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ABSTRACT
How much does the quality of the clustering — typically measured

by the conductance, or by the number of edges cut, or the average

distance to the centers — deteriorate if the nodes are strategic and

can change clusters? And among reasonable utilities for the nodes,

which one hurts quality the least? We investigate these questions

both theoretically, by studying the equilibria of hedonic games (sim-

plified clustering games with unconstrained number of clusters),

and experimentally, by measuring the quality of pure Nash equilib-

ria of more realistic clustering games. We introduce a new utility

function for the nodes which we call closeness, and which we be-

lieve is an attractive alternative to previously studied node utilities.

We study the properties of the closeness utility theoretically and

demonstrate experimentally its advantages over other established

utilities such as the modified fractional utility. Finally, we present a

polynomial-time algorithm which, given a clustering with optimal

quality, finds another clustering with better average utility, and in

fact the one that maximizes the ratio of the gain in average utility

over the loss in quality.
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1 INTRODUCTION
Clustering is an important paradigm of unsupervised learning,

in which partitions of interest are discovered for a given metric

on points; it has many applications in image segmentation, docu-

ment classification, genetic classification, marketing and advertis-

ing (when a population of consumers is segmented for targeting

(see e.g. Kleinberg et al. [28], Kuo et al. [33]), community detection,

subdivision of participants into areas of interest, or of workers into

teams or floors, etc. When the clustered points are people, as in the

last few examples, socioeconomic considerations enter the picture,

in addition to the usual attention to the quality of the clustering
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(large conductance, small number of cut edges, etc.), one has to con-

sider how good a cluster is for its nodes — that is to say, incentives

and utilities. This is the subject of this paper. Another important

consideration is, how fair is the clustering to minority groups? Even

though here we focus on utilities, we shall see that dealing with

fairness requires some of the same ideas.

Among all possible types of input data for clustering problems,

here we focus on unweighted undirected graphs whose nodes are

people, or agents, and among clustering methodologies we focus

on spectral clustering (see Von Luxburg [42] and the related work

subsection), where the agents are represented as points in truncated

spectral space and then grouped by an algorithm applied on the

spectral projections of the nodes (e.g. k-means [25]); however, our

methodology can be applied to any clustering algorithm. There are

known objective quality measures for evaluating any clustering

— that is, any subdivision of the nodes of the graph into clusters

— such as conductance, average distance from the k-means centers,
number of cut edges, etc. (see e.g. Almeida et al. [3], Emmons et al.

[15]); here we will use mostly conductance.

When the nodes are agents and have a utility, besides the quality

of the clustering we are interested in the average welfare: How
are agents as a whole faring in the clustering in terms of their

utility? Furthermore, attention must be paid to stability, that is,
the clustering should be at least a Nash equilibrium — or even

better, a Pareto optimum. Finally, we want to know to what extend

these considerations result in the deterioration of the quality of the

clustering.

Utilities in clustering have been studied in the past in the context

of a variant called hedonic games [12]: clustering gameswith utilities

and no restriction on the number of clusters. One particular utility,

which has been studied extensively in the recent past, is themodified
fractional utility [14], asserting that each node in a coalition has a

payoff equal to the fraction of the other nodes in the coalition that

are neighbors in the original graph. In other words, the utility of a

node 𝑖 is the number of the nodes in the cluster that are 𝑖’s neighbors

in the graph, divided by 𝑛 − 1, the number of other nodes in the

cluster. Importantly, we define a new family of utilities generalizing
the modified fractional one, of which the simplest is the closeness
utility: the ratio of the degree of the node in the cluster by the sum

of distances from the other agents in the cluster, where distances

are measured in the original graph.

1.1 Our contributions:
Overarching themes. This paper is a theoretical and experimental

investigation of the interplay and trade-offs between the main

objectives in network clustering: quality and welfare. We believe

that this is the first work in which these important objectives of
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clustering are considered together and contrasted with one another.

Fairness is another important objective, which, as we shall see in

passing, can be treated in similar ways.

The closeness utility. We introduce the closeness utility of a node 𝑖 ,

relative to a cluster𝐶 towhich it belongs: cls(𝑖,𝐶) = deg
𝐶
(𝑖)∑

𝑗∈𝐶 dist𝐺 (𝑖, 𝑗)
:

the ratio of the number of nodes in 𝐶 who are adjacent to 𝑖 in 𝐺

by the sum of all distances from 𝑖 , in 𝐺 , of the other nodes in 𝐶 .

Compared with [14]’s recently defined modified fractional utility

mfu(𝑖,𝐶) = deg
𝐶
(𝑖)

|𝐶 |−1
, our utilitymodifies the denominator byweigh-

ing each node in the cluster by its distance from 𝑖 — intuitively

incentivizing more compact clusters. Another way to see the close-

ness utility, is as mfu(𝑖,𝐶) divided by the average distance to the

other nodes of the cluster — an important measure of communi-

cation efficiency in a group of people, who want to communicate

information to their neighbors.

Hedonic games. are a mathematical abstraction of clustering with

a utility function. Importantly, they lack the constraint that the num-

ber of clusters be a small integer 𝑘 , and as a result their clusters tend

to be tiny (of size 1–3 in many cases) or huge (the whole graph). But

what the hedonic games lack in realism viz. clustering, they make

up in analytical tractability. In Section 3 we theoretically extend

to the new utility the important results of the recent papers [14]

and [8]: The closeness utility has small price of Pareto optimality

(see Section 3 for the definitions), has simple coalition structure

of Pareto optimal solutions, and its welfare maximization problem

can be solved in polynomial time.

In fact, our proofs of these results parallel, and further illustrate

the power of, the sophisticated mathematical techniques in the two

papers mentioned above. The results hold for a much richer class

of utilities generalizing the mfu utility. The closeness utility can

be seen as a variant of the mfu utility, in which the 𝑛 − 1 nodes

other than 𝑖 in the denominator are weighted each by its distance

from 𝑖 (in mfu, all weights are one). Consider now any weighting

scheme in which nodes adjacent to 𝑖 have weight one, and all other

nodes have weight at least two. It turns out that the main results on
the structure, price, and complexity of Pareto optimality hold for any
such weighting scheme.

Comparing utilities in clustering. We propose in Section 4 a frame-

work for comparing utilities in the context of clustering by eval-

uating the quality of the clustering resulting from the behaviors

induced by each utility — in this case, the conductance of the clus-

terings emerging as Nash equilibria. In other words, we postulate

that one measure of goodness of a utility is the degree to which it

encourages, and thus aligns better with, clustering quality. We then

use this framework to establish experimentally the superiority, in

this sense, of the new utility over other utilities in the literature.

The welfare-quality trade-off. Finally, no matter what definition

of utility one adopts, it is very likely to be at loggerheads with

quality. We believe this is an important trade-off, and in Section 5

we offer a useful algorithmic tool for exploring it: Given a point in

the trade-off — in particular, the clustering that optimizes quality

with no attention to utility — we show how to construct in poly-

nomial time the next point in the trade-off. That is, to discover the

perturbation of the clustering which is the most efficient, in that

it maximizes the ratio of improvement in utility over decrease in

quality. Our method employs an ancient algorithm (see [26, 34],

and [20]) for finding in a doubly-weighted graph the cycle with

smallest ratio of weights.

2 RELATEDWORK
Our work aims to bridge theoretical foundations of strategic con-

siderations in clustering, as studied through the idealized hedonic

games, with the practical realities of algorithms such as Spectral

Clustering, where one has to worry about stability (is the cluster a

Nash equilibrium?) and quality (howmuch does the Nash constraint

result in deterioration of the quality?).

A related theoretical line of work is that of hedonic games, as

described in the introduction. First introduced by [12], hedonic

coalitions have been studied as an organic mechanism for group

formation based on individual preferences over people in the same

group (e.g. [6, 7]). Recent works have studied utility functions based

on the cost of clustering for algorithms like k-means and correlation

clustering (e.g. [16, 17]), while [14] and [8] study Pareto optimality

for utility functions based on individual preference and cluster size.

Our work adds to this literature by theoretically proving a small

price of Pareto optimality for the closeness utility as well as pro-

viding a polynomial time algorithm for finding optimal coalitions.

Similarly, [40] study stability conditions for the modified fractional

hedonic games. Our experimental work differs in two ways: (1) the

number of clusters is fixed (as opposed to variable in the hedonic

games setting), which opens an avenue for studying the utility of

clustering algorithms on networks; and (2) our proposed utility

function (closeness utility) takes into account the local neighbor-

hood of an individual in a network, which leads to creating clusters

with better conductance than other utility functions.

A large body of literature considers the issue of fairness in Ma-

chine Learning problems (e.g. [13, 21, 29]), while recent literature

brings into question the problem of utility in applications where

people are strategic, [36] showing the long-term effects of machine

learning, and [23, 24, 39], and [27] analyzing social welfare in

the context of classification. While [1] and [19] analyze clustering

through the lens of k-means cost, and [4] through the ability to

access information, the question of utility with respect to clustering

algorithms remains an open one. Since clustering often results in

the minimization of the number of connections between clusters

(e.g. [41, 42]), the closeness utility is particularly useful in applica-

tions like facility location, market segmentation, or online grouping,

which imply that connectionswithin clusters are heavily used, while
connections occurring between members of different clusters carry
an extra cost. A related line of work defines the problem of fairness

in the context clustering, with the works of Chierichetti et al. [10]

defining fairness as balanced clusters in terms of demographics

(clusters in which each demographic is proportionally represented),

followed by contributions for various algorithms [2, 9], including

for Spectral Clustering [11, 31].

3 HEDONIC GAMES AND THE CLOSENESS
UTILITY

A hedonic game has 𝑛 players who are nodes of a connected graph
𝐺 = (𝑁, 𝐸). All players have the same set 𝑆 of strategies over 𝑁 .
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Once each player 𝑖 has chosen a strategy 𝑠𝑖 ∈ 𝑆 , we let 𝐶 (𝑖) be the
set of all players who chose the same strategy as 𝑖; we call this set

the coalition of player 𝑖 . Thus the choices of all players result in

a partition of 𝑁 into nonempty subsets called coalitions. Payoffs

in hedonic games are calculated in a particular way, which makes

them good models of clustering: After all players have chosen a

strategy, and a partition Π = {𝐶1, . . . ,𝐶𝑚} has resulted, the payoff
of each player 𝑖 depends only on 𝑖 and the coalition 𝐶 (𝑖) of Π to

which 𝑖 belongs. Naturally, this utility function 𝑢 (𝑖,𝐶 (𝑖)), mapping

a node and a set to a real, will implicitly depend on 𝐺 , and on 𝑖’s

position in it. For example, one perfectly reasonable utility is the

function 𝐷 (𝑖,𝐶) = deg𝐶 (𝑖), the number of nodes in 𝐶 (𝑖) − {𝑖} that
are adjacent to 𝑖 in𝐺 . Given such a partition Π = {𝐶1, . . . ,𝐶𝑚}, the
social welfare of Π, 𝑆𝑊 (Π), is the sum over ß ∈ 𝑁 of the utility of 𝑖

in Π, that is, 𝑢 (𝑖,𝐶 (𝑖)).
In analyzing these games, it is a good idea to adopt a notion of

stability that is stronger than the Nash equilibrium, as proposed in

[14]. A partition is welfare optimum if there is no other partition

with larger welfare. We say that a partition Π Pareto dominates
partition Π′ if no player has smaller utility in Π than it has in

Π′, and at least one player has larger. We call a partition Pareto
optimum if it is not Pareto dominated by another partition. Pareto

optimum partitions always exist, as the welfare optimum partition

is obviously one. The price of Pareto optimality (PPO) of a game —

proposed in [14] as a more robust analog of the price of anarchy,

defined in [32] — is the largest ratio of the optimum welfare by

that of a Pareto optimum partition. In the example utility 𝐷 defined

above, it is not hard to see that the only Pareto optimum partition is

the one that has only one coalition, 𝑁 (recall that 𝐺 is connected).

One important utility introduced and studied in the pioneering

paper [14] is themodified fractional utility defined asmfu(𝑖,𝐶) = deg
𝐶
(𝑖)

|𝐶 |−1
.

That is, the degree of 𝑖 in 𝐶 is divided by the number of the other

nodes in 𝐶 . It turns out that this simple definition gives rise to a

surprisingly rich theory. The following fundamental, and mathe-

matically difficult, results were shown in [14] and subsequently

in [8]. (By “clique” below we mean a completely connected graph

with two or more nodes.)

Theorem 3.1. For any graph 𝐺 and for the modified fractional
utility:
(a) Each coalition in a Pareto optimum partition is either an isolated
node, or a star, or a clique.
(b) A welfare optimum partition can be found in polynomial time,
and there is a welfare optimum partition that has no stars.
(c) The PPO is one (that is, all Pareto optimal partitions are welfare
optimal).

Our main contribution in this section is the introduction and

analysis of a new utility, which we feel has a role to play in the study

of clustering and hedonic games: The closeness utility is defined as

cls(𝑖,𝐶) = deg
𝐶
(𝑖)∑

𝑗∈𝐶 dist𝐺 (𝑖, 𝑗)
, weighing each node in the denominator

by its distance, in 𝐺 , from 𝑖 . We can prove these properties of the

closeness utility:
1

1
In fact, it is not hard to check that our proof establishes that these results hold for

a larger class of utilities, where the nodes of the cluster are weighted by weighs

𝑤 (𝑑) depending on their distance 𝑑 from 𝑖 , as long as 1 = 𝑤 (1) ≤ 𝑤 (2) = 2 ≤
𝑤 (3), 𝑤 (4), . . .

Theorem 3.2. For any graph 𝐺 and for the closeness utility:
(a) Any coalition in a Pareto optimal partition is either an isolated
node, or a star, or a clique.
(b) A welfare optimal partition can be found in polynomial time, and
all welfare optimal partitions contain no stars.
(c) The PPO is at most 4

3
, and there are graphs for which the PPO is

arbitrarily close to 4

3
.

Proof. Our proof of (a) follows the beautiful, and formidable,

proof in [14], so we shall sketch that proof and the modifications

needed.We consider a coalition (𝐴, 𝐸) in a Pareto optimumpartition.

We assume that it is not a singleton, star, or clique, and then show

that it can be further broken down in a way that demonstrates the

partition was not Pareto optimum. We start by decomposing 𝐴 into

a minimum vertex cover 𝐶 and the remaining independent set 𝐼 .

Then we define a particular flow 𝑓 from 𝐼 to 𝐶 , that is, a function

𝑓 from 𝐼 ×𝐶 to the nonnegative reals such that the sum of 𝑓 (𝑖, 𝑗)
over all 𝑖 ∈ 𝐼 is one. This flow subdivides 𝐼 and𝐶 into ℎ + 1 disjoint

subsets each 𝐼0, . . . , 𝐼ℎ and 𝐶0, . . . ,𝐶ℎ , in increasing order of the

amount of flow received by the nodes in 𝐶 , such that (a) no flow

goes from 𝐼𝑘 to 𝐶𝑘′ with 𝑘
′ < 𝑘 ; (b) the ratio |𝐼𝑘 |/|𝐶𝑘 is increasing

with 𝑘 . We shall henceforth consider each 𝐼𝑘 and 𝐶𝑘 . It is shown

that, for each 𝑘 > 0, 𝐼𝑘 can be decomposed into |𝐶𝑘 | subsets whose
cardinality is within one of each other — and is therefore at most

⌈ |𝐼𝑘 ||𝐶𝑘 | ⌉ — and which induce |𝐶𝑘 | stars in the graph, covering all of

𝐼𝑘 and 𝐶𝑘 and with the nodes of 𝐶𝑘 as centers, and such that all

nodes in 𝐼𝑘 ∪𝐶𝑘 fare no worse in the new partition, while one of

them fares strictly better. To carry out this step for the closeness

metric, we first need to show a basic fact about the closeness utility:

Lemma 3.1. If a node in 𝐴 can only be connected to nodes in a
subset 𝐵 of 𝐴, its closeness utility is at most |𝐵 |

2 |𝐴 |− |𝐵 |−2
.

To prove the lemma, let 𝑑 be the degree of 𝑖 in the coalition

(𝐴, 𝐸); obviously 𝑑 ≤ |𝐵 |. Then the closeness of 𝑖 in the partition is

at most
𝑑

𝑑+2( |𝐴 |−𝑑−1) . The reason is that the distance of the nodes

in 𝐴 not connected to 𝑖 must be at least 2. This is maximized when

𝑑 attains its maximum value, |𝐵 |.
To continue the proof of the theorem, let𝐶≥𝑘 be the union of all

𝐶𝑙 ’s with 𝑙 ≥ 𝑘 ; we know that node 𝑖 ∈ 𝐼𝑘 can only be connected to

this set. Thus, by the Lemma, cls(𝑖, 𝐴) is at most

|𝐶≥𝑘 |
2|𝐴| − |𝐶≥𝑘 | − 2

≤ |𝐶≥𝑘 |
|𝐶≥𝑘 | + 2|𝐼 ≥𝑘 | − 2

≤ 1

1 + 2
|𝐼𝑘 |−1

|𝐶𝑘 |

≤ 1

2⌈ |𝐼
𝑘 |
|𝐶𝑘 | ⌉ − 1

,

where the next to last inequality takes into account the fact that

the ratios are increasing with 𝑘 . This last quantity is precisely the

closeness utility of a leaf of the new star, which is what all elements

of 𝐼𝑘 will become. (The center of the star will have utility one, the

largest possible.) For the requirement that at least one node does

strictly better, notice that the first inequality is not strict only when

𝑘 = 1 and 𝐴 = 𝐶1 ∪ 𝐼1, in which case it is easy to find an element of

𝐼1 that does better.

It remains to take care of 𝐶0 and 𝐼0 (which takes up most of the

7-page proof). It can be shown that this part of 𝐴 has a special

structure (illustrated in Figure 3 of [14]): It contains a matching

𝑀 within 𝐶0 and a matching𝑀 ′ between the unmatched nodes of

𝐶0 and nodes of 𝐼0, plus another matching between the remaining
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(“free”) nodes of 𝐼0, if any, and nodes of 𝐶0 — and in addition, no

two of these latter nodes of𝐶0 are matched in𝑀 . If there are no free

nodes, this means that𝐶0 ∪ 𝐼0 has a complete matching, a coalition

giving all nodes utility one, the maximum. But what if there are

free nodes? They can certainly be accommodated in a star with

two leaves, which gives them a utility of
1

3
(in the proof of [14]

this quantity is
1

2
). But what if one of them already has a higher

utility in 𝐴? A complicated case analysis shows that, in that case,

this node can become a part of a triangle, again attaining a utility

of one and completing the proof of (a).

To prove part (b), we know the welfare optimum coalition con-

sists of isolated points, cliques, and stars. It is easy to see that there

can be no stars with two or more leaves, because any such star can

improve the total welfare by shedding all leaves but one. Hence

it is all cliques and isolated points. Now, any clique with an even

number of points can be decomposed into 2-cliques (edges, that

is) with the same welfare. And any clique with an odd number of

points can be similarly decomposed into 2-cliques and 3-cliques.

We conclude that to compute the welfare maximum is tantamount

to seeking the set of disjoint edges and triangles that cover the

most nodes of the graph — and this can be done in polynomial time

through the ingeniously simple algorithm of [22].

Finally, for (c) any Pareto optimal matching can be improved

in welfare by shedding all but one leaf from every star, and by a

result implicit in [8] (Theorem 6.2) and based on Edmonds’s 1965

characterization of optimality in matching, the resulting cover by

edges and triangles will be optimum. The increase in welfare is by

at most a factor of
4

3
, since stars with n leaves have welfare

3𝑛−1

2𝑛−1

while the optimum 2-clique has welfare 2. If the graph is such a

star, the lower bound follows for large 𝑛. □

We present, for completeness, a couple of additional results in the

context of Nash equilibria. Firstly, we note that without randomness,

a finite improvement path does not always exist:

Proposition 3.1. There exists a graph 𝐺 which does not have the
finite improvement path property under best response dynamics.

Proof. Similar to the example given for the mfu [40], a best

response path may cycle in the presence of a graph formed by a

star with vertices {1, 2, 3, 4, 5} and center {1} and a leaf node {6}
attached to {1}. Then, the sequences 1, 2, 5, 6, 1, 2, 5, 6 cycles back

to the initial partition given the closeness utility (which penalizes

non-neighbors in a cluster even more than the mfu). We note that

a simultaneous best response for all nodes leads to infinite cycling

as well, since starting with the partition {1, 6} and {2, 3, 4, 5} will
lead to all nodes continuously switching their group. □

However, noting that the grand coalition is always a Nash equi-

librium for the closeness utility, adding randomness in an improve-

ment path dynamics always leads to a Nash equilibrium empirically.

In theory, one common measure of equilibrium quality is the

Price of Anarchy (PoA), which defines the worst ratio of total social

welfare of an optimum outcome and am equilibrium outcome (in

this case, Nash equilibrium). We can show, similarly to the proofs

in [40], that the price of anarchy grows quadratically in the number

of agents (compared to linearly for mfu):

Lemma 3.2. For anyweighted graphwith non-negative edge-weights
G and the closeness utility:

𝑃𝑜𝐴(𝐺, 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠) ≤ 𝑛(𝑛 − 1)
2

. (1)

Proof. Similar to the modified fractional utility [40], the lower

bound of a node 𝑖’s utility in an equilibrium partition is
𝑤𝑖
𝑚𝑎𝑥

1+2+···+𝑛−1
,

where 𝑤𝑖
𝑚𝑎𝑥 is the maximum weight between 𝑖 and other nodes

(since we are at equilibrium), while the utility of 𝑖 in an optimal

partition is upper bounded by𝑤𝑖
𝑚𝑎𝑥 (when the distance to the other

nodes in its cluster is 1). The lemma follows. We note that the worst

case is attained by the path graph with an even number of nodes,

for which 𝑃𝑜𝐴(𝐺, 𝑐𝑙𝑜𝑠𝑒𝑛𝑒𝑠𝑠) = Ω(𝑛2), as the optimal partition is in

pairs of nodes (thus everyone has utility 1), while the worst partition

is the grand coalition (in which everyone has utility ∼ 1/𝑛2
). □

4 EVALUATING UTILITIES THROUGH
EQUILIBRIA

Hedonic games are useful arenas for studying the theoretical prop-

erties of utilities, but are poor models of clustering as the organic

formation of groups through hedonic games often leads to partitions

of 2-3 individuals or a partition consisting of the entire network.

Here we propose a principled empirical methodology for compar-

ing utilities in the context of clustering: A utility defines a clustering
game, in which players choose one of 𝑘 clusters and receive the

resulting utility. Suppose we can sample the pure Nash equilibria

of this game; then a utility is good — that is to say, well aligned

with the clustering context — if these equilibria are of high quality,

that is, conductance. The main difference with the previous section

is that we consider Nash equilibria instead of Pareto optimal par-

titions, and, most importantly, the number 𝑘 of clusters is fixed;

note that, since both in mfu and closeness the utility of an isolated

node is 0, no node has an incentive to create its own new coalition,

so the initial partition defines the number of clusters present at

equilibrium.
2

In terms of methodology, we find Nash equilibria through a ran-

domized, parallel variant of best response dynamics (which we

feel is an algorithmic maneuver of more general applicability and

interest). We start from a random clustering with 𝑘 clusters, and

repeatedly identify the players who have an incentive to defect to

a different coalition. We implement a (uniformly) random subset

of these defections at each time. This speeds up convergence con-

siderably (for all utilities, data sets and starting points, between

10 and 20 iterations are needed) and, while cycling is in principle

possible, we find empirically that this process always, in thousands

of experiments, leads to a Nash equilibrium.

In our experiments we analyze the following data:

(1) The APS citation network from [35] with 1, 853 nodes which

represent papers written in two main topics: Classical Sta-

tistical Mechanics (CSM), representing 37.5% of the papers,

and Quantum Statistical Mechanics (QSM), representing the

rest of 62.5% of the papers. As [35] analyzes, the dataset has

high homophily;

2
Unless of course all nodes of a cluster want to migrate, and our randomization (see

the next paragraph) chooses all of them to do so; in thousands of runs, this has never

come close to happening.
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(2) A Facebook dataset from [38], of 4, 038 nodes of true Face-

book friends; this data has several (anonymized) features,

from which we use gender to denote a sensitive attribute.

While gender itself is anonymized, we get that a majority

community of one gender represents approximately 60% of

the network, and the other represents 40% of the network.
3

The network is homophilic.

(3) A highschool friendship network from [37] (also used in [31]),

with 127 nodes in its main connected component represented

by students who self-identify as male of female. The majority

are female (60%), and the network is homophilic.

At equilibrium, the closeness utility (in purple) leads to better

clusters in terms of conductance than mfu (in blue), as Figure 1

shows, for a varied number of clusters (ranging from 2 to 8, with

similar results for higher number of clusters). In particular, both

the closeness utility and mfu do not stray far from the conduc-

tance achieved through spectral clustering (in black) and they reach

equilibrium within 10-20 randomized best-response steps. In other

words, we establish empirically that there is an alternative mecha-

nism to spectral clustering, which allows people to make choices

based on their utility, and can achieve quickly a partition of good

conductance. In all experiments, results are averaged over 50 iter-

ations, illustrated with error bars, and we note that both utilities

partition the graph in approximately equal clusters.

Beyond evaluating in terms of quaality (as conductance), onemay

ask how the equilibrium solutions fare in comparison to Spectral

Clustering in terms of utility. Figure 2 shows that Spectral Clus-

tering (in black solid lines) achieves slightly better average utility

than the equilibrium partitions (in black dashed lines), while mfu

more closely aligns with Spectral Clustering (sometimes even bet-

ter). Note that the initial partition defines the equilibrium reached

(e.g., if starting from the partition given by Spectral Clustering, one

would obtain better conductance at equilibrium than starting from

random partitions).

Note: In this section we have been arguing that the closeness

utility is superior to mfu in many respects. Does the fact that mfu

has better PPO and price of anarchy (1 vs.
4

3
, and 𝑂 (𝑛) vs. 𝑂 (𝑛2),

calculation in the Appendix) suggest otherwise?We believe that the

“price” criteria, while informative in general, are misleading when

used as measures of quality of a utility. The reason a utility such as

closeness is good is, intuitively, because it penalizes poor features,

such as long paths in the clusters. Yet, if such features manage, very

rarely, to survive in stable solutions, the corresponding price will

necessarily be larger.

5 THE TRADE-OFF ALGORITHM
Finally, having contemplated the interplay between quality and

utility in clustering, we provide an algorithmic tool for navigating

such trade-offs: Suppose that we have a clustering C = {𝐶1, . . . ,𝐶𝑘 }
and two ways of evaluating it, say its quality 𝑞(C) and its utility

𝑓 (C).
We are assuming that each of the functions 𝑞 and 𝑓 is the sum,

over all clusters 𝐶𝑖 , of simpler functions of the set of nodes in each

cluster. Note that all quality, fairness, and utility functions we have

3
This feature is embedded in the dataset as an anonymized binary feature and does

not include, unfortunately, non-binary gender representations.

considered are of this form. Define an elementary change in a cluster
𝐶𝑖 to be a node leaving the cluster, or a node joining the cluster, or

the combination of the two, a node replacing another in the cluster.

Next, a change in the clustering C is the clustering C′ which results

from a set of elementary changes defined by a sequence of nodes

𝑣1, . . . , 𝑣𝑚 with𝑚 ≥ 1, all in different clusters — except that possibly

the first and the last nodes are allowed to be in the same cluster. In

the resulting clustering C′, each 𝑣𝑖 , where 𝑖 < 𝑚, leaves its cluster

and joins the cluster of 𝑣𝑖+1. Notice that a change is a sequence

of elementary changes. Further, the difference in the functions 𝑓

and 𝑞 before and after a change is the sum of the differences of all

the elementary changes which constitute the change. Also, these

differences in 𝑓 and 𝑞 before and after each elementary change

is easy to compute, for all evaluation functions considered in this

paper. Denote the set of all changes of clustering C by changes(C).
Finally, suppose that the sum𝑞(C)+𝛼 · 𝑓 (C) is optimum for some

𝛼 ≥ 0. We say that C is a point in the trade-off between 𝑓 and 𝑞. For

concreteness, we shall be assuming that C is the optimum clustering

in quality, and 𝛼 = 0; the case of general 𝛼 > 0 is handled similarly.

In this section we present an efficient algorithm for finding the

optimum change of C, that is the change C′ which results in the

largest ratio of increment in utility over the decrement in quality:

C′ = arg max

C′∈changes(C)

𝑓 (C′) − 𝑓 (C)
𝑞(C) − 𝑞(C′) (2)

Theorem 5.1. Given a point in the trade-off C, its optimum change
C′ can be computed in polynomial time.

Proof. We sketch the proof for the case in which C is the cluster-

ing of optimum quality, that is, 𝛼 = 0; the general case is addressed

in the Appendix. We employ an algorithm discovered in the 1960’s

by Eugene Lawler (Karp [26], Lawler [34], see Golitschek [20] for

an exposition) for finding, in a doubly weighted graph, a cycle that

maximizes the ratio of the weights (say, revenue over distance tra-

versed). Given C, we construct a doubly weighted directed graph 𝐷
whose weights capture the loss in quality and the gain in utility in

every change from C (for a detailed description, see the Appendix):

• create a directed edge (𝑢, 𝑣) for all 𝑢 and 𝑣 in different clus-

ters; this edge will have a double weight (𝑓𝑢𝑣, 𝑞𝑢𝑣), where
𝑓𝑢𝑣 is the utility gain by moving node 𝑢 to the cluster that

𝑣 belongs to, and another weight 𝑞𝑢𝑣 defining the cluster

quality loss by replacing node 𝑣 by node 𝑢 in its cluster.

• create two nodes 𝐶𝑖 and 𝐶
′
𝑖
for each cluster 𝐶𝑖 , and an edge

(𝐶𝑖 , 𝑢) for any 𝑢 ∈ 𝐶𝑖 , with a double weight (𝑓𝐶𝑖𝑢 , 𝑞𝐶𝑖𝑢 ),
which are the differences in utility (or fairness) and clustering

quality, respectively, if node 𝑢 moves out of cluster 𝐶𝑖 . Also,

an edge (𝑢,𝐶 ′
𝑖
) for any𝑢 ∉ 𝐶𝑖 , of a doubleweight (𝑓𝑢𝐶′

𝑖
, 𝑞𝑢𝐶′

𝑖
),

which are the differences in utility and clustering quality,

respectively, if node 𝑢 moves to cluster 𝐶𝑖 .

• finally, define another node called 𝑠 , for “start”, and create

edges 𝑠𝐶𝑖 and 𝐶 ′
𝑖
𝑠 for every cluster 𝐶𝑖 , in both cases with

both weights zero; these edges turn any non-cyclic change

of the clustering into a cycle (recall that Lawler’s algorithm

finds the best cycle, not path).

To complete the proof of the theorem, it suffices to check that

every directed cycle in the new graph 𝐷 corresponds to a change of

the clustering C, and the two total weights of the cycle correspond
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(a) APS dataset
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(b) Facebook dataset
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(c) Highschool dataset

Figure 1: Conductance comparison for APS, Facebook, and Highschool datasets between spectral clustering and the equilib-
rium partition, for a varied number of clusters.

2 3 4 5 6 7 8
Number of clusters

0.001

0.002

0.003

0.004

0.005

0.006

Av
er

ag
e 

ut
ilit

y 
pe

r n
od

e

APS
SC all
Closeness all

(a) Closeness

2 3 4 5 6 7 8
Number of clusters

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Av
er

ag
e 

ut
ilit

y 
pe

r n
od

e
Facebook

SC all
Closeness all

(b) Closeness

2 3 4 5 6 7 8
Number of clusters

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

Av
er

ag
e 

ut
ilit

y 
pe

r n
od

e

Highschool
SC all
Closeness all

(c) Closeness

2 3 4 5 6 7 8
Number of clusters

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

0.0225

0.0250

Av
er

ag
e 

ut
ilit

y 
pe

r n
od

e

SC all
mfu all

(d) mfu
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Figure 2: Average utility for the each dataset (by column), for closeness utility and mfu (by row), computed for Spectral Clus-
tering (SC) and equilibrium solutions.

to the total differences in utility and quality of the change; and

vice-versa. Thus, finding the cycle of graph 𝐷 with the largest ratio

of the two weights computes the optimum change of C. There is
one important thing to check: Lawler’s algorithm requires that

the metric in the denominator (in our case, quality decrement)

does not have a non-positive cycle. This holds, because we started
from the quality-optimum clustering, and any negative cycle would

improve the quality. (There may be zero cycles because of ties in

quality between clusterings, but this can be taken care of by small

perturbations in the weights.) □

While this algorithm correctly computes the optimum change

from any point that optimizes the trade-off for some 𝛼 , because

of nonlinearities in the way the functions 𝑓 and 𝑞 are computed,

the resulting change is not guaranteed to be an optimum point for

some other 𝛼 — such failure is manifested by negative cycles in

the denominator. Still, empirically, this algorithm, together with

heuristics for eliminating negative cycles, helps trace the trade-

off curve in real problems. However, more research is needed for

automating this process. The algorithm takes polynomial time, as

noted further below.

We detail the algorithms described in Algorithms 1, 2, and 3.

We reduced the problem of finding the next point in the trade-

off to finding a cycle in a doubly-weighted graph that represent

elementary changes. As an example for how this graph creates

elementary changes in clustering, a cycle 𝑢 − 𝑣 −𝑤 − 𝑧 − 𝑢 means

“𝑢 moves in the cluster of 𝑣 , 𝑣 in the cluster of𝑤 , . . . , 𝑧 in the cluster

of 𝑢”. A cycle involving 𝑠 , such as 𝑠 −𝑢 − 𝑣 −𝑤 −𝐶 means “𝑢 moves

to the cluster of 𝑣 , 𝑣 to the cluster of𝑤 ,𝑤 moves to𝐶” (a move that

changes the cardinalities of two clusters, namely of 𝐶 and of the

cluster of 𝑢, by 1). The weights in the edges reflect this: 𝑓𝑢𝑣 is the

decrease in utility in 𝑣 ’s cluster if 𝑢 moves to the cluster of v and v

leaves its cluster. Similarly, 𝑞𝑢𝑣 is the decrease in quality/increase

in cost in the cluster of v if u replaces v in v’s cluster; 𝑓𝑢𝐶 is the

decrease in utility if 𝑢 is added to 𝐶 , and 𝑞𝑢𝐶 the increase in cost.

In solving Problem A, Golitschek [20] shows that for a doubly

weighted graph𝐺 withweights (𝑓𝑢𝑣) (𝑢,𝑣) ∈𝐸 (𝐺) and (𝑞𝑢𝑣) (𝑢,𝑣) ∈𝐸 (𝐺) ,
the problem of finding an optimal cycle with minimal ratio 𝑓𝑢𝑣/𝑞𝑢𝑣
for (𝑢, 𝑣) ∈ 𝐸 (𝐺) is equivalent to finding a negative cycle in another
related graph. This other related graph by choosing a variable𝑀
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and creating a graph𝐺 ′ with weights 𝑓𝑢𝑣 −𝑀 ·𝑞𝑢𝑣 . Finding a nega-
tive cycle in 𝐺 ′ then means that𝑀 is larger than the optimal cycle

value found, and smaller otherwise. The goal is to find𝑀 such that

the negative cycle that we find becomes equal to 0. Because the

clustering is optimal, there are no negative cycles in the (𝑞𝑢𝑣)𝑢,𝑣
weight (and zero cycles only by coincidence, which we can take

care by perturbing a little one or two 𝑞𝑢𝑣 values).

Now we can apply the algorithmic idea from above, implement-

ing a negative cycle finder through the Shortest Path Fastest Algo-

rithm implementation, which is a faster implementation of the

Bellman-Ford Algorithm ([5, 18]), obtaining a running time of

𝑂 (𝑚 + 𝑛), where𝑚 is the number of edges in the graph. The main

steps are itemized below:

(1) Input Graph G(V,E) (e.g. generated from a Stochastic Block

Model with 50 nodes, a probability vector, and a number of

clusters 𝑘 = 5, as described below).

(2) Run Spectral Clustering on 𝐺 .

(3) Generate graph𝐺𝑛𝑒𝑤 with doubly-weighted edges 𝑓𝑢𝑣 and

𝑞𝑢𝑣 .

(4) Assert that 𝐺𝑛𝑒𝑤 has no negative 𝑞−cycles.
• if𝐺𝑛𝑒𝑤 has some cycles in the 𝑡−weight of weight 0, adjust

all 𝑞𝑢𝑣 ’s by + 𝑓𝑢𝑣
𝑀+𝜖 for some 𝜖 << 1 (only for 𝛼 > 0).

(5) Initialize𝑀 .

(6) Generate graph 𝐺𝑀 from 𝐺𝑛𝑒𝑤 with weights 𝑓𝑢𝑣 −𝑀 · 𝑞𝑢𝑣
(7) Run SPFA(𝐺𝑀 ):

• If there is a negative cycle, set𝑀/= 2 and repeat SPFA

• If there is no negative cycle, set𝑀∗ = 2 and repeat SPFA

• If cycle weight is 0, we found the optimal cycle and can

compute the utility-conductance trade-off (and perhaps

repeat with the new assignment of nodes to clusters by

following this cycle)

• After finding two values of𝑀 (a high and a low) for which

there exists and not exists, respectively, a negative cycle,

we run binary search using SPFA to find the best𝑀 that

gets us a cycle of weight close to 0. The termination con-

dition can be chosen by the user (say, the 𝛿 update of𝑀

in binary search is smaller than 𝜖 , for some 𝜖 << 1.

(8) Perform changes according the best cycle we find from pre-

vious step, 𝑐 , which gets us a new clustering, and compute

new utility and clustering quality.

The pseudocode is presented as follows: step 1 is described in

detail below; steps 2 and 3 are computed in Algorithm 1; steps 5− 7

are computed in Algorithm 3; SPFA is defined in Algorithm 2. For

taking care of negative cycles at subsequent iterations (for 𝛼 > 0),

we may perturb the 𝑞𝑢𝑣 weights by a small quantity in the direction

of the current slope (see step (4), which works in practice for cases

with low non-linearity. Further work is needed for a complete

generalization. Note that when the clustering algorithm used is not

optimal, negative cycles in the q-weight may appear initially as

well; sometimes, this can be an issue with Spectral Clustering, for

example, as it does not find a global optimum in all cases. However,

if an initial negative cycle in the q-weight is found initially, it can be

‘fixed’ by following the changes in the cycle for a better clustering

in terms of quality.

In terms of complexity, Lawler’s algorithm takes 𝐿 iterations,

where 𝐿 is the number of bits in all the weights of the graph 𝐷 , and

Initial

Iter 1

Iter 2

(a) Closeness utility

Initial

Iter 1

Iter 2

Iter 3

(b) Statistical parity

Figure 3: Trade-off curve between clustering quality and
closeness utility (left) or statistical parity (right), for a graph
generated from the Stochastic Block Model with 50 nodes
and two homophilic communities. The initial point is in
the most up right corner and subsequent iterations (Iter 1,2)
trace the boundary of the trade-off, in the direction of the
arrow. Quality decreases in subsequent iterations.

each iteration seeks a negative-weight cycle in a graph with the

same nodes and edges as 𝐷 . Also, notice that 𝐷 has 𝑂 (𝑛) nodes.
Hence, the total complexity is 𝑂 (𝑛3𝐵 log𝑛), where 𝐵, the number

of precision bits we require, can be taken to be a constant. By using

a fast implementation of a negative cycle finder algorithm,
4
we can

expect the time required to be closer to 𝑛2
.

As an example of how the trade-off curve would look like for a

case with low non-linearity, Figure 3 shows the trade-off curve that

our proposed algorithms trace from the original clustering given by

Spectral Clustering (Initial) through subsequent iterations. We can

trace the boundary for different definitions of utility or fairness, for

example for the closeness utility (left) or statistical parity (right),

opening an avenue for connecting utility, quality, and fairness, as

described by statistical parity constraints in recent works regarding

clustering [10, 30].

6 DISCUSSION
Our paper is a theoretical and experimental exploration of the ways

in which strategic behavior affects the quality of clustering. The

closeness utility has several positive theoretical properties such

as efficient maximization and a low price of Pareto optimality; in

practice, it results in relatively equal clusters that compete in quality

with Spectral Clustering and fare better than competing utilities.

Our polynomial time algorithm for finding an improvement of

optimal ratio of utility improvement over quality decrease can

be particularly useful for exploring intermediate levels of utility

as well as generalizing for metrics beyond the closeness utility.

This is especially relevant for connecting with fairness notions,

such as statistical parity or balance, and generalizes for any metric

of fairness or utility. All the code and data are available on an

anonymized Github repository, at this link.
Several open questions emerge from this work: Generalize the

trade-off algorithm to trace the entirety of the trade-off curve;

establish a theoretical connection between clustering through equi-

librium dynamics and utility functions and traditional clustering

4
https://konaeakira.github.io/posts/using-the-shortest-path-faster-algorithm-to-

find-negative-cycles.html which is a faster implementation of the Bellman-Ford

Algorithm [5, 18]

https://konaeakira.github.io/posts/using-the-shortest-path-faster-algorithm-to-find-negative-cycles.html
https://konaeakira.github.io/posts/using-the-shortest-path-faster-algorithm-to-find-negative-cycles.html
https://anonymous.4open.science/r/strategic-clustering-neuripsStratML-A8F8/README.md
https://konaeakira.github.io/posts/using-the-shortest-path-faster-algorithm-to-find-negative-cycles.html
https://konaeakira.github.io/posts/using-the-shortest-path-faster-algorithm-to-find-negative-cycles.html
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optimization; and use the framework proposed here for understand-

ing the root cause of bias in clustering and for developing ways to

mitigate it when multiple metrics of fairness or utility are at play.

Naturally, welfare depends not just on the utility, but also on

the way the utility is aggregated; here we mostly consider average

utility, but of course the variance, or other measures of inequality

such as the Gini coefficient, would also be of great interest.
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Algorithm 1: Reduction to negative cycle algorithm

Result: Compute a doubly-weighted graph 𝐺𝑛𝑒𝑤

representing elementary changes in clusters, in

utility or fairness and cost as weights.

Input: graph 𝐺 , number of clusters 𝑘 , fairness function 𝑓 (·),
quality function 𝑐 (·), algorithm to optimize 𝑞(·) (e.g.
spectral clustering as SC), initial𝑀 ;

Compute clusters 𝐶 = (𝐶1,𝐶2, · · ·𝐶𝑘 ) ← 𝑆𝐶 (𝐺,𝑘) ;
Compute utility or fairness of 𝐶 as 𝑓 (𝐶) ;
Compute quality of 𝐶 as 𝑐 (𝐶);
Initialize digraph 𝐺𝑛𝑒𝑤 with nodes from 𝐺.𝑛𝑜𝑑𝑒𝑠 () ;
for 𝑢, 𝑣 ∈ 𝐺.𝑛𝑜𝑑𝑒𝑠 () do

if 𝐶 (𝑢) ≠ 𝐶 (𝑣) then
Denote 𝐶 ′ a clustering where 𝐶 ′(𝑢) = 𝐶 (𝑣) (𝑢 has
replaced 𝑣 in 𝑣 ’s cluster) ;
Compute 𝑓 (𝐶 ′) and 𝑞(𝐶 ′) ;
Compute 𝑓𝑢𝑣 = 𝑓 (𝐶 ′) − 𝑓 (𝐶) and
𝑞𝑢𝑣 = 𝑞(𝐶 ′) − 𝑞(𝐶) ;

𝐺𝑛𝑒𝑤 .add_edge(u,v,weight1 =f𝑢𝑣 , weight2 =q𝑢𝑣 ) ;

end
end
Add nodes 𝑢 |𝑉 (𝐺)+𝑖 | , for 𝑖 = 1, 𝑘 , associated to each cluster

for when a node joins another cluster;

for 𝑢 ∈ 𝐺.𝑛𝑜𝑑𝑒𝑠 () and 𝑖 = 1, 𝑘 do
if 𝐶 (𝑢) ≠ 𝑖 then

Denote 𝐶 ′ a clustering where 𝐶 ′(𝑢) = 𝑖 (𝑢 has
moved to cluster 𝑖) ;
Compute 𝑓 (𝐶 ′) and 𝑞(𝐶 ′) ;
Compute 𝑓𝑢𝑣 = 𝑓 (𝐶 ′) − 𝑓 (𝐶) and
𝑞𝑢𝑣 = 𝑞(𝐶 ′) − 𝑞(𝐶) ;

𝐺𝑛𝑒𝑤 .add_edge(u,u |𝑉 (𝐺)+𝑖 |,𝑤𝑒𝑖𝑔ℎ𝑡1 =f𝑢𝑣 ,

weight2 =q𝑢𝑣 ) ;

end
end
Add nodes 𝑢 |𝑉 (𝐺)+𝑘+𝑖 | , for 𝑖 = 1, 𝑘 , associated to each

cluster for when a node leaves its own cluster;

for 𝑢 ∈ 𝐺.𝑛𝑜𝑑𝑒𝑠 () do
Denote 𝐶 ′ a clustering where 𝐶 ′(𝑢) ≠ 𝑖 (𝑢 has been
removed from its cluster) ;
Compute 𝑓 (𝐶 ′) and 𝑞(𝐶 ′) ;
Compute 𝑓𝑢𝑣 = 𝑓 (𝐶 ′) − 𝑓 (𝐶) and 𝑞𝑢𝑣 = 𝑞(𝐶 ′) − 𝑞(𝐶) ;
𝐺𝑛𝑒𝑤 .add_edge(u |𝑉 (𝐺)+𝑘+𝑖 |, 𝑢,𝑤𝑒𝑖𝑔ℎ𝑡1 =f𝑢𝑣 ,

weight2 =q𝑢𝑣 ) ;

end
Add a start node ‘start’. ;

for 𝑢 ∈ 𝐺.𝑛𝑜𝑑𝑒𝑠 () do
Denote 𝐶 ′ a clustering where 𝐶 ′(𝑢) ≠ 𝑖 (𝑢 has been
removed from its cluster) ;
Compute 𝑓 (𝐶 ′) and 𝑞(𝐶 ′) ;
Compute 𝑓𝑢𝑣 = 𝑓 (𝐶 ′) − 𝑓 (𝐶) and 𝑞𝑢𝑣 = 𝑞(𝐶 ′) − 𝑞(𝐶) ;
𝐺𝑛𝑒𝑤 .add_edge(‘start’,u,weight1 =f𝑢𝑣 , weight2 =q𝑢𝑣 ) ;

end
Return 𝐺𝑛𝑒𝑤

Algorithm 2: Shortest Path Fastest Algorithm

Result: Define the shortest path fastest algorithm; return a

tracing array to find the negative cycle, if it exists.

Function SPFA(𝐺):
Initialize 𝑙𝑒𝑛𝑔𝑡ℎ = {}, 𝑑𝑖𝑠 = {}, 𝑝𝑟𝑒 = {}, and 𝑞𝑢𝑒𝑢𝑒 = []
for 𝑣 in G.nodes() do
𝑙𝑒𝑛𝑔𝑡ℎ[𝑣] = 0

𝑑𝑖𝑠 [𝑣] = 0

queue.append(v)

end
while 𝑙𝑒𝑛(𝑞𝑢𝑒𝑢𝑒) > 0 do

u = queue.pop(0)

for (𝑢, 𝑣) ∈ 𝐺.𝑒𝑑𝑔𝑒𝑠 () do
if 𝑑𝑖𝑠 [𝑢] +𝐺 [𝑢] [𝑣] [′𝑤𝑒𝑖𝑔ℎ𝑡 ′] < 𝑑𝑖𝑠 [𝑣] then

𝑝𝑟𝑒 [𝑣] = 𝑢

𝑙𝑒𝑛𝑔𝑡ℎ[𝑣] = 𝑙𝑒𝑛𝑔𝑡ℎ[𝑢] + 1

if 𝑙𝑒𝑛𝑔𝑡ℎ[𝑣] == 𝑙𝑒𝑛(𝐺.𝑛𝑜𝑑𝑒𝑠 ()) then
Return v,pre,"negative cycle detected"

end
𝑑𝑖𝑠 [𝑣] = 𝑑𝑖𝑠 [𝑢] +𝐺 [𝑢] [𝑣] [′𝑤𝑒𝑖𝑔ℎ𝑡 ′]
if 𝑣 ∉ 𝑞𝑢𝑒𝑢𝑒 then

queue.append(v)

end
end

end
end
Return "no negative cycle detected"

Algorithm 3: Perform binary search to find the best 𝑀

that obtains a cycle of weight close to 0, using SPFA

Result:𝑀 as a product of binary search

Input: graph 𝐺𝑛𝑒𝑤 ,𝑀 ,𝑀ℎ𝑖𝑔ℎ ,𝑀𝑙𝑜𝑤

while 𝛿𝑀 > 10e-10 do
if 𝑀ℎ𝑖𝑔ℎ >𝑀𝑙𝑜𝑤 then

𝑀 = (𝑀ℎ𝑖𝑔ℎ +𝑀𝑙𝑜𝑤)/2
end
Initialize digraph 𝐺𝑀 with nodes from 𝐺𝑛𝑒𝑤 .𝑛𝑜𝑑𝑒𝑠 ()
for 𝑒 ∈ 𝐺𝑛𝑒𝑤 .𝑒𝑑𝑔𝑒𝑠 () do

G𝑀 .𝑎𝑑𝑑_𝑒𝑑𝑔𝑒 (𝑒,𝑤𝑒𝑖𝑔ℎ𝑡= f𝑢𝑣 −𝑀 · 𝑞𝑢𝑣 )
end
if 𝑆𝑃𝐹𝐴(𝐺 𝑓 𝑞) → negative cycle then

𝑑𝑒𝑙𝑡𝑎𝑀 = 𝑀 −𝑀𝑙𝑜𝑤

𝑀ℎ𝑖𝑔ℎ = 𝑀

else if 𝑆𝑃𝐹𝐴(𝐺𝑛𝑒𝑤) → no negative cycle then
𝑑𝑒𝑙𝑡𝑎𝑀 = 𝑀ℎ𝑖𝑔ℎ −𝑀
𝑀𝑙𝑜𝑤 = 𝑀

end
Return𝑀
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