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ESTIMATING ODDS RATIOS UNDER A CASE-BACKGROUND
DESIGN WITH AN APPLICATION TO A STUDY OF

SORAFENIB ACCESSIBILITY

BY JOHN H. SPIVACK AND BIN CHENG

Icahn School of Medicine at Mount Sinai and Columbia University

In certain epidemiologic studies such as those involving stress disorders,
sexual harassment, alcohol addiction or epidemiological criminology, expo-
sure data are readily available from cases but not from controls because it is
socially inconvenient or even unethical to determine who qualifies as a true
control subject. Consequently, it is impractical or even infeasible to use a
case-control design to establish the case-exposure association in such situa-
tions. To address this issue, we propose a case-background design where in
addition to a sample of exposure information from cases, an independent sam-
ple of exposure information from the background population is taken, without
knowing the case status of the sampled subjects. We develop a semiparamet-
ric method to estimate the odds ratio and show that the estimator is strongly
consistent and asymptotically normally distributed. Simulation studies indi-
cate that the estimators perform satisfactorily in finite samples and against
violations of assumptions. The proposed method is applied to a Sorafenib
accessibility study of patients with advanced hepatocellular carcinoma.

1. Introduction.

1.1. Case-control design and its generalizations. The case-control design is a
primary tool to identify the causes of an effect in epidemiologic research where
two independent samples comprising exposure data for cases and controls, called
the “case sample” and “control sample” respectively, are obtained retrospectively.
The design assumes that if case status is associated with certain exposures, then
those exposures should be more prevalent among cases than among controls. An
important practical feature of case-control studies is that data sampled retrospec-
tively in a case-control design can be analyzed using a logistic regression model
as though they were sampled prospectively in a cohort design [Prentice and Pyke
(1979)]. Comprehensive exposition of case-control studies appears in standard ref-
erences such as those by Breslow and Day (1999) and Keogh and Cox (2014).

The case-control method has been extended to gain efficiency or to decrease
cost. One such extension is the nested case-control design proposed by Liddell
et al. (1977). A nested case-control design is a single cohort design that prospec-
tively matches emerging cases with concurrently identified and sampled controls
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to reduce variability and limit the number of controls to be ascertained in order
to reduce costs. The design was formally introduced by Prentice and Breslow
(1978), and the asymptotic theory associated with this design was developed by
Goldstein and Langholz (1992). Another extension is the case-cohort design, or
case-base design, where the time to case status is ignored, and hence the outcome
is treated as binary. This design, initially proposed by Kupper, McMichael and
Spirtas (1975), uses a case sample and a prospectively observed subcohort to in-
crease the yield of cases. Classic references presenting the full development of
case-cohort and case-base designs include Miettinen (1976), Prentice (1986) and
Nurminen (1989). Asymptotic theory for case-cohort designs was established by
Self and Prentice (1988).

1.2. Sorafenib accessibility study and motivation for new design. Hepatocel-
lular carcinoma is one of the few malignancies in the United States whose inci-
dence has continued to increase over the past two decades. Despite advances in
the field, the 5-year survival remains below 12%, and hepatocellular carcinoma is
now the second highest cause of cancer mortality in the world. According to the
Barcelona Clinic Liver Cancer staging system, the only official treatment recom-
mendation for patients with Stage C hepatocellular carcinoma is a systemic therapy
with oral Sorafenib. The cost of this chemotherapy drug, however, is reported as
approximately $5400 per month in the United States [Roberts (2008)]. In addition
to the cost, other barriers may also limit the access to this treatment for certain pa-
tients, contributing to cancer disparities. A study was undertaken by Heskel et al.
(unpublished manuscript) at the Mount Sinai Medical Center, a major urban hos-
pital in New York City, over a 10-year study period to examine access to Sorafenib
through physician prescription among eligible hepatocellular carcinoma patients
as a function of their sociodemographic information including age, race, socioeco-
nomic status and insurance status. In this study, a total of 352 eligible patients who
had access to Sorafenib through prescription were identified by electronic records
and their sociodemographic information was collected from the existing electronic
data warehouse, which formed a “case sample” of exposure data. However, obtain-
ing a “control sample” of exposure data would require the researchers to identify
patients with Stage C hepatocellular carcinoma and confirm that they had not been
prescribed Sorafenib before collecting exposures from them. To achieve this would
require the investigators to follow patients in the background population through
their progression to Stage C and check whether they had received the prescription
according to their physicians’ notes. The process would require extensive access
to personal records, involving review of up to several months of records in paper
charts per patient, making it practically infeasible to conduct a traditional case-
control study.

The lack of a control sample may happen in many other studies as well. For ex-
ample, in a study of alcohol addiction, we may be able to acquire exposure infor-
mation from the cases (i.e., alcohol addicts) from their medical records. However,
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to ask a person in a general population whether he or she is an alcohol addict is
socially inappropriate, and even if we get an answer to such a query, we cannot ex-
pect that answer to be reliable. Similar issues arise in epidemiological criminology
where we may have exposure status data for the cases (i.e., convicted criminals),
but may be unable to reliably determine who is a control subject among a general
population.

In all these situations, a case group with exposure information is easily avail-
able, but a control group is not. How then may we estimate the odds ratios of
exposure-disease associations in the absence of a control sample? To answer this
question, we propose a case-background design which requires a background sam-
ple and a prevalence sample in addition to the existing case sample, and prove that
the odds ratio can be consistently estimated in this design. To gain an intuitive un-
derstanding of this design, consider the simplest case-control data in the form of a
2 × 2 contingency table. When the control sample is unavailable, this table would
be incomplete. However, with the help of a background sample and a prevalence
sample, the missing cells can be imputed and the odds ratio can be estimated. A de-
tailed description of the proposed design is given in Section 2, together with an
intuitive explanation and full justification of the proposed method to estimate the
odds ratio. Simulation results concerning the finite sample performance of the pro-
posed estimator and its sensitivity against violations of assumptions are discussed
in Sections 3.1 and 3.2, respectively; the Sorafenib accessibility data are analyzed
in Section 3.3; some guidelines for implementing the proposed design are included
in Section 3.4; and a brief discussion follows in Section 4. The asymptotic results
are proved in the Appendix.

2. Method.

2.1. Case-background design. Let Y be a binary random variable indicat-
ing the case status with Y = 1 denoting a case and Y = 0 a control. Let X =
(X1, . . . ,XK−1)

T be a K − 1-dimensional random vector of exposure variables.
In a case-control design, exposure information X is sampled independently from
the cases and the controls. The two random samples thus obtained are the case
sample and the control sample, respectively, and the case-exposure association
may be assessed using a logistic regression model. Unfortunately, as mentioned
in Section 1, the situations we consider do not allow for a control sample. There
are various reasons that an exposure sample from the controls may be lacking.
For instance, in a criminological study, it is easy to obtain exposure information
from a case (i.e., a convicted criminal) because we usually have his or her expo-
sure information in the record. On the other hand, it is much more difficult to get
such information from a control because it is already challenging to just deter-
mine whether a subject in a general population is indeed a control (i.e., has never
committed the criminal activity under study), let alone to collect reliable exposure
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information from him or her. In the Sorafenib accessibility example, exposure in-
formation from the cases (i.e., those who had Stage C hepatocellular carcinoma
and had access to Sorafenib) was available in the hospital’s electronic registry un-
der a query for Sorafenib prescription followed by a manual review to confirm
staging criteria. However, in order to sample exposure data from the controls, one
would have to first find patients who were eligible but denied access through pre-
scription and then obtain their exposure information. In our case, although it was
not absolutely impossible to obtain an exposure sample from the controls, the cost
for doing so was prohibitive, since a query for the lack of a Sorafenib prescription
would return large numbers of unrelated records whose manual review to confirm
eligibility and staging would exceed available resources. It was thus impractical to
use a standard case-control design.

In this paper, we propose a new design, termed a “case-background design,”
such that under this design we are able to assess the case-exposure association
even though a control sample is unavailable. The proposed case-background de-
sign requires samples from three independent sources. First, as mentioned above,
it requires a case sample of size nd : the associated exposure information is denoted
Xd1, . . . ,Xdnd

, and the case statuses of the subjects in this sample are known as
Ydi = 1, i = 1, . . . , nd . Second, it requires a random sample, henceforth called
the “background sample,” of size nb of the exposure information Xb1, . . . ,Xbnb

,
drawn from the background population to which cases belong. The case statuses
Ybj , j = 1, . . . , nb, of the subjects in this sample will not be collected, and hence
are unknown. Third, it requires a random sample, henceforth called the “prevalence
sample,” of size np of the case statuses, Yp1, . . . , Ypnp , from an independent sub-
cohort of the same underlying population, but the exposure information for these
subjects, Xpl , l = 1, . . . , np , is not required. We make several remarks concerning
the proposed design. First, a background sample is much easier to obtain than a
control sample because there is no need to know whether a subject is a case or a
control. Second, a prevalence sample, whose size is typically smaller than that of a
case sample or a background sample, costs less than a control sample because no
exposure information will be collected besides the case status information. Third,
the prevalence sample is not needed if an appropriate estimate of the case preva-
lence in the population under study already exists in the literature.

The intuitive idea of the case-background design is to replace a control sam-
ple with a background sample and a prevalence sample. Although the background
sample and prevalence sample each carry only partial information—the former has
no case status information and the latter has no exposure information—in combi-
nation they can play a similar role to a control sample in estimating the odds ratio.
The design is therefore useful when three criteria are met. First, a case sample
already exists or can be obtained easily; second, a control sample is impossible,
unethical or costly; and third, a background sample and a prevalence sample can
be obtained at reasonable cost.
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The Sorafenib accessibility study met these criteria. First, the case sample was
of eligible patients who had access to Sorafenib through prescription. They were
identified by a query of electronic records followed by a manual review of the
clinical stage, after which sociodemographic information was collected from the
existing electronic data warehouse. Second, it was burdensome due to the form
of the database and details of the staging system to acquire a sufficiently large
sample of patients who met the Stage C classification and had not received a So-
rafenib prescription. Third, a background sample and a prevalence sample could
be obtained within the limits of resource constraints. Specifically, the electronic
records allowed the identification of patients who were at an earlier, pre-metastatic
stage. Although these patients themselves were not eligible for Sorafenib, it was
considered clinically valid to assume that the sociodemographic information of
this pre-metastatic population did not change drastically over the short time period
during which they would progress to become eligible for Sorafenib. These patients
were considered as a background sample. Clearly, it is impossible to know the case
statuses of subjects in the background sample without lengthy follow-up, which fa-
vors a strategy where case status information is not collected from the background
sample. A prevalence sample of eligible patients was identified by a manual chart
review and their prescription statuses determined. However, the logistical burden to
identify these patients and collect their sociodemographic information was heavy,
leading to the smaller size of the prevalence sample and supporting the choice
not to fully collect exposure information on the prevalence sample. It is clear that
for this application the proposed case-background design had a clear advantage in
logistical burden and cost effectiveness.

2.2. Model. We assume that the joint distribution of case status and exposure
information (Y,XT ) is specified hierarchically such that the marginal distribution
of X has a probability density function f (x) with respect to a certain σ -finite mea-
sure μ on the K − 1-dimensional Euclidean space, and, given X, the conditional
distribution of Y satisfies a logistic regression model

(2.1) log
{

pr(Y = 1 | X)

1 − pr(Y = 1 | X)

}
= β0 +

K−1∑
j=1

xjβj = X̃
T
β,

where β = (β0, . . . , βK−1)
T and X̃ = {1,XT }T is the design vector with constant

1 added to X for the intercept β0.
We also assume that the case sample, the background sample and the prevalence

sample required in the case-background design are from a common distribution
(Y,XT ) described above; that is, we assume that the case sample is a random sam-
ple from the conditional distribution of X given Y = 1 whose probability density
function is denoted as f (x | Y = 1); the background sample is a random sample
from the marginal distribution of X whose probability density function is f (x);
and the prevalence sample is a random sample from the marginal distribution of
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Y , a Bernoulli distribution with parameter πd = pr(Y = 1). The objective of this
paper is to estimate β , particularly β1, . . . , βK−1, based on these three samples.

2.3. Estimating method. To motivate the proposed estimating method, con-
sider a simple logistic model where there is one single dichotomized exposure
variable X with X = 1 denoting the exposed and X = 0 the unexposed. Let n+

d

and n−
d be the numbers of the exposed and the unexposed subjects in the case

sample. Then data from this case sample yields an incomplete 2 × 2 contingency
table.

If the missing cells can be appropriately imputed, then we can estimate the
odds ratio based on the imputed contingency table by treating it as one from a
genuine case-control design. We now describe how to impute the missing cells
in Table 1. Let π̂d denote the estimated case prevalence based on the prevalence
sample. Then the overall total in the above table can be imputed as nd/π̂d . From
the background sample we estimate the exposure rate as n+

b /nb, where n+
b denotes

the number of exposed subjects out of a total of nb subjects in the background
sample. Similarly, n−

b denotes the number of unexposed subjects out of the nb

subjects in the background sample. Therefore, out of an imputed overall total of
nd/π̂d subjects, (nd/π̂d)(n+

b /nb) subjects should be exposed. As the result, we
obtain an imputed contingency table.

Denote

n+
c = nd

π̂d

n+
b

nb

− n+
d , n−

c = nd

π̂d

n−
b

nb

− n−
d , nc = n+

c + n−
c = nd

π̂d

− nd.

Then n+
c and n−

c can be viewed as the numbers of exposed and unexposed subjects
in a “pseudo” control group of nc subjects, respectively. A natural estimate of the
odds ratio between case and exposure from Table 2 is

(2.2) ÔR = n+
d n−

c

n−
d n+

c

.

It can be directly shown that this heuristic estimate is strongly consistent for the
true odds ratio and has an asymptotically normal distribution.

TABLE 1
Incomplete contingency table based on the case sample only

Y = 1 Y = 0 Total

X = 1 n+
d ? ?

X = 0 n−
d ? ?

Total nd ? ?
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TABLE 2
Imputed contingency table based on the case sample, the background

sample and the prevalence sample

Y = 1 Y = 0 Total

X = 1 n+
d (nd/π̂d )(n+

b /nb) − n+
d (nd/π̂d )(n+

b /nb)

X = 0 n−
d (nd/π̂d )(n−

b /nb) − n−
d (nd/π̂d )(n−

b /nb)

Total nd nd/π̂d − nd nd/π̂d

To estimate the odds ratio consistently, it is important to use consistent esti-
mators for both pr(X = 1 | Y = 1) and pr(X = 1 | Y = 0). We estimate the for-
mer by n+

d /nd based on the case sample and the latter by n+
c /nc based on a

pseudo-control sample, and both estimators are consistent. Using other estima-
tors, such as (n+

d + n+
c )/(nd + nc) or n+

b /nb, which estimate pr(X = 1) instead
of pr(X = 1 | Y = 0), will lead to inconsistent estimation of the odds ratio. Prac-
tically, it is only appropriate to use these inconsistent estimators when cases are
very rare. In our example, however, the prevalence of prescription of Sorafenib in
the population was close to 50%. Therefore, using the above estimators would lead
to inconsistent estimates.

To generalize the imputed contingency table idea to the situation where there are
multiple exposure variables of either categorical or continuous type, we note that,
according to known results [Prentice and Pyke (1979)], the odds ratio estimator can
be equivalently obtained by exponentiating the maximum likelihood estimator of
β1 in the following simple logistic regression model with a single binary covariate
X indicating the exposure status

log
{

pr(Y = 1 | X)

1 − pr(Y = 1 | X)

}
= β0 + β1X.

Therefore, we should be able to obtain the estimated odds ratio given in (2.2)
by exponentiating the maximum likelihood estimator of β1 treating the imputed
contingency table as one from a genuine case-control study. After some algebraic
manipulations, the pseudo-log-likelihood function associated with Table 2 can be
expressed as

�(β) =
nd∑
i=1

(β0 + β1Xdi) − nd

nbπ̂d

nb∑
j=1

log
(
1 + eβ0+β1Xbj

)
.

The above function is called a pseudo-log-likelihood because it is based on pseudo-
data in Table 2, not on the actual data. On the other hand, the above heuristic
argument does suggest that, for a multiple logistic regression model (2.1) where
there are K − 1 exposure variables, the coefficient vector β can be estimated by
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the maximizer of the pseudo-log-likelihood function

�(β) =
nd∑
i=1

X̃
T

diβ − nd

nbπ̂d

nb∑
j=1

log
(
1 + eX̃

T

bjβ)
or, equivalently, the solution to the pseudo-score functions

(2.3) s(β) = ∂�

∂β
=

nd∑
i=1

X̃di − nd

nbπ̂d

nb∑
j=1

X̃bj e
X̃

T

bj β

1 + eX̃
T

bj β
= 0.

The proposed method is essentially an estimating equation method. However,
unlike the usual estimating equations which are derived based on the actual data,
our proposed estimating equation is from a pseudo-score of the imputed data. Con-
sequently, the asymptotic properties of the proposed estimator must be reestab-
lished. In the Appendix we prove that the proposed method yields a consistent
estimator of β . Specifically, we have the following result.

THEOREM 2.1. Let n = nd + nb + np . Assume that limn→∞ ni/n = ρi exists
and satisfies 0 < ρi < 1, i = d, b,p. With probability approaching 1 as n → ∞,
the solution to (2.3), denoted as β̂ , exists and is unique. Let β∗ be the true unknown
value for model (2.1). Assume that var(X) is positive definite. Then, as n → ∞,
β̂ →a.s. β

∗, and

n1/2(
β̂ − β∗) →d NK

{
0,M

(
β∗)−1

V M
(
β∗)−1}

,

where

V = ρ−1
d π2

d var(X̃ | Y = 1) + ρ−1
b var

(
X̃eX̃

T
β∗

1 + eX̃
T
β∗

)
+ ρ−1

p πd(1 − πd)E(X̃ | Y = 1)
{
E(X̃ | Y = 1)

}T
,

and M(β∗) is a K × K positive definite matrix whose (k, l)th entry is∫
xk−1xl−1e

x̃T β∗(
1 + ex̃T β∗)−2

f (x) dμ(x) (k, l = 1, . . . ,K),

where x0 ≡ 1 and xk−1 is the (k − 1)th element of exposure vector x.

The matrix V can be consistently estimated by plugging in the following esti-
mators:

π̂d = 1

np

np∑
l=1

I (Ypl = 1), Ê(X̃ | Y = 1) = 1

nd

nd∑
i=1

X̃di,

where I (·) is the indicator function, and

v̂ar(X̃ | Y = 1) = 1

nd − 1

nd∑
i=1

(X̃di − X̃d)(X̃di − X̃d)T ,
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where X̃d denotes the sample mean of X̃di , i = 1, . . . , nd , and

v̂ar
(

X̃eX̃
T
β∗

1 + eX̃
T
β∗

)
= 1

nb − 1

nb∑
j=1

(W bj − W b)(W bj − W b)
T ,

where

W bj = X̃bj e
X̃

T

bj β̂(
1 + eX̃

T

bj β̂)−1
(j = 1, . . . , nb),

and W b is the sample mean of W bj , j = 1, . . . , nb. Finally, M(β∗) is estimated
consistently by

M̂
(
β∗) = 1

nb

nb∑
j=1

X̃bj X̃
T

bj e
X̃

T

bj β̂(
1 + eX̃

T

bj β̂)−2
.

We remark that, although the intended applications of the proposed design are
to studies for which a control sample is not available, including a control sample,
in case it can be obtained by some means, into the new design will generally im-
prove the efficiency. To see this, suppose in addition to nd case sample subjects,
nb background sample subjects and np prevalence sample subjects, we also have
nc control sample subjects, whose exposures are denoted as Xc1, . . . ,Xc,nc . Then
parameter γ = E(X̃ | Y = 1), which appears in the estimating equation in the Ap-
pendix and is estimated by 1

nd

∑nd

i=1 X̃di in the case-background design, can now

be better estimated using both 1
nd

∑nd

i=1 X̃di and

1
nb

∑nb

j=1 X̃bj − ( 1
nc

∑nc

k=1 X̃ck){ 1
np

∑np

l=1 I (Ypl = 0)}
1
np

∑np

l=1 I (Ypl = 1)
,

which leads to improved efficiency. The magnitude of the efficiency improvement,
however, is hard to determine, as it depends on other unknown parameters as well.

3. Numerical studies.

3.1. Finite sample performance. In this section, we conduct simulation stud-
ies to evaluate the performance of the proposed estimator. The simulation setting
is similar to but simpler than the one in Section 3.3 for the Sorafenib accessibility
study. The binary outcome Y is the accessibility of Sorafenib among eligible pa-
tients, which has the role of “case status” in our notation, with Y = 1 indicating
that a patient has access to Sorafenib, and hence is considered a “case,” and Y = 0
indicating that a patient, although eligible, does not have access to Sorafenib,
and hence is a “control.” Two dichotomous exposure variables, socioeconomic
status (SES, high versus low) and race (nonwhite versus white), taken from the
collection of exposure variables used in the Sorafenib study, are simulated from
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TABLE 3
Joint distribution of socioeconomic status and race in background and case

populations. SES: socioeconomic status

Background population Case population

SES = high SES = low SES = high SES = low

Race = nonwhite 0.209 0.495 0.260 0.402
Race = white 0.205 0.090 0.262 0.076

a multinomial distribution whose cell probabilities, displayed in the second and
third columns of Table 3, are based on their joint distribution in the Sorafenib ac-
cessibility study. Then, conditioning on SES and race, case status Y is generated
from a Bernoulli distribution whose probability is given via the following logistic
regression model:

log
{

pr(Yi = 1 | SESi , racei )

1 − pr(Yi = 1 | SESi , racei )

}
= β0 + β1SESi + β2racei ,(3.1)

where the true parameter values β0 = −0.750, β1 = 0.700 and β2 = −0.050, are
set equal to those estimated from the Sorafenib example. From Table 3 and the lo-
gistic regression model (3.1), the case prevalence in the simulation is determined
as 0.382 by the total probability theorem, and the joint distribution of SES and race
in the case population is determined as in the forth and fifth columns of Table 3 by
Bayes’ theorem. Note that we choose the true βi , i = 0,1,2, to be the estimates
derived from the Sorafenib accessibility example, and that since the example con-
tains two more covariates, the prevalence rate in the simulation differs from that of
the example.

Three choices of total sample size, n = 500,1000 and 1500, and various choices
of partition of the total sample size into the three subsamples, (ρd, ρb, ρp), are
considered. We choose ρd and ρp to be relatively small compared with ρb, to re-
flect the fact that in actual studies where the case-background design is applicable,
it is usually much easier and cheaper to sample from the background than from
the case group or the prevalence group. The expectation of β̂i , the standard error
se(β̂i) and the coverage probability of the 95% asymptotic confidence interval for
βi, i = 0,1,2, are estimated based on 5000 simulations. The results are summa-
rized in Table 4.

The simulation results indicate that the coverage probabilities of the asymp-
totic confidence intervals are slightly greater than the nominal level of 95%, but
approach 95% as the total sample size increases. When the total sample size n

is fixed, the simulation results suggest that, although it is cheaper to obtain the
background sample, it is not true that the higher the proportion of the background
sample ρb, the better the performance; that is, the proportions of the case and the
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TABLE 4
Summary of simulation results. True parameters (β0, β1, β2) = (−0.750,0.700,−0.050). SE: empirical standard error; CP: empirical coverage

probability

β0 β1 β2

n (ρd,ρb,ρp) Bias SE CP Bias SE CP Bias SE CP

500 (0.2,0.6,0.2) −0.016 0.503 0.969 0.036 0.462 0.966 0.012 0.506 0.977
500 (0.3,0.6,0.1) 0.006 0.480 0.968 0.030 0.413 0.967 −0.018 0.431 0.977
500 (0.2,0.7,0.1) −0.016 0.539 0.970 0.029 0.460 0.971 −0.003 0.506 0.980
500 (0.1,0.6,0.3) −0.017 0.648 0.984 0.038 0.601 0.976 0.001 0.675 0.978
500 (0.1,0.7,0.2) −0.015 0.652 0.983 0.041 0.600 0.974 −0.004 0.670 0.977

1000 (0.2,0.6,0.2) −0.008 0.339 0.962 0.009 0.310 0.961 0.004 0.341 0.962
1000 (0.3,0.6,0.1) −0.007 0.341 0.951 0.014 0.275 0.961 0.000 0.299 0.959
1000 (0.2,0.7,0.1) −0.022 0.367 0.951 0.014 0.307 0.958 0.006 0.330 0.963
1000 (0.1,0.6,0.3) −0.007 0.423 0.970 0.022 0.404 0.962 −0.003 0.443 0.968
1000 (0.1,0.7,0.2) −0.017 0.433 0.964 0.024 0.407 0.960 0.007 0.448 0.961
1500 (0.2,0.6,0.2) −0.005 0.277 0.952 0.012 0.250 0.959 0.001 0.277 0.955
1500 (0.3,0.6,0.1) −0.010 0.271 0.950 0.011 0.222 0.958 0.005 0.237 0.959
1500 (0.2,0.7,0.1) −0.002 0.284 0.960 0.011 0.244 0.959 −0.004 0.263 0.961
1500 (0.1,0.6,0.3) −0.011 0.343 0.963 0.015 0.331 0.956 0.004 0.357 0.963
1500 (0.1,0.7,0.2) −0.005 0.352 0.957 0.007 0.331 0.954 −0.002 0.357 0.957
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prevalence samples, ρd and ρp , cannot be chosen too small. When the total sam-
ple size n and the background sample proportion ρb are fixed, having a bigger
case sample, that is, ρd > ρp , generally results in better performance than having
a bigger prevalence sample, that is, ρp > ρd . Empirically, it seems that a 3 : 6 : 1
ratio in the case, the background and the prevalence sample sizes or, equivalently,
the partition (ρd, ρb, ρp) = (0.3,0.6,0.1), yields favorable performance. When
the total sample size n is smaller than 500, the performance begins to deteriorate
and histograms of the distributions of parameter estimators show departures from
normality. This suggests that, for smaller sample sizes, the asymptotic results may
not be preferred and alternatives such as bootstrap confidence intervals may be a
superior. However, we do not explore such proposals in this paper.

3.2. Sensitivity analysis. The key assumption needed for the case-background
design is that the case sample, the background sample and the prevalence sample
derive from the same underlying population. When this assumption is violated,
bias may occur, and if the violation is severe, the proposed method may not even
be valid. In this section, we investigate the impact of violations of this assumption
via a set of simulation studies. Specifically, 18 scenarios are considered (see Ta-
bles 5 and 6). The first 8 scenarios correspond to 8 perturbations of the exposure
distribution in the background population given in Table 3. They represent the
situations where the background sample is taken from a population slightly dif-
ferent from the underlying population from which cases arise. The perturbations
are formed by adding or subtracting a fixed percentage of the true value from a
cell probability in Table 3 and compensating the remaining three cell probabilities
evenly in order to maintain the unity total probability constraint. For example, in
the first set of simulations using 5% relative perturbations, Scenario 1, πb

11 ↑, cor-
responds to adding 0.010 = (0.050)(0.209) to the top left cell probability 0.209
and subtracting 0.003 = (0.50)(0.209)/3 from the remaining cell probabilities of
the table. Similarly, Scenario 2, πb

11 ↓, corresponds to subtracting 0.010 to the top
left cell probability 0.209 and adding 0.003 to all the rest. Scenarios 9 to 16 repre-
sent 8 perturbations of the exposure distribution in the case population in Table 3,
and the perturbation procedure is the same as for the first 8 scenarios. The last
two scenarios correspond to increasing and decreasing the case prevalence rate,
respectively, and represent situations where the prevalence sample is taken from a
population that differs slightly from the underlying population where cases arise.
The first set of simulations shows effects of 5% relative perturbations; the sec-
ond set shows effects of 10% relative perturbations considered as violations of the
design assumptions.

The simulations are done under the parameters n = 1500, (ρd, ρb, ρp) =
(0.2,0.7,0.1), approximating those of the Sorafenib example. All estimations are
based on 5000 simulation runs, and results are summarized in Tables 5 and 6
for 5% and 10% perturbations, respectively. Violations of assumptions lead to in-
creased standard errors across all the 18 scenarios and for both levels of perturba-
tion, but the coverage probabilities appear unaffected by 5% relative perturbations
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TABLE 5
Summary of sensitivity analysis results: version 1. ↑ (resp. ↓): add (resp. subtract) 5% of the probability of the specified cell and redistribute evenly to

the remaining cells; πb
ij : exposure prevalence in background population; πd

ij : exposure prevalence in case population, i = 1 (nonwhite), 2 (white), j = 1

(high SES), 2 (low SES); π
p
d : case prevalence in prevalence population; n = 1500 and (ρd ,ρb,ρp) = (0.2,0.7,0.1). True parameters

(β0, β1, β2) = (−0.750,0.700,−0.050); SE: empirical standard error; CP: empirical coverage probability

β0 β1 β2

Scenario Perturbation Bias SE CP Bias SE CP Bias SE CP

1 πb
11 ↑ 0.090 0.354 0.947 −0.068 0.324 0.945 −0.091 0.360 0.953

2 πb
11 ↓ −0.120 0.356 0.948 0.108 0.338 0.957 0.108 0.365 0.953

3 πb
21 ↑ −0.043 0.351 0.963 −0.012 0.329 0.958 0.066 0.357 0.958

4 πb
21 ↓ 0.023 0.344 0.959 0.042 0.319 0.960 −0.056 0.356 0.954

5 πb
12 ↑ 0.029 0.375 0.961 0.100 0.345 0.948 −0.090 0.376 0.955

6 πb
12 ↓ −0.039 0.333 0.958 −0.080 0.322 0.940 0.087 0.345 0.948

7 πb
22 ↑ −0.037 0.340 0.962 0.041 0.328 0.956 0.029 0.352 0.958

8 πb
22 ↓ 0.017 0.349 0.962 −0.012 0.326 0.957 −0.020 0.362 0.956

9 πd
11 ↑ −0.126 0.352 0.950 0.106 0.332 0.955 0.109 0.364 0.949

10 πd
11 ↓ 0.105 0.348 0.949 −0.083 0.320 0.947 −0.100 0.356 0.949

11 πd
21 ↑ 0.006 0.351 0.957 0.055 0.327 0.959 −0.046 0.363 0.952

12 πd
21 ↓ −0.033 0.349 0.959 −0.026 0.326 0.953 0.059 0.356 0.957

13 πd
12 ↑ −0.036 0.341 0.959 −0.048 0.327 0.947 0.077 0.351 0.953

14 πd
12 ↓ 0.015 0.360 0.958 0.085 0.329 0.960 −0.077 0.368 0.950

15 πd
22 ↑ 0.028 0.352 0.960 −0.019 0.327 0.953 −0.032 0.361 0.956

16 πd
22 ↓ −0.042 0.349 0.957 0.044 0.326 0.960 0.033 0.361 0.958

17 π
p
d ↑ 0.070 0.364 0.952 0.038 0.343 0.960 −0.004 0.379 0.955

18 π
p
d ↓ −0.078 0.338 0.955 −0.015 0.315 0.954 0.003 0.346 0.956
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TABLE 6
Summary of sensitivity analysis results: version 2. ↑ (resp. ↓): add (resp. subtract) 10% of the probability of the specified cell and redistribute evenly to
the remaining cells; πb

ij : exposure prevalence in background population; πd
ij : exposure prevalence in case population, i = 1 (nonwhite), 2 (white), j = 1

(high SES), 2 (low SES); π
p
d : case prevalence in prevalence population; n = 1500 and (ρd ,ρb,ρp) = (0.2,0.7,0.1). True parameters

(β0, β1, β2) = (−0.750,0.700,−0.050); SE: empirical standard error; CP: empirical coverage probability

β0 β1 β2

Scenario Perturbation Bias SE CP Bias SE CP Bias SE CP

1 πb
11 ↑ 0.193 0.356 0. 926 −0.147 0.318 0.918 −0.191 0.364 0.928

2 πb
11 ↓ −0.222 0.355 0. 924 0.197 0.349 0.939 0.211 0.364 0.934

3 πb
21 ↑ −0.080 0.365 0. 956 −0.038 0.342 0.945 0.127 0.363 0.946

4 πb
21 ↓ 0.066 0.339 0. 955 0.070 0.318 0.961 −0.125 0.357 0.947

5 πb
12 ↑ 0.071 0.390 0. 964 0.193 0.363 0.934 −0.176 0.396 0.944

6 πb
12 ↓ −0.047 0.312 0. 959 −0.180 0.305 0.907 0.158 0.327 0.927

7 πb
22 ↑ −0.078 0.339 0. 954 0.076 0.333 0.949 0.033 0.349 0.959

8 πb
22 ↓ 0.060 0.355 0. 964 −0.059 0.329 0.948 −0.056 0.361 0.959

9 πd
11 ↑ −0.249 0.362 0. 908 0.203 0.339 0.932 0.226 0.370 0.920

10 πd
11 ↓ 0.218 0.347 0. 913 −0.179 0.320 0.908 −0.201 0.360 0.918

11 πd
21 ↑ 0.028 0.345 0. 955 0.096 0.325 0.953 −0.107 0.357 0.947

12 πd
21 ↓ −0.051 0.360 0.960 −0.069 0.331 0.949 0.115 0.367 0.942

13 πd
12 ↑ −0.063 0.334 0. 956 −0.115 0.319 0.933 0.164 0.344 0.937

14 πd
12 ↓ 0.049 0.367 0. 960 0.139 0.333 0.948 −0.163 0.378 0.933

15 πd
22 ↑ 0.058 0.354 0. 953 −0.039 0.333 0.950 −0.054 0.362 0.954

16 πd
22 ↓ −0.061 0.345 0.957 0.059 0.324 0.962 0.049 0.355 0.961

17 π
p
d ↑ 0.130 0.378 0. 946 0.063 0.358 0.959 0.008 0.394 0.959

18 π
p
d ↓ −0.157 0.331 0. 930 −0.040 0.301 0.953 0.002 0.337 0.955
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and show a mild impact from 10% relative perturbations. Perturbations do incur
positive or negative bias in the point estimators, depending on the direction of the
perturbation, but the bias is generally modest in units of the standard error. In sum-
mary, the proposed method shows satisfactory robustness when the assumption
that all samples originate from the same underlying population is subject to mild
violations. On the other hand, as in any epidemiological study, caution must be
exercised when sampling the data to ensure the main assumption of the design is
approximately met. Some practical guidelines for responsible use of this design
are provided in Section 3.4.

3.3. Example: Sorafenib accessibility study. The study collected a case sam-
ple of 352 patients, a background sample of 959 patients and a prevalence sample
of 137 patients which yielded a case prevalence rate of 45.3%. Interest was fo-
cused on assessing how the four predictors: age (≥65 versus <65), race (nonwhite
versus white), socioeconomic status (high versus low by the median income of a
patient’s zip code of residence) and insurance (government alone versus commer-
cial or government plus supplement) affected access to Sorafenib. The odds ratios,
95% asymptotic confidence intervals and p-values for the four predictors were
calculated by the proposed method using the three samples. The results, which
are summarized in Table 7, reveal that patients of high socioeconomic status had
significantly greater access to Sorafenib; older age was somewhat associated with
improved access, but the effect did not reach significance. On the other hand, nei-
ther race nor insurance type significantly influenced Sorafenib accessibility.

To summarize, although it was not feasible to obtain a control sample for the
Sorafenib study, with the help of a background sample and a prevalence sample,
it was still possible to assess the case-exposure associations. Importantly, the pro-
posed method allowed us to detect a disparity in access to Sorafenib between pa-
tients with different socioeconomic statuses at a major urban medical center that
experienced continuity of its internal operations, populations served and external
outreach during the 10-year study period. There are several possible explanations
for the observed disparity. One is that patients of high SES may be less deterred

TABLE 7
Estimated odds ratios for exposure variables with 95% confidence intervals and p-values. OR: odds

ratio; Asymp CI: asymptotic confidence interval; SES: socioeconomic status

Exposure variable ̂OR 95% Asym CI p-value

Age (≥65 versus <65) 1.535 0.921–2.560 0.100
Race (nonwhite versus white) 0.947 0.520–1.725 0.858
SES (high versus low) 2.073 1.191–3.608 0.010
Insurance (government alone versus

commercial or government plus supplement) 1.202 0. 745–1.940 0.451
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by costs such as copayments or more able to accept out-of-pocket expenses when
facing obstacles in financing their care through insurance. Another possible rea-
son is that patients of high SES are typically better educated, more knowledgeable
about their treatment options and more likely to demand access to care. Other ex-
planations could involve the strength of patients’ support networks and levels of
family involvement. Finally, it is possible that high SES patients had access to
doctors who were more knowledgeable and more willing to share their treatment
knowledge and provide treatment options. The detected disparity should be fur-
ther researched to confirm its generalizability beyond the single academic medical
center where the study was conducted. Nonetheless, there are potentially impor-
tant implications for policy making; more research is needed to identify barriers
that lead to disparities in care and more resources should be directed toward so-
cioeconomically disadvantaged patients to improve their access to state-of-the-art
therapies. Our finding also signifies the importance of the new proposed method
because in the absence of a control sample such a disparity would most likely go
unnoticed, in spite of ongoing efforts to improve the quality and comprehensive-
ness of institutional electronic medical records.

3.4. Practical guidelines. We expect the proposed design to be embraced by
applied researchers who have ready access to a case sample, for example, through
electronic medical records, but have difficulty obtaining a control sample due to
either ethical or budgetary restrictions, such that they are unable to conduct a usual
case-control design. In such studies, a case-background design has a clear advan-
tage over the traditional case-control design in terms of efficiency and cost, and
thus should be considered. On the other hand, implementing a case-background
design requires caution to ensure that all samples reflect the same underlying con-
ceptual population since inappropriate sampling would lead to bias and misleading
findings. In this section we propose some practical guidelines to ensure proper uti-
lization of the proposed method.

First, at the planning stage, an underlying population should be identified
through specific inclusion and exclusion criteria, and the definition of a case (and
hence of a control) should be clearly stated. This requirement seems more impor-
tant for the case-background design because in reality investigators might already
have a case sample in hand when they think of using the case-background design,
and they would have to think carefully about what they intend as their underlying
population before taking a background sample. For example, in the Sorafenib ac-
cessibility study, only a case sample through a disease registry was available at the
beginning of the study, and we decided to sample the background population only
when we realized that sampling the controls was nearly impossible. In such a sit-
uation, bias will easily occur if one is not clear about what underlying population
one is referring to and what is meant by a subject being a case.
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Second, if time trends present a possible source of bias in a given study design,
one should choose to measure exposures in ways that are temporally stable to make
sure the exposure distribution in the background sample is as close as possible to
the one in the underlying population to which the cases belong. This way, any tem-
poral change in the underlying population will have lesser impact on the exposure
distribution. In the Sorafenib study, the socioeconomic status was measured by the
median income of a patient’s zip code of residence, which is clearly more stable
and robust than the patient’s annual income, as the latter may have great fluctua-
tions. This recommendation is more relevant if there is a temporal gap between the
background population and the underlying population for cases. For example, in
the Sorafenib study, the background population consisted of patients who were at
a pre-metastatic stage and needed a short time period to progress to stage C.

Third, in taking the prevalence sample, choose a sampling scheme as unbiased
as possible and a case status determination as objective as possible to ensure the
prevalence sample correctly reflects the case prevalence in the underlying popu-
lation. As we have emphasized, identifying who are the cases and who are the
controls is often challenging. However, in practice it is quite likely that the preva-
lence sample may be a biased sample of the underlying population, or, if the case
status is based on self-report, the prevalence rate thus estimated may either under-
estimate or overestimate the true prevalence rate. For example, in a study where
case status is ascertained through a questionnaire or survey, one could argue that
those who respond to the survey (i.e., responders) constitute a biased sample of
the underlying population. Or, when the case status in the prevalence sample is de-
termined by a manual chart review of patients’ self-reported outcomes, one would
expect bias in estimating the prevalence rate. In the Sorafenib study, the preva-
lence sample was a convenience sample from among the background population
for which manual chart review was performed. No special selection was entailed,
and we believe that it represented a sample from the same conceptual population as
that of our study. No significant difference was found in tests of covariate patterns
between the prevalence and background samples in further investigation reported
by Heskel et al. In addition, determination of the case statuses through manual
chart review is clearly more objective than the use of patient self-reports.

Finally, before claiming any findings, one must always conduct sensitivity anal-
yses to assess the impact of biases due to violations of assumptions. If the data
analysis involves testing hypotheses, it is important to discuss the direction of the
bias when interpreting the findings. For example, bias toward the alternative hy-
pothesis is more serious than toward the null because it may lead to false positive
findings.

4. Discussion. The proposed case-background design has many potential ap-
plications. It may be a useful tool in epidemiological investigations where acquir-
ing a sample of exposure data among a control group is impossible, unethical or
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costly. Such situations are frequent in practice. For example, in studies of highly in-
timate health conditions, or criminal or stigmatized behaviors, it may be extremely
hard to identify a true control group that is comparable in size to an existing case
group due to ethical or privacy concerns. Further examples may be found among
research topics in sociomedical sciences, population health and psychiatry.

To implement the proposed method, one needs a background sample and a
prevalence sample to replace the unavailable control sample. Even though a control
sample can be obtained in some of the scenarios we consider, it can be argued that
the cost of the background and the prevalence samples are much lower, making the
proposed design appealing. In addition, unlike the biased estimation strategy that
would result from treating the background sample as an approximation to a con-
trol sample, no requirement of low disease prevalence is needed for our proposed
design.

The proposed method has been demonstrated to have satisfactory robustness
properties against modest violations of its key assumption: that the background
and prevalence samples accurately reflect the same underlying population from
which the case sample is selected. However, we emphasize that the practical guide-
lines provided in Section 3.4 specifying the importance of good covariate selection,
consideration of biases and sensitivity analyses be followed as closely as possible
when implementing this form of study.

APPENDIX: PROOF OF THE THEOREM

PROOF OF THEOREM 2.1. The estimating equation can be written as
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We show that equation (A.1) is unbiased when β equals the true unknown param-
eter β∗. In fact,
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Define

H (β) =
∫

x̃ex̃T β

1 + ex̃T β
f (x) dμ(x), πd = pr(Y = 1),

γ = E(X̃ | Y = 1), θ = πdγ .

We have proved in the above that β = β∗ is a solution to H (β) = θ . Write M(β) =
∂H (β)/∂β whose (k, l)th entry is

mkl =
∫

xk−1xl−1e
x̃T β(

1 + ex̃T β)−2
f (x) dμ(x) (k, l = 1, . . . ,K).

Applying Theorem 182 in Hardy, Littlewood and Pólya (1952) to vector x{ex̃T β ×
f (x)}1/2(1 + ex̃T β)−1, we conclude that M(β) is positive definite because var(X)

is positive definite, implying that the components of X cannot be linearly depen-
dent almost surely. The positive definiteness of M(β) for any β implies that the
solution to H (β) = θ must be unique.

Let

Ĥ (β) = 1

nb

nb∑
j=1

X̃bj e
X̃

T

bjβ

1 + eX̃
T

bjβ
, π̂d = 1

np

np∑
l=1

I (Ypl = 1),

γ̂ = 1

nd

nd∑
i=1

X̃di, θ̂ = π̂d γ̂ .

By Theorem 8 in Hardy, Littlewood and Pólya (1952), M̂(β) = ∂Ĥ (β)/∂β is
positive definite as long as the design matrix (X̃b1, . . . , X̃bnb

)T is of rank K

almost surely. By Theorem 16(a) in Ferguson (1996), Ĥ (β) →a.s. H (β) uni-
formly on Bδ = {β : ‖β − β∗‖ ≤ δ} for some fixed δ > 0, where ‖ · ‖ denotes the
K-dimensional Euclidean distance. Since θ̂ →a.s. θ , Ĥ (β) →a.s. H (β) uniformly
on Bδ , we conclude that equation Ĥ (β) = θ̂ has a unique solution β̂ almost surely
and β̂ →a.s. β

∗.
By the mean value theorem,

0 = Ĥ (β̂) − θ̂ = Ĥ
(
β∗) +

∫ 1

0
M̂

(
tβ∗ + (1 − t)β̂

)
dt · (
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which yields
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By Theorem 16(a) in Hardy, Littlewood and Pólya (1952), M̂(β) →a.s. M(β) uni-
formly on Bδ , which, together with the fact that β̂ →a.s. β

∗, yields that∫ 1

0
M̂

(
tβ∗ + (1 − t)β̂

)
dt →a.s. M

(
β∗)

.
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By the central limit theorem,

n1/2
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By the δ-method,
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Then, by Slutsky’s theorem,
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