
1 

Atoms, Gunk, and the Limits of ‘Composition’ 
Hsing-chien Tsai 
National Chung-Cheng University, Min-Hsiung, Chia-Yi 62102, Taiwan  

Achille C. Varzi 
Columbia University, New York, NY 10027, USA 

 
 

[Final version published in Erkenntnis, 81:2 (2016), 231–235] 
 
 
 

Following van Inwagen (1990: 29), the binary mereological predicate ‘is composed 
of’ is generally defined as follows 

(1) x is composed of the ys =df x is a sum of the ys and the ys are pairwise disjoint (i.e., 
no two of them have any parts in common), 

where 

(2) x is a sum of the ys =df the ys are all parts of x and every part of x has a part in 
common with at least one the ys. 

This predicate1 has played a central role in the debate on the special composition 
question and on related metaphysical issues concerning the mereological structure 
of objects. In this note we show that the characterization in (1) is nonetheless inade-
quate. We do so by constructing a mereological model M where everything qualifies 
as composed of atoms even though some elements in the domain are gunky, i.e., can 
be divided indefinitely into smaller and smaller proper parts.  

To this end, let G be a nonempty open interval on the real line, ℝ, and let A be a 
countably infinite set of points of ℝ such that G ∩ A = ∅. For definiteness, we may 
identify G with the open interval (0, 1) = {x ∈ ℝ: 0 < x < 1} and A with the set of all 
natural numbers, ℕ. Next, define two functions α and β as follows: 

(i) for every open subinterval I = (x, y) of G, let α(I) = (x, 
x + y

2 ) and β(I) = (
x + y

2 , y); 
(ii) for every infinite subset P of A, let α(P) = {n ∈ P: ƒP(n) is even} and β(P) = {n ∈ P: 

ƒP(n) is odd}, where ƒP is the mapping of P into ℕ such that ƒP(n) = m if and only if 
n is the m-th element of P (relative to the natural linear ordering induced by ≤). 

                                                
1 Or, if one wishes to avoid plural quantification and stick to a standard first-order syntax, the 

analogous but weaker predicate ‘x is composed of the φs’, where ‘φ’ is an open formula.  
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Thus, intuitively, given an open interval I ⊆ G, α(I) and β(I) are the two disjoint 
open subintervals corresponding to the left and right halves of I, respectively, sepa-
rated by I’s midpoint. Similarly, given a countably infinite set P ⊆ A, α(P) and β(P) 
are the two disjoint countably infinite subsets corresponding to the even-valued and 
the odd-valued halves of P, respectively, relative to ƒP. See Figure 1 for an illustra-
tion of the progressive “splitting” of G = (0, 1) and A = ℕ resulting from repeatedly 
applying α and β. 

 

Figure 1: Progressive “splitting” of G and A by repeated application of α and β. 

Third, for every n ≥ 0, define the set Dn by induction: 

D0 = {G ∪ A}  
Dk+1 = {α(I) ∪ α(P): I ⊆ G, P ⊆ A, I ∪ P ∈ Dk} ∪ {β(I) ∪ β(P): I ⊆ G, P ⊆ A, I ∪ P ∈ Dk}.  

Thus, each Dk+1 will contain exactly 2k+1 elements, half of which will be of the form  

α(I) ∪ α(P) and the other half of the form β(I) ∪ β(P) for all I and P such that I ∪ P 
is an element of Dk. With G = (0, 1) and A = ℕ, the beginning of the sequence will 
look like this: 
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D0: {{x ∈ ℝ: 0 < x < 1 or x ∈ ℕ}}  = {(0, 1) ∪ {0, 1, 2, …}} 
D1:  {{x ∈ ℝ: 0 < x < 1/2 or x = 2y for some y ∈ ℕ},  = {(0, 1/2) ∪ {0, 2, 4, …}, 
 {x ∈ ℝ: 1/2 < x < 1 or x = 2y + 1 for some y ∈ ℕ}}    (1/2, 1) ∪ {1, 3, 5, …}} 
D2:  {{x ∈ ℝ: 0 < x < 1/4 or x = 4y for some y ∈ ℕ},  = {(0, 1/4) ∪ {0, 4, 8, …}, 
 {x ∈ ℝ: 1/4 < x < 2/4 or x = 4y + 2 for some y ∈ ℕ},    (1/4, 2/4) ∪ {2, 6, 10, …}, 
 {x ∈ ℝ: 2/4 < x < 3/4 or x = 4y + 1 for some y ∈ ℕ},    (2/4, 3/4) ∪ {1, 5, 9, …}, 
 {x ∈ ℝ: 3/4 < x < 1 or x = 4y + 3 for some y ∈ ℕ}}    (3/4, 1) ∪ {3, 7, 11, …}} 
⋮  ⋮ 

Finally, we construct a mereological structure M as follows: 

(i) the domain of M, DM, is the set {{a}: a ∈ A} ∪ ⋃n ≥ 0 Dn; 
(ii) the parthood predicate is interpreted in M as set inclusion, i.e., as the binary relation 

{⟨x, y⟩ ∈ DM × DM: x ⊆ y}. 

Now, it is easily checked that M has the following two properties. On the one 
hand, every element x ∈ DM has some singletons from the set {{a}: a ∈ A} as parts. 
This means that M satisfies the Atomicity axiom, as usually formulated: 

(3) Atomicity: Everything has atomic parts, 

where 

(4) y is atomic =df y has no proper parts (i.e., no parts other than itself). 

On the other hand, every non-atomic element x ∈ DM can be divided indefinitely in-
to proper parts of the form γ0(…(γn(G))…) ∪ γ0(…(γn(A))…), where each γi is either 
α or β. Thus, every such element has gunky parts, too, where: 

(5) y is gunky =df every part of y has proper parts. 

This is unpleasant. It is tempting to say that M shows the inadequacy of (3) vis-à-
vis the atomistic intuition that this principle is meant to express. However, note that 
any non-atomic x ∈ DM does in fact count as being composed of atoms in the sense 
of (1). This follows directly from the fact that, as long as parthood is reflexive and 
transitive, (3) logically entails 

(6) Everything is composed of atoms. 

(See Varzi 2015, §3.4.) But the truth of (6) in M can also be checked directly against 
the definitions in (1) and (2). For let x be an element of DM of the form I ∪ P and let 
the ys be the singletons of the points in P. Clearly, each of the ys is part of x. Con-
versely, if z is any part of x, then either z is one of the ys or z is an item of the form 
I′ ∪ P′, with I′ ⊆ I and P′ ⊆ P, and in either case it follows that z overlaps at least one 
of the ys. This means that x is a sum of the ys in the sense of (2). And since the ys 
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are pairwise disjoint (trivially), it follows that x counts as composed of the ys in the 
sense of (1). Thus—here is the moral we wish to draw—not only is M a non-
atomistic model of the Atomicity axiom (3), which is bad enough.2 M is also a coun-
terexample to the classical definition of composition in (1), since its domain con-
tains elements that count as composed of atoms even though the atoms are not 
enough to generate them.  

We leave it to the reader to determine whether the culprit is, as it often happens, 
the relevant notion of mereological sum, as defined in (2). For our part, we prefer to 
conclude with a remark concerning the sort of mereology that is needed to block the 
problem. To this end, note first of all that M satisfies the following principle: 

(7) Strong Supplementation: If x is not part of y, then x has a part that is disjoint from y. 

(Proof: Pick any x, y ∈ DM and suppose x ⊈ y. By definition of DM, either x = {a} for 
some a ∈ A, or x ∈ Dn for some n ≥ 0. In the first case, it follows immediately that 
{a} ⊆ x and {a} ∩ y = ∅. In the second case, x must be a subset of G ∪ A obtained 
by applying α and/or β. Since x ⊈ y, it follows that either x ∩ G ⊈ y or x ∩ A ⊈ y. 
But the inductive definition of Dn implies that x ∩ G ⊆ y if and only if x ∩ A ⊆ y.3 
Thus, x ∩ A ⊈ y, which means that we can again pick some a ∈ A such that {a} ⊆ x 
and {a} ∩ y = ∅. In both cases, we have found an atom {a} ∈ DM that is a part of x 
and disjoint from y.) 

It is a known fact that (7) together with the partial-order properties of parthood 
(all of which are satisfied in M) entails 

(8) Extensionality: If x and y are non-atomic and have the same proper parts, then x = y. 

(See Simons 1987, pp. 28–29.) It follows, therefore, that so-called Extensional Mer-
eology—the theory obtained by adding (7) to the partial-order axioms—is not strong 
enough to block the problem, i.e., to guarantee that Atomicity and Composition be-
have as intended. By contrast, it is easy to see that M does not satisfy the following 
principle: 

(9) Universalism: For any ys there is a z that is a sum of the ys. 

(For instance, given any two points a1, a2 ∈ A, the atoms {a1}, {a2} are in DM but 
their sum {a1} ∪ {a2} is not.) Principle (9) is also known as Unrestricted Composi-

                                                
2 Worse, in fact, than the cases discussed in Cotnoir (2013) and Shiver (2015), which involve 

non-well-founded atomistic models that allow for infinite descending proper-parthood chains. 
3 This is because any element in DM of the form I ∪ P is such that the position of I in the binary 

tree rooted at G is exactly the same as the position of P in the binary tree rooted at A. For, suppose 
x ∩ G ⊆ y. Then x ∩ G must be in the sub-tree rooted at y ∩ G. But then x ∩ A will be in the sub-tree 
rooted at y ∩ A. Hence x ∩ A ⊆ y ∩ A ⊆ y. Similarly, if x ∩ A ⊆ y, we must have x ∩ G ⊆ y ∩ G ⊆ y.  
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tion, and together with (7) yields the theory known as General Extensional Mereol-
ogy, also known as Classical Mereology (from Leśniewski 1927–1930 and Leonard 
& Goodman 1940, modulo plural quantification). Such a theory is, therefore, strong 
enough to do the job, and it is easy to see why. For, given (9), any element x ∈ DM of 
the form I ∪ P can be split into its gunky and atomistic parts: one can first form the 
sum, z, of the atoms in P and then take the difference of x minus z, i.e., effectively, 
the sum of all parts of x that are disjoint from z, which is precisely the gunky part 
I of x.  

It is an open question whether models like M can also be ruled out by weaker 
theories, i.e., theories properly included between Extensional Mereology and Classi-
cal Mereology. What is clear, however, is that short of some principle governing 
mereological summation, the notion of ‘composition’ that has shaped the recent de-
bate on atomism and on other fundamental mereological issues is defective.4 
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