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We describe a simple axiomatic system by means of which exactly those sen-
tences can be derived that are rated non-tautologous in classical sentential logic.
Since the set of all tautologies is also specifiable by means of syntactic systems,
the resulting picture would appear to give a fairly good account of that logic, let
alone semantic considerations. The picture can then be completed by developing
related systems adequate to specify the set of all contradictions, the set of all
non-contradictions, the set of all contingencies and the set of all non-contingen-
cies respectively: systems of this kind, which provide additional examples of
paraconsistent calculi with a classical background, are also presented.

1. Preliminaries

We consider a sentential language L with ‘~’ (negation) and ‘∨’ (disjunction) as
primitive connectives. ‘p0’, ‘p1’, ‘p2’, … denote sentential variables (in the al-
phabetic order), while the letters ‘A’, ‘B‘, ‘C,’ (possibly with superscripts
and/or subscripts) range over arbitrary sentences. Moreover, we use ‘T’ as an
abbreviation for ‘p0∨~p0’ and ‘⊥’ abbreviates ‘~T’.

A valuation for L is any function mapping sentences into {0,1 }, subject to
the classical conditions on ‘~’ and ‘∨’. If there is a valuation V such that V
(A)=0, A is called a non-tautology, and V  a non-model of A.

2. Axioms and Rules

We assume the usual notion of a substitution instance. In addition, we say that a
sentence A is an equivalent variant of a sentence B iff A is obtained from B by
replacement of equivalent sentences, counting the following pairs as equivalent:

{T, ~⊥}, {⊥, ⊥∨⊥}, {T, ⊥∨T}, {T, T∨⊥}, {T, T∨T}.
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Using this terminology, our system is defined by exactly one axiom and two
rules of inference:

A.0 ⊥
R.1 if B is an equivalent variant of A, B  A
R.2 if B is a substitution instance of A, B  A.

A derivation of a sentence A from a sentence B is a finite sequence A0 … An
(n ≥ 0) such that An = A, A0 = B, and Ai  Ai+1 for each i < n. If there is a derivation
D of A from ⊥, A is called a non-theorem, and D a non-proof (or a disproof)
of A.

3. Examples

Note that ⊥ (=~T) is a substitution instance of both pi and ~pi ( i ≥ 0). Hence all
variables and negations thereof are immediately seen to be non-theorems by R.2.
Also, disproofs of such basic non-tautologies as ~~pi, pi∨pj, ~pi∨~pj, ~(pi∨pj),
pi∨(pj∨pk), (pi∨pj)∨pk, etc. are all straightforward, using repeated applications of
R.1 followed by one or more applications of R.2.

As an illustrative example, we give here a disproof of the sentence
~(p0∨~~p1)∨(~p1∨~(~(~p2∨~p0)∨~(p0∨p2))):

1. ⊥ A.0
2. ⊥∨⊥ R.1
3. ⊥∨(⊥∨⊥) R.1
4. ⊥∨(⊥∨~T) R.1  + df

5. ⊥∨(⊥∨~(⊥∨T)) R.1
6. ~T∨(⊥∨~(~T∨~⊥)) R.1  + df

7. ~T∨(⊥∨~(~T∨~(⊥∨⊥))) R.1
8. ~(⊥∨T)∨(⊥∨~(~(T∨T)∨~(⊥∨⊥))) R.1
9. ~(⊥∨~~T)∨(~T∨~(~(~⊥∨~⊥)∨~(⊥∨⊥))) R.1  + df

10. ~(⊥∨~~T)∨(~T∨~(~(~p2∨~⊥)∨~(⊥∨p2))) R.2
11. ~(⊥∨~~p1)∨(~p1∨~(~(~p2∨~⊥)∨~(⊥∨p2))) R.2
12. ~(p0∨~~p1)∨(~p1∨~(~(~p2∨~p0)∨~(p0∨p2))) R.2

4. Soundness and Completeness

We now show that the semantic notion of a non-tautology and the syntactic no-
tion of a non-theorem coincide, i.e. identify exactly the same set of sentences.
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T.1 Every non-theorem is a non-tautology.

Suppose A is a non-theorem, let A0 … An be a disproof of A=An, pick k ≤ n and
assume each Ai (i < k) has a non-model. If Ak =⊥ (A.0), then clearly any valuation
is a non-model of Ak. If some Ai is an equivalent variant of Ak (R.1), then V
(Ak)=V (Ai) for all valuations V, and therefore any non-model of Ai will be a non-
model of Ak. Finally, if some Ai is a substitution instance of Ak (R.2), then for all
valuations V  there is a valuation V ' so that V (Ai)=V '(Ak), hence again the exis-
tence of a non-model of Ai implies the existence of a non-model of Ak. Thus, Ak is
sure to be a non-tautology, and T.1 follows by mathematical induction and gen-
eralization.

T.2 Every non-tautology is a non-theorem.

Suppose A is a non-tautology and let V  be any non-model of A. For each i ≥ 0,
define pi

V =T if V (pi)=1, and pi
V =⊥ if V (pi)=0. Also, construct AV from A by re-

placing each pi (i ≥ 0) with pi
V. Clearly, V (AV )=V (A)=0. And by standard tech-

niques it is easy to form a sequence A0
V

 … An
V so that A0

V = AV, An
V = ⊥, and each

Ai+1
V  is an equivalent variant of Ai

V. Hence the sequence An
V … A0

V is a disproof of
AV (by repeated application of R.1). Since AV can be traced back to a substitution
instance of A (by repeated application of R.2), we can therefore infer that A is
also a non-theorem. T.2 then follows by generalization.

5. Complementary Systems

We have seen that the syntactic system defined in Section 2, call it S ⊥, is ade-
quate to specify the set of all non-tautologies of L. Since a valuation always as-
signs opposite values to a sentence and to its negation, it is clear that the set of
all non-contradictions is also specifiable by means of a purely syntactic system:
just take T as an axiom instead of ⊥ and the resulting system, call it S T, will do
(or: just characterize S T indirectly, by defining a sentence A to be a theorem of S T

iff ~A is a non-theorem of S ⊥). For the same reason, it is a fact that whenever a
syntactic system S 

∨ is given by means of which one can adequately specify the
set of all classical tautologies of L, one can immediately define a perfectly sym-
metric system, S 

∧, which is adequate to specify the set of all classical contra-
dictions: just introduce a conjunction connective ‘∧’ and replace each occurrence
of ‘∨’ in the axioms and rules of inference of S 

∨ with occurrences of ‘∧’ (or: just
characterize S 

∧ indirectly, by defining a sentence A to be a non-theorem of S 
∧ iff

~A is a theorem of S 
∨). Accordingly, one would get a complete picture of the
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logic of L if one could define a third pair of complementary systems, say S ⊥T and
S 

∨∧, which prove adequate to specify the set of all contingencies (sentences that
are both non-tautologous and non-contradictory) and the set of all non-contin-
gencies (sentences that are either tautologous or contradictory) respectively. In-
directly, such systems can of course be characterized in terms of the corre-
sponding pairs S ⊥, S T and S 

∨, S 
∧. However, the more direct approach of Section

2 can also be exploited. For instance, counting the following pairs as equivalent

{A, ~~A}, {A, A∨⊥}, {A, ⊥∨A}, {T, A∨T}, {T, T∨A} A∈{T, ~T, p0, ~p0}

S ⊥T can be based on R.1-R.2 taking p0 as the sole axiom (the proof parallels the
arguments of Section 4; only, to show completeness, set p0

V = p0). By contrast, to
provide an adequate basis for S 

∨∧ it is sufficient to recall that a sentence with n
distinct variables is a tautology iff its disjunctive Boolean expansion contains
exactly 2 

n disjuncts, while it is a contradiction iff its conjunctive Boolean expan-
sion contains exactly 2 

n conjuncts. Since such expansions can always be trans-
formed into sentences of the form p0∨~p0 or ~(p0∨~p0) by means of Boolean
equivalences, one can then take both T and ⊥ as axioms, redefine R.1 in terms of
such equivalences, and drop R.2.

All these results, of course, reflect the fact that the relevant sets of sentences
(tautologies, contradictions, contingencies, etc.) are all decidable, and therefore
come to no surprise. However, the point is that such sets are now seen to be on
a par as far as their syntactical characterization is concerned. Which does not
mean, of course, that they are all equally “interesting”. The fact remains that
every substitution instance of a tautology of L is a valid sentence of, say, the
language of quantification theory, whereas the substitution instances of a non-
tautologous sentence of L do not have to be invalid in a language with quantifiers.
They have to be non-tautologous – but that’s all.
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