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1. Complementary systems. We say that two proof systems are complementary 
iff what can be derived in one system is precisely that which cannot be derived 
in the other, and vice versa [11]. For instance, classical propositional logic and 
Łukasiewicz’s rejection calculus [5] are complementary. If we focus on decid-
able logics, given one system there exist of course many algorithms to compute 
what is not provable in it, e.g., semantic tableaux or refutation trees. Even so, a 
formulation in terms of axioms and rules of inference is usually not a trivial task, 
as these may be of a most non-standard sort. For instance, in complementary 
systems for classical logic standard substitution rules cannot hold, since non-
tautologies may become tautologous upon substitution. Moreover, such systems 
must be paraconsistent, i.e., such as to allow non-trivial derivation of mutually 
inconsistent sentences. 

The study of complementary systems of this sort—we argue—presents sev-
eral points of interest. For one thing, they yield an exhaustive characterization of 
a logical theory in purely syntactic terms. This weakens, if one will, the view 
that some amount of semantic reasoning is required in order to fully dominate a 
logic. Secondly, the combination of complementary notions of derivability dis-
closes interesting perspectives for metamathematics, for instance in connection 
with stronger forms of decidability of the sort hitherto investigated under the ru-
bric of Ł-decidability. Thirdly, these systems have important bearing on certain 
fundamental issues in computer science, such as non-monotonic reasoning, the 
semantics of programming languages, and the logical characterization of com-
plexity classes. 
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2. Basic methods and developments. Łukasiewicz’s system was based on the 
idea that non-derivability is essentially a refutation procedure, hence a form of 
reverse derivability. Thus, a system for classical non-tautologies can be obtained 
simply by taking falsehood (⊥) as an axiom and reverse substitution plus reverse 
modus ponens as rules of inference: 

 [Rs] If ⊬α, and α is a substitution instance of β, then ⊬β 
 [Rmp] If ⊢ (α → β) and ⊬β; then ⊬α 

This strategy has been extensively studied [9] and has been exploited also 
to provide complementary systems for intuitionistic logic [3, 6] and for various 
modal logics [4, 8]. However, systems of this sort do not do full justice to non-
derivability, as they characterize it in terms of the complementary notion of de-
rivability (as in [Rmp]). Extant Hilbert-style axiomatizations of classical non-
tautologies [2, 12] or Gentzen-style systems for non-derivability in the first order 
logic of finite structures [10] also share this feature to some degree. 

This limitation can nonetheless be overcome, at least in some cases. As an 
illustration, let an anti-sequent Γ ⊬ Δ count as an axiom iff Γ and Δ are disjoint 
sets of atoms; then we can show that the following rules [1] define a sound and 
complete (cut free) Gentzen-style complementary system for classical proposi-
tional logic: 

       [¬ r]        [¬ l]   [→ r]   [→ l 1]                     [→ l 2] 

Γ, α ⊬ Δ
Γ ⊬ Δ, ¬α

  
Γ ⊬ Δ,α

Γ,¬α ⊬ Δ
  

Γ,α ⊬ Δ,β

Γ ⊬ Δ,α → β
  

Γ ⊬ Δ,α

Γ,α → β ⊬ Δ
  

Γ,β ⊬ Δ
Γ,α → β ⊬ Δ

  

Many properties of the standard sequent calculus are preserved in this sys-
tem. For example, rules are perfectly symmetric and satisfy the subformula 
property. On the other hand, note that while the structure of classical rules with 
one premiss is preserved, the others rules (in this case, [→ l]) split into pairs with 
one premiss each. This reflects the fundamental intuition that the exhaustive 
search of the classical sequent calculus becomes nondeterministic in its comple-
mentary version—a result that can be viewed as a logical account of the distinc-
tion between the computational complexity classes NP and co-NP. 

3. Semantic implications. Most of the aforementioned systems for non-deriv-
ability can naturally be regarded as doing a semantic job: an anti-proof is essen-
tially the construction of a counterexample. For instance, in the Gentzen-style 
system above, the unique axiom Γ ⊬ Δ of an anti-proof corresponds to a partial 
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interpretation where the atoms in Γ are all true, those in Δ all false, and all the 
others undefined; such an interpretation gives a counterexample to the sequent 
Γ ' ⊢ Δ', where Γ ' ⊬ Δ' is the conclusion of the anti-proof. This is especially sig-
nificant for logical formalisms for which no “natural” model theory is available 
[7]. Interesting examples can be found in theoretical computer science, where 
the semantics of imperative programming languages is typically given by means 
of Gentzen systems that have no model-theoretic counterpart. In this perspective, 
two intereresting lines for further research are (i) the characterization of com-
plementary systems for a wider range of formalisms, and (ii) the study of gen-
eral, uniform methods for transforming a given system (e.g., Hilbert or Gentzen-
style) into an elegant complementary counterpart of the same type.  
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