 1 for which F (x ) > 0. Empirical simulations of this functions

show that there are ranges of parameters for which F (x ) > 0 for

x ∈ [1, 1 +m] for somem ∈ R∗+. Thus, it is sufficient to show find

the ranges of parameters for which
∂F
∂x (1) > 0, which would mean

that the function F is increasing around x = 1, so it will be positive

for a range of x > 1 (note: F is continuous in x). The fact that

kR (n) < kB (n) shows that there is a less stringent threshold for the
red nodes, so they will get better represented in the seed selection

given their deficiency in the degree distribution.

5 DISCUSSION
These results show the interplay between being fair and strategic:

starting with the most basic heuristic, such as the greedy algorithm,

being strategic also leads to being fairer. However, large real-world

datasets may not always offer the possibility (computationally or

feature-wise) to achieve this, and often times we must make use

of available metrics, such as degree, distance centrality, and so on,

that may be blind to sensitive features. In networks where there

exists inequality based on sensitive features, we must ensure that

it does not get propagated through our algorithmic design. Our

work shows a first step in mitigating the bias that a feature-blind

algorithm perpetuates, showing how strategic choices can achieve

both diversity in information diffusion and better efficiency. We are

able to design such strategic choices with a mathematical guarantee

of optimality and fairness.

Future work should analyze the parameter conditions for which

strategic seeding as defined above achieves better outreach and

diversity in different networks and assess its quantitative benefit.

Ourmethod opens up a set of questions regarding the general nature

of such trade-offs between fairness and efficiency. While the nature

of the independent cascade model favors diversity in maximizing

outreach, other models may do the opposite. Indeed, an interesting

corollary would be to study critical mass models, such as the linear

threshold model. In such cases, a strategic algorithmwould focus on

achieving that critical mass for information diffusion locally, which

may constrain information within one community and prevent it

from being equally distributed across the network.
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