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This is an excellent introduction to axiomatic set theory, viewed both as a
foundation of mathematics and as a branch of mathematics with its own sub-
ject matter, basic results, open problems. Written by one of the leading con-
tributors to the field, it covers all the basic material, but with some novelties
that make it interesting also to the advanced reader.

The book begins with a couple of chapters devoted to the first, basic re-
sults of Cantorian set theory, including detailed accounts of Cantor’s diago-
nal arguments and of the Schroöder-Bernstein Theorem.  While the style of
presentation might strike some readers as rather demanding for a start (in
spite of the useful figures accompanying the proofs), by the end of chapter 2
the effort is rewarded and the stage is set for appreciating the need for an
axiomatic framework. This is introduced in Chapter 3, which follows rather
faithfully Zermelo’s 1908 pragmatic approach vis-a-vis Russell’s paradox.
The author also follows Zermelo in allowing for Urelemente, which is moti-
vated mostly by a desire to remain neutral with regard to the opposition be-
tween “the small view” (that the set theoretic universe consists exclusively
of those objects whose existence is guaranteed by the axioms) and “the
large view” (that the universe is closed under the axioms, but may contain all
sorts of animals to begin with). This neutrality represents a philosophical
constant in the book. Thus, while the author takes very seriously the idea that
every mathematical object can be construed as (i.e., faithfully represented by)
a set, he is also careful in emphasizing the modal dimension of this idea. For
instance, relations, functions, and the natural numbers can be represented by
sets, but need not be.

The next two chapters introduce the basic material about the natural
numbers (including induction and recursion) and cardinal arithmetic. By the
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end of Chapter 5, one can see how Zermelo’s system would allow one to go
a long way in the reconstruction of elementary discrete mathematics, the ra-
tional numbers, the reals. The emphasis, however, is not on the details of this
development (which is left for the most part to the Problems or, as in the case
of the real numbers, postponed to a rich Appendix.) The emphasis is on the
fact that all of this is attainable within the framework of Zermelo’s basic axi-
oms. Indeed this is one of the main novelties of the book. Since Fraenkel’s
Axiom of Replacement is not introduced until the end, neither is von Neu-
mann’s theory of ordinals and cardinals. So N  is not introduced as the set of
the first ω ordinals, but as a structured set (unique up to isomorphism) satis-
fying Peano’s postulates. This approach has some cost, for certain develop-
ments would be much simpler (and in some places also more natural) if the
ordinals were brought in earlier. Yet the exercise is worthwile, for it shows
how far one can actually go without Replacement. (It is a common claim that
one can go as far as to develop 99% of modern mathematics, modulo the
availability of some Choice principle, but one hardly gets a clear picture of
what that really means unless one tries. Moreover, one learns that all the ba-
sic identities of cardinal arithmetic can be established as equinumerosities,
which is something a beginner might easily overlook. The only danger is that
if the book is used as a text, one may not be able to get far enough to see the
ordinals at all.)

Beginning with Chapter 6, the material gets harder and the presentation
more compact. Chapter 6 is itself a novelty for an introductory book, as it is
centered around ideas and results in the context of the theory of partial or-
derings and partial functions. This leads to an elegant generalization of the
recursion theorem which takes the form of a continuous fixed point theorem.
Apart from its intrinsic interest, this also represents an interesting point of
contact between classical set theory and contemporary theoretical computer
science, as the author rightly emphasizes. (One could have taken this oppor-
tunity to mention other applications as well, e.g. partial semantics and revi-
sion theories.) The fixed point theorem in question is of course a special
case of Zermelo’s theorem, which is intimately related to the theory of wel-
lorderings. This forms the topic of Chapter 7, which also deals with Transfi-
nite Induction and Recursion. Coupled with Hartogs’ Theorem, this provides
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the necessary machinery to apply recursive definitions and proofs by induc-
tion to situations far removed from the natural numbers.

Chapters 8 and 9 focus on the Axiom of Choice. There is a good blend
of technical results and philosophical remarks in these chapters, although the
starting point is somewhat misleading. The author argues that, naively under-
stood, AC is obvious in view of the Powerset Axiom: “When we grant
sethood to the class {X | X ⊆ Α} of all subsets of A, we truly mean all sub-
sets of A, including those for which the membership criterion is not deter-
mined by some explicit law but by free choice, by chance if you will” [120].
But of course the Powerset Axiom has nothing to do with this. ℘(A) con-
sists of all subsets of A, but whether these include inter alia the range of a
choice function for A is a totally independent question. (One should rather
put it thus: if there were no choice set for A, it would seem that the notion of
a subset includes some implicit restrictions which are not in the spirit of
Zermelo’s “limitation of size” approach. For, after all, a choice set must be
a subset.) Apart from this, these two chapters contain a lot of interesting data.
Particualry valuable is the inclusion of material concerning weaker versions
of AC, most notably the Axiom of Dependent Choices, which is enough to
justify all classical mathematics. Moreover, on the technical side, there are
some elegant applications of the material on fixed points introduced earlier.
(See for instance the nice proofs of the various equivalents to AC.) This
means that Chapter 6 is not skippable even if you are not interested in its
relevance to computer science; however the effort is quite worthwhile.

Chapter 10 on Baire space, on the other hand, is in principle skippable
without loss of continuity. It covers some results in the theory of pointsets
which are of special interest to analysts. Their relevance to the Continuum
Problem is also emphasized, though, so the non-analyst may use that as a
reading key for this chapter.

Finally, Chapters 11 and 12 introduce the Axiom of Replacement and
eventually the von Neumann ordinals and cardinals. This is all pretty stan-
dard, as is the brief illustration of von Neumann’s picture of the set-theoretic
universe (the cumulative hierachy of pure, well-founded sets). Still, it is nice
to see at this point the further extension of the recursion principle allowed by
Replacement. Indeed this gradual strengthening of the power of recursive
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definitions constitutes a valuable fil rouge through the book. By contrast, it
would have been nice to see here more indications of the deductive strength
of Replacement with respect to the overall axiomatic system. (The derivabil-
ity of the Separation Axiom is only brought up in an exercise, and that of
Pairing is not even mentioned.)

Throughout the book, the technical presentation is accompanied by use-
ful historical remarks, including some indications of the main consistency
and independence results about AC and CH (Gödel, Cohen, Solovay).
Moreover, there is a rich Appendix devoted to the study of various natural
set-theoretic models, including Rieger universes (which violate the Principle
of Purity) and in particular Aczel’s antifounded universe (which features a
rich variety of non-well-founded sets). This is certainly admirable and con-
firms the recent change of attitude among set-theorists with regard to the
axiom of Foundation. (This is the second book on elementary set theory that
includes a section on non-well-founded sets, after Keith Devlin’s The Joy of
Sets, 1993.) Perhaps this is a place where the author could have been more
generous with informal remarks and examples. Some decades ago, Fraenkel
and Bar-Hillel argued that “one can accept [the Axiom of Foundation] not
as an article of faith but as a convention for giving a more restricted meaning
to the word ‘set’, to be discarded once it turns out that it impedes significant
mathematical research” [Foundations of Set Theory, Second Revised Edi-
tion, p. 89]. Arguably, today there are indeed many interesting applications
of non-well-founded sets apart from independence proofs—from the se-
mantics of natural language and programming languages to knowledge rep-
resentation and game theory. (Barwise and Moss’ 1996 book, Vicious Cir-
cles, gives an excellent overview of such a variety of applications.) There are
therefore good reasons for “discarding” Foundation from the axiomatic
foundations of set theory. This is the author’s own attitude. But he does little
to help the reader appreciate it.

It is also a pity that the author decided not to back up his presentation
with adequate bibliographic references: a generic reference to the Dover edi-
tion of Cantor’s Beiträge and to van Heijenoort’s collection of classics is
hardly enough. Likewise, a more extensive index and a complete glossary of
symbols would make the book more useful as a reference. As for the editing,
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there are unfortunately numerous errata which may be disturbing if the book
is used as a text (although spotting them is certainly good exercise for the
reader). Some nasty ones: on p. 19, the quantifier in GCH should have
‘℘(A)’ in place of ‘A’; on p. 21, first line, ‘G’ should be ‘C’; on p. 59, the
range of the functions hy and ƒy should be E, not E × N, and the condition for
ƒy(n +  1) should refer to ƒy(n), not ƒ(n); on p. 69, first line, the second ‘N’
should be ‘N × N’; on p. 95, just before (7.8), ‘x’ should read ‘y’ (twice);
on p. 99, the formula following (7.13) should define σt, not σu (likewise, two
lines above, ‘u = Sv’ should read ‘t = Sv’); on p. 107, line 3, ‘segV’ should
read ‘segU’, and on line 10, ‘<o’ should read ‘<  χ(A)’; on p. 121, line 11 from
bottom, ‘A ≤/ c h(A)’ should read ‘h(A) ≤/ c A’; on p. 123, line 11 from bottom
should read ‘ƒ(0) = a’; on p. 139, last line of Lemma 9.20, ‘infc’ should
read ‘supc’; and on p. 200, second last line, “every von Neumann cardinal”
should read “every transfinite von Neumann cardinal”  (similarly in exercise
12.21, p. 201).

Even with these limitations, which can easily be overcome in a second
edition, the book remains excellent and quite suitable as a textbook, ideal for
advanced undergraduate or beginning graduate students in mathematics,
philosophy, and computer science.


