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1. Introduction

There is a rather dominant view according to which functional application alone is too
poor a paradigm for the analysis of complex linguistic structures: we also need func-
tional abstraction. For instance, variable-binding operators such as quantifiers, integrals,
etc. seem to run afoul of the basic functor/argument scheme, though they can be ac-
counted for easily with the help of some abstraction device 1. More generally, there is
some evidence that (i) pure categorial grammars, based exclusively on the operation of
functional application, are essentially equivalent to context-free phrase-structure gram-
mars, hence subject to the same severe limitations 2; and (ii) there is a strong connec-
tion between the principles of functional abstraction – most notably lambda-conversion
– and those transformation-like rules that seem so necessary to bring out the relations
between different levels of linguistic analysis, e.g. between deep logical structure and
surface realizations 3. As a result, lambda-equipped languages are frequently presented
as an extension of pure categorial languages — a necessary extension obtained by
adding a new primitive operation to increase combinatorial force and descriptive power.

In the following I argue against that view by presenting a way of interpreting
functional abstraction within a pure categorial framework. Roughly, the suggestion is
that variable binders can be treated as intensional operators (they make the value of an
expression under an interpretation depend on its value under other interpretations), and
intensional operators admit a natural treatment within the functor/argument scheme.
Part of this is meant as a technical point; but my concern is also with some more gen-
eral philosophical issues. Particularly, I shall consider a strong form of semanticism
that seems to emerge from the proposed account: the view that logic is essentially a
theory in the model-theoretic sense, i.e. a set of sentences and inference patterns that
come out valid as a result of selecting a certain class of models as the only admissible
ones (relative to a given language).
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2. Functional application

My notion of a categorial framework may not be entirely standard, so I shall first out-
line it briefly.

The basic idea is that the expressions of a language may all be classified into two
types 4: individual (or primitive) and functional (or derived). The individual types cor-
respond to those categories of expressions whose syntactic status is not analyzed in
terms of other categories: declarative sentences,  proper nouns, and presumably not
many others. By contrast, functional types are defined in terms of simpler types in a
way that fixes the combinatorial properties of the corresponding categories: for each
pair of types t and t', primitive or functional, a new derived type t'/t  can be formed, cor-
responding to the category of those functors that combine with expressions of type t'
to produce expressions of type t. Thus, for instance, if 0 is the type of sentences and 1
the type of nouns, then 0/0 and 1/0 will be the types of monadic connectives and predi-
cates respectively, (0/0)/(0/0) and (1/0)/(1/0) the types of the relevant adverbial
modifiers, and so on 5  .

Using T  to denote the set of all types, i.e. the closure of a suitable set of individual
types under the slash operation /, the idea is then that the expressions of a language can
be recursively specified on the basis of some type assignment to its symbols: for each
t∈T , the corresponding category of expressions comprises all t-typed symbols (if any)
plus all those expressions that can be obtained by applying a given structural operation
to expressions of type t'/t  and t' for some suitable t'∈T .

A language is a triple L =(s, g, E) satisfying the following conditions:
(a) s is a sequence of symbols, each associated with an ordinal index ξ and a

type index t ;
(b) g is a binary structural operation well-grounded on s;
(c) E is the T -termed system of smallest categories that, for all 〈ξ,t〉∈D s and all

t,t'∈T , (i) sξ,t ∈Et , and (ii) if x∈Et'/t and y∈Et' , then g(x, y)∈Et
 6.

It is understood that both s and g need be one-one to avoid ambiguities: combined with
the requirement that g be well-grounded on s (i.e. R g ∩ Rs=Ø), that will secure that
each expression be uniquely defined as either a symbol or a compound of the form
g(x, y). No further proviso is needed, though one may of course single out a particular
class of languages by implementing clauses (a)-(c) as desired. For example, one may
require that all functional expressions cancel to individual expressions (in the sense
that Et'/t ≠Ø always implies that Et' ≠ Ø, hence Et ≠Ø), and that g be the operation of
concatenation (so that g(x, y) is always a string xy). A language satisfying these addi-
tional stipulations may be called standard.

Turning now to the notion of a model, the general idea is that a model must act as
a sort of semantic lexicon: it must determine what kind of things may be assigned to



3

the basic components of the given language as their semantic counterparts, and it must
do so within the limits set by the relevant type distinctions. The definition of a model
therefore follows essentially the same format as that of a language:

A model for a language L =(s, g, E) is a triple M =(d, h, I ) satisfying the following
conditions:
(a) d is a sequence of denotations, one for each symbol of s;
(b) h is a binary operation;
(c) I is a T -termed system of domains so that, for all 〈ξ,t〉∈Ds and all t,t'∈T , (i)

dξ,t ∈It, and (ii) if x∈It'/t and y∈It' , then h(x, y)∈It .

Also in this case, the intuitive appeal of a particular model depends on the actual
make-up of the basic components d, h, I, but a major feature of the framework is pre-
cisely that one can in principle remain neutral with regard to such matters. Just as the
notions of sentence, noun, predicate, etc. need not be defined except in relation to some
type assignment, likewise their semantic counterparts can be given a purely formal, in-
direct definition. One may then single out the desired class of models simply by im-
plementing clauses (a)-(c) with the appropriate additional conditions. For instance, a
standard (Fregean) model would be one in which every functorial domain It'/t is a set
of functions ƒ: It' → It, and where h is the corresponding operation of application (in the
sense that h(x, y) always yields x(y)).

Finally, the bridge between languages and models is provided by a straightfor-
ward notion of a valuation. This is what makes the framework particularly appealing,
apart from any considerations of esthetic elegance and conceptual parsimony. For it
suffices to note that every language is homomorphic to any of its models. That is, if
L =(s, g, E) is a language and M =(d, h, I ) a corresponding model, then there exists a
unique map ƒ: UR E → UR I so that (i) ƒ(sξ,t )=dξ,t for each 〈ξ,t〉∈Ds, and (ii) ƒ(g(y, z)=
h(ƒ(y),ƒ(z)) for each 〈y,z〉∈Dg. This means that M  is sure to provide all the informa-
tion that is needed in order to evaluate every expression of L : d assigns a denotation to
each basic expression, and h says how to compute the value of a compound expression
given the values of its component parts 7.

The valuation of a language L  on a corresponding model M  is the unique ho-
momorphism V  between L  and M .

3. Quantifiers as intensional functors

The general framework outlined above (not a semantic theory, but a framework wherein
each of a variety of semantic theories can be obtained by varying the particular form of
the language and the specific constraints on the relevant models) is based essentially on
the single principle of functional application:
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The value of the result of applying a functor y to an argument z is the result of ap-
plying the value of y to the value of z.

In particular, relative to standard models of standard languages, this principle reduces
to the simple equation V (yz)=V (y)(V (z)).

How do we fit variable binding into this simple scheme? Consider first how the
scheme works in an easy case, say a propositional language with sentence symbols and
connectives. Let tn/t' abbreviate a type t0  /(t1/(…/(tn-1/t' )…)), where ti =t for each i<n (for
n=0, tn/t' reduces to t'). Using this notation, a propositional language can be defined
quite simply as a (standard) language L =(s, g, E) whose symbols are associated with
types of the form 0n/0 for various n ≥  0. Correspondingly, a classical propositional
model would just be any standard model M =(d, h, I ) such that I0  =2={0,1} (0 and 1 for
truth and falsity). In particular, if L  includes the usual connectives for negation ~ (of
type 0/0), conjunction ∧ (of type 02/0 ), etc., then M  would have to satisfy the ad-
ditional requirement that these symbols denote the appropriate Boolean operations
on 2:

(~) if sξ,t = ~, then dξ,t (x)=1–x for all x∈2
(∧) if sξ,t = ∧, then dξ,t (x)(y)=x ∩y for all x, y∈2

Likewise for the other connectives. The resulting valuation function would, relative to
such models, yield the usual results.

Now this can be generalized in several ways. For instance, one can by the same
pattern provide a semantic account conforming to a variety of non-classical proposi-
tional logics: all that matters is that the desired domains of interpretation and the in-
tended meaning of each connective be specified accordingly, by setting the relevant
constraints on the admissible models. The general format need not change. More inter-
estingly, one can in a similar way account for the semantics of so called “intensional”
languages, say the language of a propositional modal calculus. The semantic analysis
of such a language is sometimes viewed as inducing a drastic departure from that of
purely extensional languages, for the meaning of a modal connective is taken to depend
on factors that cannot possibly be captured by an algebraic operation on truth-values.
In a categorial framework the treatment is perfectly uniform: to account for the relevant
factors one only has to refer to the appropriate class of models, requiring e.g. that the
basic domains of interpretation be not just sets of flat, unanalysed entities (truth-
values), but sets of functions ranging over those entities and taking as arguments items
from an appropriate set of intensional features. Thus, if L  is a propositional language
with modalities, a suitable model could be any (standard) model M =(d, h, I ) where
I0  =2W  for some non-empty set W  of “possible worlds”. The interpretation of ~, ∧,
and the other extensional connectives is not disturbed by this shift from truth-values to
truth-valued functions. But the shift becomes relevant as we turn to the modal connec-
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tives, say the necessity connective ■ . For the intensional character of such a connective
can be accounted for precisely by making its value for a given argument at a given pos-
sible world depend on the value of the argument at different possible worlds (e.g. by
making it true at that world iff it is true at every world).

(~) if sξ,t = ~, then dξ,t (x)(w)=1–x(w) for all x∈2W  and w∈W
(∧) if sξ,t = ∧, then dξ,t (x)(y)(w)=x(w) ∩y(w) for all x, y∈2W  and w∈W
(■ ) if sξ,t = ■ , then dξ,t (x)(w)=I{x(w'): w'∈W} for all x∈2W  and w∈W

So much is fairly well known. The examples bear witness to the insightfulness of
a categorial framework, which lies in the unity of the syntactic and semantic analyses it
provides. What I want to stress is that this very insightfulness has far reaching conse-
quences also with respect to the more complex cases I mentioned at the beginning.

Consider for instance an elementary language with quantifiers. Syntactically, there
is no difficulty in squeezing quantifiers into the functor/argument scheme. We can e.g.
treat them as functors of type 1/(0/0), i.e. as “mixed” functors taking nouns and sen-
tences into sentences; or we can treat them as a kind of “structured” connectives of
type 0/0, consisting of a quantifier-marker together with a corresponding bound vari-
able (symbols are atomic relative to the structural operation g, but need not necessarily
lack internal structure). Take this second alternative. Then our elementary language is
simply a (standard) language L =(s, g, E) with symbols of type tn/t' for various n ≥  0 and
t,t'≤  1 — i.e. sentence and noun symbols (of type 0 and 1 respectively), connectives (of
type 0n/0), predicates (of type 1n/0), and so on. Where Q is any quantifier-marker, e.g.
the usual sign for universal quantification ∀, we may then assume that the noun sym-
bols of L  include a denumerable subset V so that the string Qv is a monadic connective
for each v∈V, to be thought of as the Q-quantifier binding v.

Now look at this semantically. It is obvious that quantifiers pose a problem if we
try to interpret them as operations on truth values, like ordinary truth-functional con-
nectives. The point is, we need not do that. Truth-values are the extensions of sen-
tences, if we like; but quantifiers introduce an intensional element — they make the
value of a sentence depend on factors other than just the truth-values of its component
parts. And we just saw that this type of dependence can easily be captured within a
categorial framework. In the case of a modal connective like ■ , the intensional shift is
from truth-values to truth-valued functions defined on possible worlds. In the case of
quantifiers, the shift is due to a different combination of factors, viz. the various values
that can be assigned to the corresponding bound variables. We may accordingly define
a model for a language with quantifiers simply by requiring individual expressions to
be interpreted as functions of such value-assignments 

8. More precisely, where U is
any non-empty set, we obtain a standard elementary model M =(d, h, I ) by setting
I0  =2 

U
 

V
 and I1  =U  

U
 

V
. The appropriate interpretation conditions for classical logic are the

following:
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(c) if sξ,t ∉V, then dξ,t  is constant, i.e. dξ,t (a)=dξ,t (b) for all a,b∈UV

(v ) if sξ,t ∈V then dξ,t  is ξ-variable, i.e. dξ,t (a)=a(sξ,t ) for all a∈UV

(~) if sξ,t = ~, then dξ,t (x)(a)=1–x(a) for all x∈I0 and a∈UV

(∧) if sξ,t = ∧, then dξ,t (x)(y)(a)= x(a) ∩y(a) for all x, y∈I0 and a∈UV

(∀) if sξ,t = ∀v, then dξ,t (x)(a)=I{x(av
u ): u∈U} for all x∈I0 and a∈UV

where in the last clause av
u  is the function that is exactly like a except that its value at v

is u 9.
Of course, if we have both quantifiers and modalities, then we need both possible

worlds and value-assignments. The generalization is obvious.

4. Abstraction

Although quantifiers are but one type of variable-binders, it is evident that the same
treatment can be applied to other cases, including mathematical operators such as inte-
grals, products, etc. The general question is whether one can by the same pattern ac-
count for all forms of variable binding.

Every mode of variable binding can be reduced to functional abstraction. So in the
end the question reduces to whether abstraction can be interpreted as a form of applica-
tion, using models whose domains of interpretation depend on a suitable package of
intensional features and value-assignments.

Some forms of abstraction are immediately captured by the above treatment. For
instance, we can enrich an elementary language L  with an abstractor λv for each vari-
able v∈V, to be treated as a functor of type 0/(1/0). The standard interpretation of this
functor is reflected in the reading “is something v such that”. And it is easy to verify
that within the present framework, this reading translates into the following condition
on the admissible elementary models:

(λ) if sξ,t = λv, then dξ,t (x)(y)(a)=x(a 
v
y(a) ) for all x∈I0  , y∈I1 and a∈UV.

In the general case, where we have abstractors acting on variables of any type in
expressions of any type, the account is not so straightforward. In fact it is clear that we
cannot go very far if we stick to standard Fregean models, for the presence of functor
variables prevents us from defining adequate intensional models where each functorial
domain is a set of functions It'/t =It

It'. However, we need not do that. We only need con-
sider models whose domains are built upon sets of functions — and that can be done
in the appropriate way to obtain the desired result. This is a rather natural generaliza-
tion, familiar from intensional logics and Montague grammars. The details are as fol-
lows.

To allow for generalized abstractors, we consider a full categorial language L
comprising a non-empty set S t of symbols for all t∈T . Each S t includes a subset Vt of
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variables so that the string λvt' is a symbol of type t'/(t/t' ) for all t'∈T and all v∈Vt .
Now let 〈Ut : t∈T 〉 be a system of sets so that U0  =2 and Ut'/t =Ut

Ut' for all t,t'∈T and
define A=∏〈Ut

V t : t∈T 〉. To obtain an adequate model M  we simply need require that
It =Ut

A  for all t∈T . We can then make sure that each λvt' be interpreted as a v-binding
abstractor by requiring M to also satisfy the following general condition:

(λ) if sξ,t =λvt', then h(dξ,t , x)(a)(y)=x(av
y ) for all x∈It' , all y∈Iτ(v) and all a∈A

where τ(v) is the type of v. Along with the obvious conditions on the interpretation of
constant and variable symbols, it can be verified that this clause conforms to the usual
principles of the classical λ-calculus.

5. Logics as theories

The treatment above provides an answer to the question of the title. If we think of func-
tional abstraction as a new operation in addition to functional application, then we do
not need it in order to increase the combinatorial force and descriptive power of a pure
categorial framework. For there is a clear sense in which abstraction can be interpreted
within such a framework.

I am not sure whether this suffices to justify a claim of generality. But the fact that
we can analyze a language with variable-binders by the simple functor/argument
schema is not unattractive, also in relation to some fundamental issues in semantics.
Often the peculiar behavior of such operators is taken to imply that some crucial as-
pects of our language lie  outside, or perhaps “above”, the realm of pure semantics:
some symbols must receive a fixed interpretation because they are vehicles of crucial
logical principles that we need keep in mind when we spell out the semantic framework
we intend to use. This is typical, for instance, in a rather customary model-theoretic
way of presenting first-order logic, where the meaning of quantifiers and other logical
words is characterized only indirectly through the recursive definition of the truth-value
of a sentence. Likewise, in λ-equipped categorial languages the meaning of the ab-
straction operator is usually fixed during a recursive definition of the value of an ex-
pression: it is not specified by a model, like the meaning of the other symbols, and it is
not therefore captured by the homomorphism that relates a language with its models;
rather, it is imposed upon the entire semantic machinery. To some extent this is just a
matter of convenience: if we are not going to consider other ways of interpreting those
symbols, there is no need to do otherwise. But the question is whether one could do
otherwise, whether one could in principle specify the semantics of a language without
at the same time imposing a logic upon it (which is not, of course, a question of
whether a semanticist could live without logic: semantics is set theory, and that surely
embeds quite a bit of logic).
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As I see it, there has never been much clarity on this point. My suggestion is that
within the approach outlined here the question admits of a clear answer. What is attrac-
tive in a categorial approach is that it leads to a general framework fixed in advance,
rather than a theory to be worked out afresh for each case: all we need to do is to pro-
vide a syntactic category for the symbols we want to study (eventually along with a
suitable structural operation) and then specify which, among the indefinitely many
structures that give a homomorphic interpretation of the language, are to count as “ad-
missible” models. Insofar as quantifiers and, more generally, functional abstractors can
be treated as ordinary functors, one has good grounds to regard these symbols as be-
ing on a par with all the others — hence good grounds to treat logics as true theories
in the usual semantic sense.

From this point of view, the proposed account justifies a rather strong form of
semanticism. To treat something as, say, a symbol with a certain algebraic meaning
(e.g. addition) is to select a certain class of models as the only algebraically admissible
ones (e.g. only models where I1  =ω and the addition symbol denotes that function ƒ: ω
→ ω 

ω so that ƒ(x)(y)=x+y for all x,y∈ω). Now a similar characterization can be applied
to logic. To treat something as a “logical” word is to select a certain class of models
as the only logically admissible ones. This was evident in the case of purely truth-func-
tional connectives; less evident perhaps in the case of intensional connectives such as
those of modal logics — even less evident, I think, in the case of such peculiar logical
words as quantifiers and abstractors.   

Notes
1  This view can be traced as far back as to Ajdukiewicz [1935].
2  Early results in this sense were obtained by Bar-Hillel et al. [1960], and have since become

part of the standard view on the limits of categorial grammars.
3  To my knowledge, this connection was first explored by Cresswell [1973], who conjectured

that all “semantically significant” transformational derivations can be seen as sequences of λ-
conversions.

4  Terminology is varied here. Husserl [1913] spoke of meaning categories, Leś niewski [1929]
and Ajdukiewicz [1935] of semantic categories, later authors of grammatical or syntactic categories, or
simply categories, or types. I follow this last option mainly for its intuitive neutrality.

5  There is no need to consider types of the form t1  … tn/t'  for n>1, corresponding to those
categories of n-place functors that take expressions of type t1,…,  tn to make expressions of type t' : as
it turns out, such functors can always be treated as 1-place functors of type t1 /(t2 /(…/(tn/t' )…)). Τhe
point is due to Schönfinkel [1924] and reflects the set-theoretic isomorphism between AB1× B2× … Bn

and (…((AB1)B2)…)Bn.
6  Notation: if ƒ is a function, I write Dƒ for the domain and R ƒ for the range.
7  It is possible to further generalize the categorial approach so as to allow for incomplete

and/or inconsistent models, but in the present context such a departure from standard semantics would
lead us too far afield.

8  This is in the spirit of Lewis [1970].
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9  It is understood that the values of functional application should not depend on value-assign-
ments unless the arguments do, i.e. one should have x(y)(ai )=x(y)(aj ) whenever x(ai )=x(aj ) and y(ai
)=y(aj). Also, such values should behave coherently, so that xi (y)(a)=xj (y)(a) if xi (a)=xj (a), and x(yi
)(a)=x(yj )(a) if yi (a)=yj (a).
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