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Abstract .  We provide a model-theoretic framework for inves-
tigating and comparing a variety of mereotopological theories
with respect to (i) the intended interpretation of their connec-
tion primitives, and (ii) the composition of their intended do-
mains (e.g., whether or not they allow for boundary elements). 

1. INTRODUCTION
In recent years there has been an outgrowth of theories for repre-
senting space and time in a qualitative way based on a primitive
notion of topological connection [32]. Most of these theories
have been influenced by the work of Clarke [10, 11], which in
turn was inspired by Whitehead [35]. However, various other
theories have been developed on independent grounds [29], and
it is interesting to see how topology has itself become a point
of connection among previously unrelated research areas.

Unfortunately, this variety of outlooks corresponds to a va-
riety of theories that are not always in agreement on the basic
terms. In some cases there is genuine philosophical dissension.
In other cases the disagreement reflects the applicative agenda.
In other cases still, the differences are due simply to a different
understanding of the basic connection primitives. This is not
surprising, since the ordinary set-theoretic account of topologi-
cal connection rests on the distinction between open and closed
entities (sets), and this is a problematic distinction in the do-
main of spatio-temporal entities [34, 35]. Indeed, the difficulty
in applying standard point-set topology to ordinary space is
one main reason behind the development of many connection-
based theories. As mereology (the theory of parthood) was ini-
tially developed as an alternative to set theory (the theory of
membership) in the constructional analysis of the common-
sense world, viewed as likewise the theory of connection may be
an alternative to point-set topology. The resultant theories are
sometimes called, quite aptly, mereotopologies. And the lack of
a unified framework bears witness to the difficulty of the task.

Our aim in this paper is to go some way in the direction of
such a framework. We shall attempt to delineate the logical
space of mereotopological theories based on an account of their
intended models. The frame of reference used for this purpose
will, in fact, be ordinary point-set topology. But this is not in
contrast with the nature of mereotopology. For although the
purpose of most mereotopological theories is to go beyond set
theory, the latter still provides a general apparatus in terms of
which the intended interpretation of the connection relations
axiomatized by those theories can be expressed in precise terms.
For instance, some theories explicitly interpret ‘x  is connected
with y ’ as ‘x  and y  share a common point’ [1,  10], though points
are then excluded from the domain of quantification. Other theo-
ries suggest the renderings ‘there is no distance between x  and y ’
as well as ‘the closures of x  and y  share a common point’ [24];
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the former is the favored interpretation, but the latter makes it
possible to compare such theories with others.

Our approach thus is essentially model-theoretic in nature.
Given a topological space ì, we want to compare the models of
different mereotopological theories when their variables range
over elements of ì. More specifically, we want to compare
theories with respect to (i) the intended interpretation of their
connection primitives and (ii) the composition of their intended
domains, i.e., which elements of ì are included in their domain
of quantification. This is one major source of disagreement
among the theories available in the literature. Here we shall be
interested in comparing them particularly with regard to whether
or not their domains include unextended boundary elements (sets
with empty interiors, such as points, lines, surfaces).

Note that although our examples will focus primarily on spa-
tial domains, our results apply to domains of arbitrary dimen-
sions, of which space and time may be seen as special cases.
Moreover, we are only interested in mereotopological theories
insofar as they account for the connection relation, ignoring
other important topological notions such as compactness. Like-
wise, we shall ignore here the question of how a mereotopology
can be combined with a theory of location to account for the
relationship between an entity and the region (e.g., spatial re-
gion) where it is located. This is an important issue, but it lies
beyond the scope of the present study [7, 8].

2 . DEFINITION SCHEMAS
A pair (A, T(c)) is a topological space iff A is a non-empty set
and T(c)={x  ⊆ A: c(x ) = x}, where c is a closure operator axioma-
tised in the usual Kuratowski style:

∅ = c(∅) (A0)
x  ⊆ c(x ) (A1)
c(c(x )) ⊆ c(x ) (A2)
c(x ) ∪ c(y ) = c(x ∪ y ) (A3)

The set T (c) is called the topology on A associated with c, and
its elements are the closed sets determined by c. It follows from
the axioms that T(c) is closed under intersection and finite un-
ion, and that the closure of a set x, c(x ), is the smallest closed
set including x . Likewise, let O(c) = {x  ⊆ A: A–x∈T(c)} be the
family of open sets determined by c. Then it follows that O(c) is
closed under union and finite intersection, and one can define the
interior of a set x , i(x ), to be the greatest open set included in x .

Now let ì =  (A,  T(c)) be any topological space. We shall
focus on the following three ways of characterizing a relation of
connection between subsets of A (Figure 1):

C1(x , y ) ⇔ x  ∩ y  ≠∅
C2(x , y ) ⇔ x  ∩ c(y ) ≠∅ or c(x ) ∩ y  ≠∅
C3(x , y ) ⇔ c(x ) ∩ c(y ) ≠∅

These three notions correspond—or can be made to correspond—
to the main variants found in the literature. However, to get a
proper picture of the alternatives offered by  these options, two
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Figure 1: The three C relations (limit cases); a solid line indicates closure.

more parameters must be considered, corresponding to the ways
in which the relation of parthood and the operation of fusion can
be characterized in terms of connection:

Pk(x , y ) =: ∀z(Ck(z, x ) → Ck(z, y )) (1 ≤ k ≤ 3)
σkx  φx  =: ιz∀y (Ck(y , z) ↔ ∃x (φx  ∧ Ck(y , x ))) (1 ≤ k ≤ 3)

(Here ‘φx ’ stands for any well-formed expression in which ‘x ’
occurs free.) Most theories define parthood or fusion (typically
both) in terms of the connection relation that is assumed as a
topological primitive. However, this need not be the case, and
in fact an important family of theories stems precisely from the
intuition that parthood and connection cannot be defined in
terms of each other. This effectively amounts to using two dis-
tinct primitives: two notions of connection (one of which is
used in defining parthood), or a notion of connection and an in-
dependent notion of parthood. Accordingly, and more generally,
we shall consider the entire space of theories that result from the
options determined by the above definitions. That is to say, we
shall work with a language in which all three connection predi-
cates are available as primitives, treating theories in which
some such predicates are defined in terms of others as taking
place within a proper fragment of the language.

To do so in a systematic manner, let us call a triple τ=〈i,j,k〉
(where 1 ≤ i,j,k  ≤ 3) a type: The first coordinate of a type, i,
indicates a corresponding relation of connection, while j and k
will indicate corresponding choices for the definition of part-
hood and fusion, respectively. For example, 〈2,1,3〉  is the type
associated with C2 as a primitive for topological connection, P1

as a parthood predicate (defined in terms of the primitive C1),
and σ3 as a fusion operator (defined in terms of C3).  If the three
coordinates of a type are all equal, then the type is uniform and
corresponds to the case in which the primitive for topological
connection is the only primitive used in defining all other
mereotopological notions.

Using the notion of a type, the following notation provides
a convenient generalization of the notation introduced above:

C〈i,j,k〉(x , y ) =: Ci(x , y )
P〈i,j,k〉(x , y ) =: Pj(x , y )
σ〈i,j,k〉x  φx =: σkx  φx

We can then define customary mereotopological notions by
relativizing them to types. (To simplify notation, we shall as-
sume variables to range exclusively over non-empty sets, as
virtually every account in the literature makes this assumption.)

Oτ(x , y ) =: ∃z(Pτ(z, x ) ∧ Pτ(z, y )) τ-overlap

Aτ(x , y ) =: Cτ(x ,  y ) ∧ ¬Oτ(x ,  y ) τ-abutting

Eτ(x , y ) =: Pτ(x ,  y ) ∧ Pτ(y ,  x ) τ-equality

PPτ(x , y ) =: Pτ(x , y ) ∧ ¬Pτ(y , x ) proper τ-part

TPτ(x , y ) =: Pτ(x ,  y ) ∧  ∃z(Aτ(z,  x ) ∧  Aτ(z,  y )) tangential τ-part

IPτ(x , y ) =: Pτ(x , y ) ∧ ¬TPτ(x , y ) interior τ-part

BPτ(x , y ) =: ∀z(Pτ(z,  x ) → TPτ(z,  y ))  boundary τ-part

POτ(x , y ) =: Oτ(x ,  y ) ∧ ¬Pτ(x ,  y ) ∧ ¬Pτ(y ,  x ) proper τ-overlap

TOτ(x , y ) =: ∃z(BPτ(z, x ) ∧ BPτ(z, y )) tangential τ-overlap

IOτ(x , y ) =: ∃z(IPτ(z, x ) ∧ IPτ(z, y )) internal τ-overlap

BOτ(x , y )=: Oτ(x ,  y ) ∧ ¬IOτ(x ,  y ) boundary τ-overlap

x+τy =: στz  (Pτ(z, x ) ∨ Pτ(z, y )) τ-sum

x×τy =: στz  (Pτ(z, x ) ∧ Pτ(z, y )) τ-product

x–τy =: στz  (Pτ(z, x ) ∧ ¬Oτ(z, y )) τ-difference

kτ(x )=: στz  ¬Oτ(z, x ) τ-complement

iτ(x ) =: στz IPτ(z,  x ) τ-interior

eτ(x ) =: iτ(kτ(x )) τ-exterior

cτ(x ) =: kτ(eτ(x )) τ-closure

bτ(x )=: cτ(x ) –τ iτ(x ) τ-boundary

Uτ =: στz  Oτ(z, z) τ-universe

Rgτ(x )=: ∃z IPτ(z,  x ) τ-region

Opτ(x )=: Eτ(x ,  iτ(x )) τ-open

Clτ(x ) =: Eτ(x ,  cτ(x )) τ-closed

Cnτ(x )=: ∀y∀z(Eτ(x ,  y+τz) → Cτ(y ,  z)) τ-connected

Depending on the structure of τ, the notions thus defined may
receive different interpretations, hence the glosses on the right
should not be taken too strictly. One intended interpretation of
the binary relations relative to the Euclidean plane R2—the in-
terpretation that justifies the glosses—is illustrated in Figure 2.
We shall call it the standard interpretation (see §4). However,
the exact meaning of these definitions may change radically
from one framework to another, depending on the type τ and on
the relevant constraints in the model theory—e.g., on special
provisions on the underlying topology T(c) or on which subsets
of A should be included in the domain of quantification Our con-
cern here is precisely with this variety of interpretations.

Note incidentally that the possibility arises of extending the
set of defined mereotopological predicates and operators by
relying on higher-order notions of connection. For instance,
using parthood and fusion we can define overlap and closure; but
then we could use these notions to introduce a corresponding
variety of connection predicates, which in turn can be used to
define corresponding notions of parthood and fusion, and so on.
We may therefore amend our notion of type by including a 4th
coordinate, indicating the level at which the predicate is defined:

if 1  ≤ i,  j,  k  ≤ 3, then 〈 i,  j,  k,  0〉  is a type;
if τ is a type and 1 ≤ i,  j,  k  ≤ 3, then 〈 i,  j,  k,  τ〉 is a type;
nothing else is a type.

The basic types give us the same as above:

C〈i,j,k,0〉(x , y ) =: Ci(x , y ),
P〈i,j,k,0〉(x , y ) =: Pj(x , y ),
σ〈i,j,k,0〉 φx  =: σkx  φx .
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Figure 2: Standard interpretation of the mereotopological relations on R2.
(The labels indicate which relations hold between x and y, in this order.)
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But the inductive types allow us to introduce higher-order con-
nection relations:

C〈1,j,k,τ〉(x , y ) =: Oτ(x , y )
C〈2,j,k,τ〉(x , y ) =: Oτ(x , cτ(y )) ∨ Oτ(cτ(x ),  y )
C〈3,j,k,τ〉(x , y ) =: Oτ(cτ(x ), cτ(y ))

Using these notions, the list of definitions given above can be
iterated, yielding further mereotopological predicates and opera-
tors. Some of these will collapse, but not necessarily all.

3 . GENERAL FACTS

Before proceeding to a comparative analysis of mereotopologi-
cal theories, we note here some general facts.

First of all, let us be more explicit about the formal setting.
We assume afirst-order language with identity L={C1,  C2,  C3}
whose non-logical vocabulary consists of the three connection
predicates. The model theory follows a standard first-order pre-
sentation. Only notice that we are interested in models that are
based on some topological space ì=(A,  T(c)), i.e., models
M =(U, ƒ) whose domain U is a non-empty subset of ℘(A)–∅
and whose interpretation function ƒ treats each connection
predicate ‘Ck’ as indicated in §2 (relative to ì). Such models are
called canonical.

It is easy to see that the following are universally satisfied in
every canonical model for each i,j (1  ≤ i,  j  ≤ 3):

Ci(x ,  x ) (C1i)
Pj(x ,  x ) (P1j)
Ci(x ,  y ) → Ci(y ,  x ). (C2i)
Pj(x ,  y ) ∧ Pj(y ,  z) → Pj(x ,  z). (P2j)

In other words, each connection relation is reflexive and sym-
metric and each parthood relation is reflexive and transitive.
Another property often associated with Pj is antisymmetry:

Pj(x ,  y ) ∧ Pj(y ,  x ) → x  = y . (P3j)

However, this may fail in some models. For instance, if the do-
main includes only two sets with a non-empty intersection (but
does not include the intersection itself), then (P3j) is false for
each j. Indeed, requiring j-parthood to be antisymmetric amounts
to treating 〈 i,j,k,0〉 -equality as identity, which in turns is logi-
cally equivalent to requiring j-connection to be extensional:

∀z(Cj(z,  x ) ↔ Cj(z,  y )) → x  = y . (C3j)

Whether this holds depends crucially on the closure operator c
and on which subsets of A are included in the domain. Figure 3
shows that there are models satisfying or falsifying any combi-
nation of the three instances of (C3j), thus showing the relative
independence of the three sorts of extensionality. This repre-
sents a significant parameter in comparing competing theories.
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Figure 3. Independence of the extensionality axioms: each pattern shows a
model that is j-extensional (1  ≤ jj≤ 3) iff the value j is displayed underneath.

Another important question is how the various Cτ, Pτ, and στ
are related. The relationship among the three connection predi-
cates is easily stated—they are ordered by increasing strength:

C1(x , y ) → C2(x , y ) (C412)
C2(x , y ) → C3(x , y ). (C423)

That every canonical model satisfies these conditionals follows
from (A1). For if something belongs to x  ∩ y , then a fortiori it
belongs both to x  ∩ c(y ) and to c(x ) ∩ y  (making (C412) true),
and if something belongs either to x  ∩ c(y ) or to c(x ) ∩ y  then it
belongs to c(x ) ∩ c(y ) (making (C423) true). On the other hand,
the converse conditionals may fail: if the domain contains two
disjoint sets x  and y , with x  ∩ c(y ) ≠∅ and y∈O(c), then x  and y
are connected in the sense of C2 and C3 but not of C1; and if
x ,  y∈O(c) and c(x ) ∩ c(y ) ≠∅, then x and y are connected in the
sense of C3 but not of C1 or C2. (See the limit cases of Figure 1.)

The three parthood predicates are not, in general, related in a
similar fashion. In fact, no instance of the following inclusion
schema (with 1 ≤ j,  j'≤ 3) is generally true:

Pj(x ,  y ) → Pj' (y ,  x ). (P4j,j ')

A glimpse at Figure 3 is sufficient to see that there are models
satisfying or falsifying any combination of the three parthood
relations, thus showing their relative independence. (Each pat-
tern illustrates a model that satisfies Pj(x ,  y ) iff it is not j-exten-
sional.) However, all these models are, in a sense, non-intended,
and one might want to rule them out precisely by assuming in-
stances of (P4j,j ') along with some form of extensionality. For
example, any model in which parthood is set inclusion satisfies
(P412) besides the 1-extensionality principle (P31).

With the fusion operator the situation is more complex. Say
that a model is k-fused for φ, where φ is any formula, iff it satis-
fies the following axiom:

∃z  φz → ∃x∀y (Ck(y , x ) ↔ ∃z(φz ∧ Ck(y , z))). (C4k)

Then the determination of the necessary and sufficient condi-
tions that a model must satisfy in order for it to be k-fused for a
given formula φ is, as far as we can see, an open problem.

4 . BOUNDARY-TOLERANT THEORIES
We now proceed to examine in some detail the logical space of
the theories that result from the options discussed above. Let
τ=〈i,j,k,τ'〉  be a type. A theory which formalizes topological
connection by Cτ, parthood by Pτ, and fusion by στ we call a
τ-theory. There are of course many distinct τ-theories, depend-
ing on how the basic predicates are axiomatized. Here we con-
sider only some indicative examples, confining ourselves to the
case τ'=0 (zero-order theories). We begin in this section  with
boundary-tolerant τ-theories, i.e., theories whose models may
include boundary elements; in the next section we shall move on
to boundary-free theories.

Consider first the case where τ is uniform (i=j=k). In this
case a τ-theory could be formulated within a proper fragment of
the language L,  namely the fragment Li={Ci}, and with τ'=0 one
can distinguish three main options (1  ≤ i  ≤ 3). However, we may
note immediately that none of these options is viable.

(a) The option i=1 yields implausible topologies in which
the boundary of a region is never connected to the region’s inte-
rior (since they never share any points).

(b) The option i=2 yields implausible mereologies in which
every boundary is part of its own complement (since anything
connected to the former is connected to the latter).
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(c) The option i=3 yields implausible mereotopologies in
which the interior of a region is always connected to its exterior
(so that boundaries make no difference) and in which the closure
of a region is always part of the region’s interior.

There is also a sense in which these theories trivialize all
mereotopological distinctions in the presence of boundaries.
For (a)–(c) imply that if τ is uniform, any canonical model that
includes the boundaries of its elements satisfies the conditional:

Cτ(x ,  y ) → Oτ(x ,  y ).

(This is obvious for i=1. For i=2 or 3, it follows from (b) and
(c), which imply that every object overlaps its complement.)
Hence, in every such model the τ-abut predicate Aτ defines the
empty relation, and so do the predicates of tangential and
boundary parthood (TPτ, BPτ) and tangential and boundary over-
lap (TOτ, BOτ). We take these results to show that if boundaries
are admitted in the domain, uniformly typed theories are inade-
quate. In fact, this applies not only to uniform types, but to all
types where i=j. (See [3] and [24] for related material.)

Moving on to non-uniform types, we may note that some
have been proposed in the literature, specifically for the case
τ=〈2,1,1,0〉 : an early example is to be found in [5], though the
topological primitive there is Opτ rather than Cτ. (One gets a
definitionally equivalent characterization of Cτ via the defini-
tions of §2. A similar warning applies to some other theories
discussed below.) Other examples may be found in [19, 20, 27,
31, 33]. Since parthood Pτ is not defined in terms of the connec-
tion primitive Cτ, these theories need at least two distinct primi-
tives (corresponding to the parameters 1 and 2 in the type); but
since fusion στ is typically understood using the same primitive
as parthood, a third primitive is not needed (whence the equality
of the second and third coordinates in the type).

These theories typically represent an attempt to reconstruct
ordinary topological intuitions on top of a mereological basis.
In fact, it is immediate from the definition that in this case Cτ
corresponds to the notion of connection of ordinary point-set
topology: two regions are connected if the closure of one inter-
sects the other, or vice versa. Moreover, Pτ is typically assumed
to satisfy the relevant extensionality and inclusion principles.
Thus, a minimal theory of this kind is typically axiomatized
using (C12), (C22), (P11), (P21), (P31), (P412). If we also add the
fusion principle (C41), the result is a mereotopology subsuming
what is known as classical extensional mereology [25], in
which Pτ defines a complete Boolean algebra with the null ele-
ment deleted. And if we add the following:

Pτ(x ,  cτ(x )) (K1)
Pτ(cτ(cτ(x )),  cτ(x )) (K2)
Eτ(cτ(x ) +τ cτ(y ), cτ(x  +τ y )) (K3)

the result is what may be called a full mereotopology, in which
cτ behaves as the standard Kuratowski closure operator. (A0 has
no analogue due to the lack of a null element.) This corresponds
to the “standard interpretation” of Figure 2.

All of these theories, of course, must account in some way
for the intuitive difficulties that arise out of the notion of a
boundary, and correspondingly of the distinction between open
and closed entities. For instance, [27] considers various ways of
supplementing a full mereotopology with a rendering of the
intuition that boundaries are ontologically dependent entities,
i.e., can only exist as boundaries of some open entity (contrary
to the ordinary set-theoretic conception). In our notation the
simplest formulation of this intuition is given by the axiom:

∃yBPτ(x , y ) → ∃z(Opτ(z) ∧ BPτ(x , cτ(z))). (B1)

Further proposals along these lines exploit a distinction be-
tween “fiat” and “bona fide” boundaries [26, 30]. At present,
however, the metatheory of such theories is still unexplored.

It is also noteworthy that all theories of this sort have type
〈2,1,1,0〉 . We conjecture that this is indeed the only viable op-
tion. For instance, it is easy to see that a 〈1,2,k,0〉 -theory
would run into the troubles mentioned in (a)-(b) above.

5. BOUNDARY-FREE THEORIES

Though the idea of a uniform type appears to founder in the case
of boundary-tolerant theories, it has been taken very seriously
in the context of boundary-free theories, i.e., theories that leave
out boundaries from the universe of discourse in the intended
models. Theories of this sort are rooted in [13,  36] and have
recently become popular under the impact of Clarke’s formula-
tion in [10,  11] (see also [15]). Clarke’s own is a 〈1,1,1,0〉 -
theory, and some later authors followed this account (e.g. [1, 2,
22, 23]). However, one also finds examples of theories of type
〈2,2,2,0〉  (e.g. in [17,  21]) as well as of type 〈3,3,3,0〉  (espe-
cially in the work Cohn et al. [12,  16,  24], which has led to a
rather extended body of results and applications in the area of
spatial reasoning; see [14] for an independent example). Indeed,
most if not all boundary-free theories in the literature are uni-
formly typed: this is remarkable but not surprising, since the
main difficulties in reducing mereology to topology lies pre-
cisely in the presence of boundaries.

Note that, by definition, a boundary-free τ-theory admits no
boundary elements. This is typically accomplished by adding as
an axiom the requirement that everything has an interior part:

∀xRgτ(x ), (R)

which immediately implies the emptiness of the relations BPτ
and BOτ. However, let us emphasize that even in a boundary-free
theory boundaries may be included, not in a model’s domain, but
in the topological space relative to which the model is defined.

Moreover, note that an axiom such as (R) gives us a way of
studying the spectrum of boundary-free theories in terms of their
boundary-tolerant counterparts. To this end, define the τ-region
relativization of a formula φ, written φRgτ, in the obvious way:

Cτ(y ,  x )Rgτ = Cτ(y ,  x )
(¬φ)Rgτ = ¬(φRgτ)
(φ  ∗  ψ)Rgτ = ψRgτ ∗ φRgτ

(∃xφ)Rgτ = ∃x (Rgτ(x ) ∧ φRgτ)
(∀xφ)Rgτ = ∀x (Rgτ(x ) → φRgτ)

Clearly, the following is true in every (canonical) model, as one
can prove by ordinary induction on φ:

∀xRgτ(x ) → (φ ↔ φRgτ).

Hence, it follows that in general a formula φ is a theorem of a
boundary-free τ-theory iff its relativization φRgτ is a theorem of
the boundary-tolerant theory obtained by dropping (R).

More specifically, consider now the three main options men-
tioned above, where τ is a basic uniform type 〈 i,i,i,0〉 . Unlike
their boundary-tolerant counterparts, none of these options
yields a collapse of the basic mereotopological distinctions
between tangential and interior parthood (TPτ, IPτ) or between
tangential and interior overlap (TOτ, IOτ). However, the options
diverge noticeably with regard to the distinction between open
and closed regions (Opτ, Cl τ). The general picture is as follows.
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(a) The case i=1 allows for the open/closed distinction,
yielding theories in which the relation of abutting (Aτ) is a pre-
rogative of closed regions (open regions abut nothing). As a
corollary, such theories determine non-standard mereologies
that violate the supplementation principle:

∀z(Pτ(z,  x ) → Oτ(z, y )) → Pτ(x ,  y ) (S)

(It is enough to take y  open and x  equal to the closure of y.) This
is so even if the theory includes the extensionality axioms (P31)
or (C31). For although extensionality guarantees that a closed
region x is never part of its own interior y , this is due to a mere-
ological difference (a boundary) which cannot be found in the
domain of regions. This is a feature that some authors have
found unpalatable: as [25] put it, one can discriminate regions
that differ by as little as a point, but one cannot discriminate the
point. There are also some topological peculiarities that follow
from the choice of C1 as a connection relation. For instance, it
follows immediately that no region is connected to its comple-
ment, hence that the universe is bound to be disconnected. This
was noted in [1, 11], where the suggestion is made that self-
connectedness should be redefined accordingly:

Cn' τ(x ) =: ∀y∀z(Eτ(x ,  y+τz) → Cτ(cτ  (y ),  cτ  (z))).

(b) The case i=2 also allows for the open/closed distinction,
but yields theories in which the relation of abutting may hold
between two regions when one is open and the other closed in
the relevant contact area. This yields a rather standard topologi-
cal apparatus, modulo the absence of boundary elements. How-
ever, also in this case the mereology is bound to violate (S).
(c) The case i=3 is the only one that does not allow for the
open/closed distinction: in this case every region turns out to be
τ-equal to its interior as well as to its τ-closure. This means that
τ-theories of this type cannot be extensional—in fact, they
yield highly non-standard mereologies. However, this is coher-
ent with the fundamental idea of a boundary-free approach. For
one of the main motivations for going boundary-free is pre-
cisely to avoid the puzzles that arise from the open/closed dis-
tinction [16]. In addition, and for this very same reason, such
theories can validate (S), thereby eschewing the problem men-
tioned in (a)–(b).

We are not aware of any non-uniformly typed boundary-free
theories, but it would certainly be interesting to pursue some
abstract study in this direction. We hope our framework may
constitute a first step towards this possibility.

6 . CONCLUDING REMARKS
The paper lays the foundation for a systematic comparison and
analysis of mereotopological theories, but further work is in
order. For one thing, a systematic taxonomy of theories would
require a completeness proof for each of them. There are not
many results of this kind in the literature, and we hope the appa-
ratus developed here may be of use for this purpose. Secondly,
we have not investigated any higher level theories (theories of
type 〈 i,j,k,τ〉 for τ≠0), or the axiomatic treatment needed to
block higher-level ramifications of more familiar theories. Fi-
nally, although we have illustrated some points in the space
exposed by our framework with extant theories and shown that
others are not sensible, there are other existing theories and
notions that need to be analysed and placed into the framework,
for instance the notions of weak connection [1,  2] and strong
connection [4], or the coincidence-based account of [9, 28].
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