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This note presents a simple axiomatic system by means of which exactly those
sentences can be derived that are rated non-tautologous in classical propositional
logic. Since the logic is decidable, there exist of course many algorithms that do
the job, e.g. using semantic tableaux or refutation trees. However, a formulation
in terms of axioms and rules of inference is by no means a straightforward task,
as these must be of a most non-standard non-classical sort.1 For instance, axioms
cannot be axiom schemata and standard substitution rules cannot hold, since a
non-tautology may well become tautologous upon substitution. Moreover, the
system must be paraconsistent, i.e. such as to allow derivation of sentences with
opposite truth values. The system presented here provides, I think, a rather nice
way of dealing with these difficulties.

Since tautologous sentences are also axiomatizable, the outcome is an ex-
haustive characterization of the logic of classical propositional languages in
purely syntactic terms. The picture can then be completed by developing related
systems axiomatizing classical contradictions, contingencies, non-contradictions
and non-contingencies, respectively: systems of this kind, which provide addi-
tional examples of paraconsistent calculi with a classical background, are dis-
cussed in the final section.

                                                
1 A complete, Hilbert-type axiomatization of classical non-tautologies was first provided

by Caicedo (1978). Following Lukaziewicz’s (1951) rejection method, in Varzi (1990) I have in-
troduced a simplified system based on the sole axiom ⊥ (falsehood) and the two rules of in-
ference: (i) if A is a substitution instance of B, then A  B; and (ii) if A is obtained from B by
replacement of equivalent sentences, then B  A (counting as equivalent the pairs {T , ~⊥}, {⊥,
⊥∨⊥}, {T , ⊥∨T}, {T , T∨⊥}, {T , T∨T}). Similar methods have been used independently by
Scott (1957) and Dutkiewicz (1989) to axiomatize intuitionistic non-tautologies. The system
presented in this note is mathematically less elegant, but the format of the inferential rules and
the structure of the completeness proof possess some intrinsic interest and allow useful com-
parisons with the logic of tautologies.
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1. Preliminaries

I shall focus on a propositional language L whose symbols comprise a denumer-
able stock of variables ‘p0’, ‘p1’, ‘p2’, …, the three connectives ‘~’ (negation),
‘∧’ (conjunction), ‘∨’ (disjunction), and the two parentheses ‘(’ and ‘)’.2 The
notion of a sentence of L is defined as usual: every variable is a sentence; and if
A, B and C are sentences, so are ~A, (B∧C) and (B∨C). Variables are also called
atomic sentences. In addition, sentences involving exactly the same variables will
be referred to as conjoint sentences, whereas sentences with no variable in com-
mon will qualify as disjoint. I shall also speak of two sentences A and B as being
equivalent (to each other): by this I shall mean that one of the following condi-
tions holds for some sentences C, C0, C1, C2, … , Cn, where n ≥ 2 :

E.1 A,B∈{C,~~C}
E.2 A,B∈{C,(C∧C)}

A,B∈{C,(C∨C)}
E.3 A,B∈{(C1∧C2),(C2∧C1)}

A,B∈{(C1∨C2),(C2∨C1)}
E.4 A,B∈{(~C1∧~C2),~(C2∨C1)}

A,B∈{(~C1∨~C2),~(C2∧C1)}
E.5 A,B∈{(C∧(~C2∨C2∨...∨Cn)),C}

A,B∈{(C∨(~C2∧C2∧...∧Cn)),C}
E.6 A,B∈{(C0∧(C1∧C2)),((C0∧C1)∧C2)}

A,B∈{(C0∨(C1∨C2)),((C0∨C1)∨C2)}
E.7 A,B∈{(C∧(C1∨C2)),((C∧C1)∨(C∧C2))}

A,B∈{(C∨(C1∧C2)),((C∨C1)∧(C∨C2))}

Here ‘(~C2∨C2∨...∨Cn)’ and ‘(~C2∧C2∧...∧Cn)’ are stand for any sentence of L
that can be obtained from such expressions by replacing each Ci by a sentence
(2 ≤ i ≤ n) and a judicious addition of parentheses. In the following, I shall take
for granted this and other obvious abbreviations unless the context would not
prevent confusion.

2. Semantics and Syntactics

Relative to the language L, we may define a valuation to be any function V as-
signing a value in {0,1} to each sentence, subject to the usual conditions:

                                                
2 It goes without saying that any truth-functionally complete set of connectives would do.
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V.1 if A=~B, then V (A)=1−V (B)
V.2 if A=(B∧C), then V (A)=V (B)∩V (C)
V.3 if A=(B∨C), then V (A)=V (B)∪V (C)
V.4 if A is obtained from a sentence A' by replacing one or more occur-

rences of a sentence B' in A' by occurrences of a sentence B to which
B' is equivalent, then V (A)=V (A').3

On this basis, and taking 0 as the antidesignated value, a given sentence A of L
will then qualify as a non-tautology if and only if (iff) there exists a valuation V
such that V (A)=0 (in the following, I shall refer to such a V as a non-model of
A).

To provide a syntactic counterpart of this notion, let every variable of L
count as an axiom, and let a sentence A count as a consequence of a set of sen-
tences Γ iff one of the following conditions is satisfied:

C.1 A=~B for some atomic sentence B∈Γ 
C.2 A=(B∧C) for some conjoint sentences B,C∈Γ 
C.3 A=(B∨C) for some disjoint sentences B,C∈Γ
C.4 A is obtained from a sentence A'∈Γ by replacing one or more occur-

rences of a sentence B' in A' by occurrences of a sentence B to which
B' is equivalent.4

Let now a sentence A count as a non-theorem (of L) iff there exists a sequence of
sentences A0…An (n ≥ 0) so that (i) An=A, and (ii) each Ai (i ≤ n) is either an ax-
iom or a consequence of {A0… Ai-1} (such a sequence may be called a non-proof
of A). Then, as we shall now see, the notion of a non-tautology and the notion of
a non-theorem identify exactly the same sentences.

3. Soundness and Completeness

That the set of all non-tautologies includes the set of all non-theorems is easily
seen, i.e.:

                                                
3 V.4 is obviously implied by V.1-V.3 . I only include it here for convenient reference.
4 In view of C.4, it will be clear that C.1-C.3 involve several redundancies. (For example,

one could add the requirements that all occurrences of ‘(’ in A be adjacent, and that the variables
occurring in A occur in a certain order; also, C.2 could be simplified to “A=(B∧C) for some sen-
tences B,C such that B∈Γ” and C.3 could be reduced to “A=(B∨C) or A=(B∨~C) for some sen-
tences B,C such that B∈Γ and C is a variable not occurring in B”, in which case E.5 could then
be deleted). Again, the present formulation is dictated mainly by reasons of convenience.



4

T.1 Every non-theorem is a non-tautology.

For, suppose that A is a non-theorem, and let A0…An (n ≥ 0) be a non-proof of
A=An. Clearly, A0 is non-tautologous, since A0 can only be a variable and every
variable has infinitely many non-models. So pick any other Ak (0 < k ≤ n) and
assume that each Ai (0 ≤ i < k) has a non-model. Let Γ={A0, ..., Ak-1}. If Ak=~B
for some atomic sentence B∈Γ (by C.1), then again B has to be a variable, and so
any of the infinitely many valuations that assign 1 to B will be a non-model of Ak
(by V.1). Next, if Ak=(B∧C) for some conjoint sentences B,C∈Γ (by C.2), then
any non-model V of B will surely be a non-model of Ak, for V (B)=0 implies
V (B∧C)=V (Ak)=0 (by  V.2). Third, if Ak=(B∨C) for some disjoint sentences
B,C∈Γ (by C.3), then a non-model of Ak can be constructed as follows: let V1 be
a non-model of B, let V2 be a non-model of C, and let V be that valuation which
agrees with V1 with respect to the value to be assigned to the variables occurring
in B, and agrees with V2 with respect to the value to be assigned to any other
variable (including those occurring in C); then clearly V (B)= V1(B) and
V (C)=V2(C), hence V (B∨C)=V (Ak)=0 (by V.3). Finally, if Ak is obtained from
some sentence A'∈Γ by replacing one or more occurrences of a sentence B' in A'
by occurrences of a sentence B to which B' is equivalent (by C.4), then any non-
model of A' will also be a non-model of Ak, as every valuation that assigns the
value 0 to A' will assign the same value to Ak (by V.4). Thus, our arbitrary sen-
tence Ak is sure to have a non-model. The desired result follows now by math-
ematical induction and generalization.

We may now proceed to prove the converse of T.1:

T.2 Every non-tautology is a non-theorem.

To this end, a couple of subsidiary definitions will be useful. First, let us extend
the relation of equivalence introduced in Section 1 to a more general, transitive
relation: I shall say that a sentence A is indirectly equivalent to a sentence A' (in
short A≅A') iff there exists a sequence of sentences A0…An (n ≥ 0) such that
(i) An=A, (ii) A0=A', and (iii) Ai+1 is equivalent to Ai for each i < n (I shall call such
a sequence an ≅-transformation of A' into A). Clearly, ≅ is an equivalence relation,
and it is easy to see that if a sentence A is obtained from a sentence A' by replac-
ing one or more occurrences of a sentence B' in A' by occurrences of a sentence B
to which B' is indirectly equivalent, then A≅A'. Also, an easy inductive argument
(using V.4) shows that any two indirectly equivalent sentences are always as-
signed identical values by any valuation, which implies that ≅ preserves the
property of being non-tautologous. Similarly, one verifies that ≅ preserves the
property of being a non-theorem: for if A0… Am (m ≥ 0) is a non-proof of Am and
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Am… An (n ≥ m) is an ≅-transformation of Am into An, then n-m applications of
C.4 show that A0… Am… An is a non-proof of An. (In the following, I shall appeal
to such basic properties of ≅ without explicit mention).

Second, let us say that a sentence A is in standard form (SF) iff (i) each oc-
curence of ‘~’ in A is immediately followed by an atomic sentence; (ii) no occur-
rence of ‘∨’ in A is adjacent to a sentence that contains occurrences of ‘∧’; and
(iii) for every conjunct C of A (= every sentence C that occurs adjacently to
some occurrence of ‘∧’ in A), all disjuncts of C (= all sentences that occur adja-
cently to some occurrence of ‘∨’ in C) are pairwise disjoint (if A involves no con-
junct, we take this condition to hold for C=A). Note of course that a sentence
satisfying condition (i) is known in the literature as a sentence in elementary
form (EF), whereas a sentence satisfying both (i) and (ii) is typically referred to
as a sentence in (conjunctive) normal form (NF).

Using these auxiliary notions, I shall now prove two related lemmas, L.1

and L.2: from these, the desired result, T.2, will follow immediately.5

L.1 Every non-tautology is indirectly equivalent to a sentence in standard
form.

I will break the argument into three parts: first (a) I will show that any given sen-
tence A is indirectly equivalent to a sentence A' in elementary form; next (b) I will
show that any sentence A' in elementary form is indirectly equivalent to a sen-
tence A'' in normal form; and finally (c) I will show that any non-tautologous sen-
tence A'' in normal form is indirectly equivalent to a sentence A''' in standard
form. Since ≅ is transitive and preserves the property of being non-tautologous,
L.1 will then follow from (a)-(c) by taking A to be an arbitrary non-tautology.

(a) The first part of the argument proceeds by mathematical induction on
the length of A. Clearly, if A is atomic, then A'=A is the desired sentence in EF;
and if A is of the form (B∧C) or of the form (B∨C), then we can simply put
A'=(B'∧C') or A'=(B'∨C') respectively, where B' and C' are sentences in EF such
that B≅B' and C≅C' (such sentences are assumed to exist by the induction hy-
pothesis, I.H.). If, on the other hand, A is of the form ~B, then we may distin-
guish four cases: (i) if B is atomic, then again A is already in EF, and we may put

                                                
5 If we interpret ‘≅’ as the relation of semantic equivalence (taking “A ≅ B” to mean “V

(A)=V (B) for every valuation V  ”) or as the classical relation of deductive equivalence (taking “A ≅
B” to mean “A and B can be derived from each other in the classical sentential calculus”), then
L.1 and L.2 state some well-known results (Post (1921)). As they stand, the two lemmas in
question are to make sure that such results only depend on V.4 and C.4.
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A'=A; (ii) if B is of the form ~C, then there must exist some sentence C' in EF
such that C≅C' (by I.H.), and we may therefore put A'=C' (since A =~~C≅C by
E.1); (iii) if B is of the form (C∧D), then we know that there are sentences X' and
Y' in EF such that ~C≅X' and ~D≅Y' (by I.H.), and so we may just put A'=(X'∨Y')
(since A=~(C∧D) ≅  (~C∨~D) by E.4); finally (iv) if B is of the form (C∨D), then
again there must be sentences X' and Y' in EF such that ~C≅X' and ~D≅Y' (by
I.H.) and  we may put A'=(X'∧Y') (since A=~(C∨D)≅(~C∧~D) by E.4). Thus, in
every possible case, A can surely be ≅-transformed into a sentence A' in EF.

(b) Suppose now that A' is in EF. To show that A' is indirectly equivalent to
some sentence A'' in NF we may, again, proceed by strong induction. The case
where A' is atomic or of the form ~B' (where B' must be atomic) presents no
problem, for in that case we can simply put A''=A'; and if A' is a sentence of the
form (B'∧C'), then B' and C' must be in EF, and so we may take any two sen-
tences B'' and C'' in NF such that B'≅B'' and C'≅C'' (which are known to exist by
I.H.) and set A''= (B''∧C''). In case A' is of the form (B'∨C'), then again there must
be sentences B'' and C'' in NF such that B'≅B'' and C'≅C'' (by I.H.): we can then
proceed by induction on the number n of occurrences of ‘∧’ in (B''∨C'') to show
that there is a sentence Z in NF to which (B''∨C'') is indirectly equivalent, and
then set A''=Z: (i) if n =0, then (B''∨C'') is already in NF, and we may therefore
take Z=(B''∨C''); if n > 0 and ‘∧’ occurs in C'', then C'' must be of the form
(D1∧D2), where D1 and D2 are sentences in NF; thus (B''∨C'') =  (B''∨ (D1∧ D2))  ≅
((B''∨D1)∧(B''∨D2)) (by E.7); but both (B''∨D1) and (B''∨D2) are assumed to be
indirectly equivalent to appropriate sentences in NF (by I.H.): hence, where
Z1 and Z2 are any two such sentences, the sentence Z=(Z1∧Z2) will do; finally
(iii) if n >0 but ‘∧’ does not occur in C'', then we note that (B''∨C'')≅(C''∨B'') (by
E.3), and the problem reduces to (ii).

(c) To conclude, assume now that A'' is in NF, and suppose A'' is a non-
tautology. Then A'' must be of the form B0 or of the form (B0∧ ... ∧Bn) (n > 0),
where each Bi (i ≤ n) is a sentence in NF that contains no occurrence of ‘∧’, and
where at least one Bi (i ≤ n) involves no occurrence of opposite disjuncts (= pairs
of disjuncts D1, D2 such that D1= ~D2): otherwise every valuation would assign
the value 1 to A'' (by V.3). In addition, every Bj (j ≤ n) which does involve occur-
rences of opposite disjuncts can be eliminated by repeated application of E.5

(along with E.3 , E.6). That is, A'' can be ≅-transformed into a sentence A° of the
form C0 or of the form (C0∧ ... ∧Cm) (m ≤ n) where the Ck’s (k ≤ m) are exactly
those sentences Bi ( i ≤ n) which do not involve occurrences of opposite dis-
juncts. Obviously, such Ck’s may still involve more than one occurrence of the
same variable. But such repetitions can easily be eliminated by subsequent appli-
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cations of E.2  (using also E.3  and E.6). Thus, A° is in turn seen to be equivalent
to a sentence A''' of the form C0' or of the form (C0'∧ ... ∧Cm') where the disjuncts
of each Ck' (k ≤ m) are pairwise disjoint. And such a sentence, A''', is the desired
sentence in SF to which A'' is indirectly equivalent.

L.2 Every sentence in standard form is indirectly equivalent to a non-
theorem.

To see this, we can fix upon an arbitrary sentence A in SF and distinguish two
cases.

(a) Suppose first that ‘∧’ does not occur in A. Then A must be of the form
B0 or of the form (B0∨ ... ∨Bn) (n >  0), where each Bi ( i ≤ n) is either a variable or
a sentence consisting of ‘~’ followed by a variable. Clearly, such Bi’s are all non-
theorems, for every variable is an axiom, and the result of prefacing ‘~’ to an
axiom always yields a non-theorem (by C.1). Also, such Bi’s are all pairwise dis-
joint, for A is assumed to be in SF. Thus, if A=B0, then A is a non-theorem, while
if A=(B0∨ ... ∨Bn), then A is a consequence of {B0, ..., Bn} (by n applications of
C.3) whence again it follows that A is a non-theorem. And obviously, A≅A.

(b) Suppose now that A contains occurrences of ‘∧’. Then A must be of the
form (B0∧ ... ∧Bn) (n >  0), where each Bi (i ≤ n) is a sentence in NF containing no
occurrence of ‘∧’. So let pj (j ≥ 0) be any variable occurring in A: by repeated ap-
plication of E.5  and E.7 , A can easily be ≅-transformed into a sentence A' of the
form (B0'∧ ... ∧Bn'), where for each i ≤ n, Bi'=Bi if pj occurs in Bi, and
Bi'=((Bi∨pj)∧(Bi∨~pj)) otherwise. Hence, by carrying on a finite number of such
≅-transformations (one for each variable occurring in A), A can eventually be ≅-
transformed into a sentence A° of the form (C0∧ ... ∧Ck) in which ‘∧’ occurs k ≥ n
times and in which all the Ci’s (i ≤ k) are pairwise conjoint. But such a sentence
is a non-theorem, since it is a consequence of {C0, ... , Ck} (by k applications of
C.2) where each Ci (i ≤ k) is a non-theorem (as shown in (a) above). Thus, A° is
the desired non-theorem to which A is indirectly equivalent.

We have thus shown that every non-tautology is indirectly equivalent to
some sentence in SF (L.1) and that every sentence in SF is indirectly equivalent
to some non-theorem (L.2). From this, and from the above-mentioned properties
of ≅, it follows that every non-tautology is a non-theorem (T.2).

4. Complementary Systems

We have seen that the syntactic system defined in Section 2, call it T~, is ade-
quate to specify the set of all non-tautologies (= sentences that are assigned the
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value 0 by at least one valuation) of L. Since the value assigned by a valuation V
to a sentence A is always opposite to the value assigned by V to ~A, it is clear
that the set of all non-contradictions (= sentences that are assigned the value 1 by
at least one valuation) is also specifiable by means of a purely syntactic system:
just substitute ‘∨’ for ‘∧’ and ‘∧’ for ‘∨’ in C.2-C.3, and the resulting system,
call it C~, will do (or: just characterize C~ indirectly, by defining a sentence A to
be a non-theorem of C~ iff ~A is a non-theorem of T~). For the same reason, it is
a fact that whenever a syntactic system T is given by means of which one can
adequately specify the set of all tautologies (= sentences which are assigned the
value 1 by every valuation), one can immediately define a perfectly symmetric
system, C, which is adequate to specify the set of all contradictions (= sentences
which are assigned the value 0 by every valuation): just substitute ‘∨’ for ‘∧’ and
‘∧’ for ‘∨’ in the axioms and rules of inference of T (or: just characterize C indi-
rectly, by defining a sentence A to be a theorem of C iff ~A is a theorem of T).6

Accordingly, one would get a complete picture of the logic of L if one could
define a third pair of complementary systems, say N and N~, which are adequate
to  specify the set of all contingencies (= sentences that are both non-tautologous
and non-contradictory) and the set of all non-contingencies (= sentences that are
either tautologous or contradictory) respectively. Indirectly, such systems can of
course be characterized in terms of T , C  , T~ and C~ (just define a sentence A to
be a non-theorem of N iff A is a non-theorem of both T~ and C~, and define A to
be a theorem of N~ iff A is a theorem of either T or C). However, the arguments
of Section 3 suggest a more direct approach too. For let a sentence A count as a
Boolean sentence iff (i) A is in standard form, (ii) all conjuncts of A are pairwise
distinct, and (iii) every variable occurring in A occurs exactly once in each con-
junct of A (or in A itself if A has no conjunct). Then, as axioms of N we can take
all and only those sentences A, ~A satisfying the following condition:

A.1 A is a Boolean sentence with less than 2 
n conjuncts, where n is the

number of distinct variables occurring in A

and as axioms of N~ we can take all and only those sentences A, ~A satisfying:

A.2 A is a Boolean sentence with exactly 2 
n conjuncts, where n is the

number of distinct variables occurring in A.

Taking a sentence A to count as a consequence of a set of sentences Γ in N iff C.4

holds (likewise for N~) and defining the notion of a non-theorem of N as in Sec-

                                                
6 See for example Morgan (1973).
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tion 2 (likewise for N~), minor changes to the proofs of T.1 and T.2 above will
show that the resulting systems satisfy the desired requirements.7

All of these results reflect of course the fact that the relevant sets of sen-
tences (tautologies, contradictions, contingencies, etc.) are all decidable, and
should therefore come as no surprise. The point is rather that such sets are now
seen to be on a par as far as their syntactical characterization is concerned. At
the same time, this does not mean that those sets are equally “interesting”. The
fact remains that every substitution instance of a tautology of L is a valid sen-
tence of, say, the language of quantification theory; whereas the substitution in-
stances of a non-tautologous sentence of L do not have to be invalid in a language
with quantifiers. They have to be non-tautologous — but that’s all.8
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